Properties

Label 312.4.m.a.181.58
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.58
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.57

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61542 + 2.32173i) q^{2} -3.00000i q^{3} +(-2.78086 + 7.50112i) q^{4} -1.96149 q^{5} +(6.96519 - 4.84625i) q^{6} +7.12715i q^{7} +(-21.9078 + 5.66102i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(1.61542 + 2.32173i) q^{2} -3.00000i q^{3} +(-2.78086 + 7.50112i) q^{4} -1.96149 q^{5} +(6.96519 - 4.84625i) q^{6} +7.12715i q^{7} +(-21.9078 + 5.66102i) q^{8} -9.00000 q^{9} +(-3.16863 - 4.55406i) q^{10} +39.6233 q^{11} +(22.5034 + 8.34259i) q^{12} +(-14.7839 + 44.4796i) q^{13} +(-16.5473 + 11.5133i) q^{14} +5.88448i q^{15} +(-48.5336 - 41.7192i) q^{16} -20.3979 q^{17} +(-14.5387 - 20.8956i) q^{18} -78.7892 q^{19} +(5.45464 - 14.7134i) q^{20} +21.3814 q^{21} +(64.0081 + 91.9946i) q^{22} -108.309 q^{23} +(16.9831 + 65.7235i) q^{24} -121.153 q^{25} +(-127.152 + 37.5288i) q^{26} +27.0000i q^{27} +(-53.4616 - 19.8196i) q^{28} +306.234i q^{29} +(-13.6622 + 9.50588i) q^{30} -122.283i q^{31} +(18.4587 - 180.076i) q^{32} -118.870i q^{33} +(-32.9512 - 47.3585i) q^{34} -13.9798i q^{35} +(25.0278 - 67.5101i) q^{36} -238.381 q^{37} +(-127.277 - 182.927i) q^{38} +(133.439 + 44.3517i) q^{39} +(42.9720 - 11.1040i) q^{40} -113.600i q^{41} +(34.5399 + 49.6419i) q^{42} +443.229i q^{43} +(-110.187 + 297.219i) q^{44} +17.6534 q^{45} +(-174.964 - 251.464i) q^{46} +435.239i q^{47} +(-125.157 + 145.601i) q^{48} +292.204 q^{49} +(-195.712 - 281.284i) q^{50} +61.1938i q^{51} +(-292.535 - 234.588i) q^{52} -496.774i q^{53} +(-62.6867 + 43.6162i) q^{54} -77.7208 q^{55} +(-40.3469 - 156.140i) q^{56} +236.368i q^{57} +(-710.993 + 494.696i) q^{58} -868.043 q^{59} +(-44.1402 - 16.3639i) q^{60} +355.574i q^{61} +(283.909 - 197.538i) q^{62} -64.1443i q^{63} +(447.906 - 248.041i) q^{64} +(28.9985 - 87.2464i) q^{65} +(275.984 - 192.024i) q^{66} +792.201 q^{67} +(56.7239 - 153.007i) q^{68} +324.927i q^{69} +(32.4574 - 22.5833i) q^{70} +208.138i q^{71} +(197.170 - 50.9492i) q^{72} -1075.25i q^{73} +(-385.085 - 553.457i) q^{74} +363.458i q^{75} +(219.102 - 591.007i) q^{76} +282.401i q^{77} +(112.587 + 381.455i) q^{78} +1229.23 q^{79} +(95.1983 + 81.8318i) q^{80} +81.0000 q^{81} +(263.749 - 183.511i) q^{82} +701.173 q^{83} +(-59.4588 + 160.385i) q^{84} +40.0104 q^{85} +(-1029.06 + 715.999i) q^{86} +918.703 q^{87} +(-868.061 + 224.308i) q^{88} -14.2857i q^{89} +(28.5176 + 40.9865i) q^{90} +(-317.013 - 105.367i) q^{91} +(301.192 - 812.438i) q^{92} -366.850 q^{93} +(-1010.51 + 703.092i) q^{94} +154.544 q^{95} +(-540.227 - 55.3760i) q^{96} -1169.53i q^{97} +(472.031 + 678.418i) q^{98} -356.610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61542 + 2.32173i 0.571136 + 0.820856i
\(3\) 3.00000i 0.577350i
\(4\) −2.78086 + 7.50112i −0.347608 + 0.937640i
\(5\) −1.96149 −0.175441 −0.0877206 0.996145i \(-0.527958\pi\)
−0.0877206 + 0.996145i \(0.527958\pi\)
\(6\) 6.96519 4.84625i 0.473921 0.329745i
\(7\) 7.12715i 0.384830i 0.981314 + 0.192415i \(0.0616319\pi\)
−0.981314 + 0.192415i \(0.938368\pi\)
\(8\) −21.9078 + 5.66102i −0.968198 + 0.250184i
\(9\) −9.00000 −0.333333
\(10\) −3.16863 4.55406i −0.100201 0.144012i
\(11\) 39.6233 1.08608 0.543040 0.839707i \(-0.317273\pi\)
0.543040 + 0.839707i \(0.317273\pi\)
\(12\) 22.5034 + 8.34259i 0.541347 + 0.200691i
\(13\) −14.7839 + 44.4796i −0.315409 + 0.948956i
\(14\) −16.5473 + 11.5133i −0.315890 + 0.219790i
\(15\) 5.88448i 0.101291i
\(16\) −48.5336 41.7192i −0.758338 0.651862i
\(17\) −20.3979 −0.291013 −0.145507 0.989357i \(-0.546481\pi\)
−0.145507 + 0.989357i \(0.546481\pi\)
\(18\) −14.5387 20.8956i −0.190379 0.273619i
\(19\) −78.7892 −0.951341 −0.475671 0.879623i \(-0.657795\pi\)
−0.475671 + 0.879623i \(0.657795\pi\)
\(20\) 5.45464 14.7134i 0.0609847 0.164501i
\(21\) 21.3814 0.222182
\(22\) 64.0081 + 91.9946i 0.620299 + 0.891515i
\(23\) −108.309 −0.981912 −0.490956 0.871184i \(-0.663352\pi\)
−0.490956 + 0.871184i \(0.663352\pi\)
\(24\) 16.9831 + 65.7235i 0.144444 + 0.558990i
\(25\) −121.153 −0.969220
\(26\) −127.152 + 37.5288i −0.959097 + 0.283077i
\(27\) 27.0000i 0.192450i
\(28\) −53.4616 19.8196i −0.360832 0.133770i
\(29\) 306.234i 1.96091i 0.196753 + 0.980453i \(0.436960\pi\)
−0.196753 + 0.980453i \(0.563040\pi\)
\(30\) −13.6622 + 9.50588i −0.0831453 + 0.0578509i
\(31\) 122.283i 0.708475i −0.935156 0.354237i \(-0.884740\pi\)
0.935156 0.354237i \(-0.115260\pi\)
\(32\) 18.4587 180.076i 0.101971 0.994787i
\(33\) 118.870i 0.627048i
\(34\) −32.9512 47.3585i −0.166208 0.238880i
\(35\) 13.9798i 0.0675150i
\(36\) 25.0278 67.5101i 0.115869 0.312547i
\(37\) −238.381 −1.05918 −0.529590 0.848254i \(-0.677654\pi\)
−0.529590 + 0.848254i \(0.677654\pi\)
\(38\) −127.277 182.927i −0.543345 0.780914i
\(39\) 133.439 + 44.3517i 0.547880 + 0.182101i
\(40\) 42.9720 11.1040i 0.169862 0.0438926i
\(41\) 113.600i 0.432716i −0.976314 0.216358i \(-0.930582\pi\)
0.976314 0.216358i \(-0.0694178\pi\)
\(42\) 34.5399 + 49.6419i 0.126896 + 0.182379i
\(43\) 443.229i 1.57190i 0.618289 + 0.785951i \(0.287826\pi\)
−0.618289 + 0.785951i \(0.712174\pi\)
\(44\) −110.187 + 297.219i −0.377530 + 1.01835i
\(45\) 17.6534 0.0584804
\(46\) −174.964 251.464i −0.560805 0.806008i
\(47\) 435.239i 1.35077i 0.737466 + 0.675384i \(0.236022\pi\)
−0.737466 + 0.675384i \(0.763978\pi\)
\(48\) −125.157 + 145.601i −0.376353 + 0.437826i
\(49\) 292.204 0.851906
\(50\) −195.712 281.284i −0.553556 0.795590i
\(51\) 61.1938i 0.168017i
\(52\) −292.535 234.588i −0.780140 0.625605i
\(53\) 496.774i 1.28749i −0.765238 0.643747i \(-0.777379\pi\)
0.765238 0.643747i \(-0.222621\pi\)
\(54\) −62.6867 + 43.6162i −0.157974 + 0.109915i
\(55\) −77.7208 −0.190543
\(56\) −40.3469 156.140i −0.0962783 0.372591i
\(57\) 236.368i 0.549257i
\(58\) −710.993 + 494.696i −1.60962 + 1.11994i
\(59\) −868.043 −1.91542 −0.957708 0.287741i \(-0.907096\pi\)
−0.957708 + 0.287741i \(0.907096\pi\)
\(60\) −44.1402 16.3639i −0.0949745 0.0352096i
\(61\) 355.574i 0.746338i 0.927763 + 0.373169i \(0.121729\pi\)
−0.927763 + 0.373169i \(0.878271\pi\)
\(62\) 283.909 197.538i 0.581556 0.404635i
\(63\) 64.1443i 0.128277i
\(64\) 447.906 248.041i 0.874816 0.484456i
\(65\) 28.9985 87.2464i 0.0553357 0.166486i
\(66\) 275.984 192.024i 0.514716 0.358130i
\(67\) 792.201 1.44452 0.722260 0.691622i \(-0.243104\pi\)
0.722260 + 0.691622i \(0.243104\pi\)
\(68\) 56.7239 153.007i 0.101159 0.272866i
\(69\) 324.927i 0.566907i
\(70\) 32.4574 22.5833i 0.0554201 0.0385602i
\(71\) 208.138i 0.347907i 0.984754 + 0.173954i \(0.0556542\pi\)
−0.984754 + 0.173954i \(0.944346\pi\)
\(72\) 197.170 50.9492i 0.322733 0.0833947i
\(73\) 1075.25i 1.72394i −0.506956 0.861972i \(-0.669229\pi\)
0.506956 0.861972i \(-0.330771\pi\)
\(74\) −385.085 553.457i −0.604936 0.869434i
\(75\) 363.458i 0.559580i
\(76\) 219.102 591.007i 0.330694 0.892016i
\(77\) 282.401i 0.417956i
\(78\) 112.587 + 381.455i 0.163435 + 0.553735i
\(79\) 1229.23 1.75062 0.875312 0.483559i \(-0.160656\pi\)
0.875312 + 0.483559i \(0.160656\pi\)
\(80\) 95.1983 + 81.8318i 0.133044 + 0.114363i
\(81\) 81.0000 0.111111
\(82\) 263.749 183.511i 0.355197 0.247140i
\(83\) 701.173 0.927274 0.463637 0.886025i \(-0.346544\pi\)
0.463637 + 0.886025i \(0.346544\pi\)
\(84\) −59.4588 + 160.385i −0.0772320 + 0.208326i
\(85\) 40.0104 0.0510558
\(86\) −1029.06 + 715.999i −1.29030 + 0.897769i
\(87\) 918.703 1.13213
\(88\) −868.061 + 224.308i −1.05154 + 0.271720i
\(89\) 14.2857i 0.0170144i −0.999964 0.00850718i \(-0.997292\pi\)
0.999964 0.00850718i \(-0.00270795\pi\)
\(90\) 28.5176 + 40.9865i 0.0334003 + 0.0480040i
\(91\) −317.013 105.367i −0.365186 0.121379i
\(92\) 301.192 812.438i 0.341320 0.920680i
\(93\) −366.850 −0.409038
\(94\) −1010.51 + 703.092i −1.10879 + 0.771472i
\(95\) 154.544 0.166905
\(96\) −540.227 55.3760i −0.574341 0.0588728i
\(97\) 1169.53i 1.22420i −0.790779 0.612102i \(-0.790324\pi\)
0.790779 0.612102i \(-0.209676\pi\)
\(98\) 472.031 + 678.418i 0.486554 + 0.699292i
\(99\) −356.610 −0.362027
\(100\) 336.909 908.780i 0.336909 0.908780i
\(101\) 1116.09i 1.09956i 0.835311 + 0.549778i \(0.185288\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(102\) −142.076 + 98.8535i −0.137917 + 0.0959604i
\(103\) −843.767 −0.807173 −0.403586 0.914942i \(-0.632237\pi\)
−0.403586 + 0.914942i \(0.632237\pi\)
\(104\) 72.0833 1058.14i 0.0679649 0.997688i
\(105\) −41.9395 −0.0389798
\(106\) 1153.38 802.497i 1.05685 0.735334i
\(107\) 159.431i 0.144045i 0.997403 + 0.0720224i \(0.0229453\pi\)
−0.997403 + 0.0720224i \(0.977055\pi\)
\(108\) −202.530 75.0833i −0.180449 0.0668971i
\(109\) 2228.83 1.95856 0.979282 0.202499i \(-0.0649064\pi\)
0.979282 + 0.202499i \(0.0649064\pi\)
\(110\) −125.551 180.447i −0.108826 0.156408i
\(111\) 715.144i 0.611518i
\(112\) 297.339 345.906i 0.250856 0.291831i
\(113\) −1136.08 −0.945778 −0.472889 0.881122i \(-0.656789\pi\)
−0.472889 + 0.881122i \(0.656789\pi\)
\(114\) −548.782 + 381.832i −0.450861 + 0.313700i
\(115\) 212.447 0.172268
\(116\) −2297.10 851.595i −1.83862 0.681626i
\(117\) 133.055 400.317i 0.105136 0.316319i
\(118\) −1402.25 2015.36i −1.09396 1.57228i
\(119\) 145.379i 0.111991i
\(120\) −33.3121 128.916i −0.0253414 0.0980698i
\(121\) 239.007 0.179569
\(122\) −825.547 + 574.400i −0.612636 + 0.426260i
\(123\) −340.800 −0.249829
\(124\) 917.261 + 340.053i 0.664294 + 0.246271i
\(125\) 482.826 0.345482
\(126\) 148.926 103.620i 0.105297 0.0732633i
\(127\) 528.851 0.369512 0.184756 0.982784i \(-0.440851\pi\)
0.184756 + 0.982784i \(0.440851\pi\)
\(128\) 1299.44 + 639.227i 0.897307 + 0.441408i
\(129\) 1329.69 0.907538
\(130\) 249.407 73.6126i 0.168265 0.0496634i
\(131\) 2158.33i 1.43950i 0.694233 + 0.719750i \(0.255744\pi\)
−0.694233 + 0.719750i \(0.744256\pi\)
\(132\) 891.658 + 330.561i 0.587946 + 0.217967i
\(133\) 561.542i 0.366104i
\(134\) 1279.73 + 1839.28i 0.825017 + 1.18574i
\(135\) 52.9603i 0.0337637i
\(136\) 446.875 115.473i 0.281759 0.0728069i
\(137\) 744.898i 0.464532i 0.972652 + 0.232266i \(0.0746140\pi\)
−0.972652 + 0.232266i \(0.925386\pi\)
\(138\) −754.392 + 524.892i −0.465349 + 0.323781i
\(139\) 1667.91i 1.01777i 0.860834 + 0.508885i \(0.169942\pi\)
−0.860834 + 0.508885i \(0.830058\pi\)
\(140\) 104.864 + 38.8760i 0.0633048 + 0.0234687i
\(141\) 1305.72 0.779866
\(142\) −483.240 + 336.229i −0.285581 + 0.198702i
\(143\) −585.787 + 1762.43i −0.342559 + 1.03064i
\(144\) 436.803 + 375.472i 0.252779 + 0.217287i
\(145\) 600.676i 0.344024i
\(146\) 2496.43 1736.97i 1.41511 0.984606i
\(147\) 876.611i 0.491848i
\(148\) 662.906 1788.13i 0.368179 0.993129i
\(149\) 1913.47 1.05207 0.526033 0.850464i \(-0.323679\pi\)
0.526033 + 0.850464i \(0.323679\pi\)
\(150\) −843.851 + 587.135i −0.459334 + 0.319596i
\(151\) 1642.21i 0.885043i 0.896758 + 0.442522i \(0.145916\pi\)
−0.896758 + 0.442522i \(0.854084\pi\)
\(152\) 1726.10 446.027i 0.921087 0.238010i
\(153\) 183.582 0.0970045
\(154\) −655.659 + 456.195i −0.343081 + 0.238710i
\(155\) 239.858i 0.124296i
\(156\) −703.763 + 877.605i −0.361193 + 0.450414i
\(157\) 352.705i 0.179293i 0.995974 + 0.0896463i \(0.0285737\pi\)
−0.995974 + 0.0896463i \(0.971426\pi\)
\(158\) 1985.72 + 2853.94i 0.999844 + 1.43701i
\(159\) −1490.32 −0.743335
\(160\) −36.2065 + 353.217i −0.0178899 + 0.174527i
\(161\) 771.933i 0.377869i
\(162\) 130.849 + 188.060i 0.0634595 + 0.0912062i
\(163\) −702.565 −0.337602 −0.168801 0.985650i \(-0.553990\pi\)
−0.168801 + 0.985650i \(0.553990\pi\)
\(164\) 852.128 + 315.906i 0.405732 + 0.150415i
\(165\) 233.162i 0.110010i
\(166\) 1132.69 + 1627.93i 0.529599 + 0.761158i
\(167\) 2150.91i 0.996663i 0.866987 + 0.498332i \(0.166054\pi\)
−0.866987 + 0.498332i \(0.833946\pi\)
\(168\) −468.421 + 121.041i −0.215116 + 0.0555863i
\(169\) −1759.87 1315.16i −0.801034 0.598618i
\(170\) 64.6335 + 92.8934i 0.0291598 + 0.0419094i
\(171\) 709.103 0.317114
\(172\) −3324.71 1232.56i −1.47388 0.546405i
\(173\) 863.589i 0.379523i −0.981830 0.189761i \(-0.939229\pi\)
0.981830 0.189761i \(-0.0607715\pi\)
\(174\) 1484.09 + 2132.98i 0.646600 + 0.929315i
\(175\) 863.472i 0.372985i
\(176\) −1923.06 1653.05i −0.823615 0.707974i
\(177\) 2604.13i 1.10587i
\(178\) 33.1675 23.0773i 0.0139663 0.00971751i
\(179\) 71.4411i 0.0298310i −0.999889 0.0149155i \(-0.995252\pi\)
0.999889 0.0149155i \(-0.00474793\pi\)
\(180\) −49.0918 + 132.421i −0.0203282 + 0.0548336i
\(181\) 1287.38i 0.528676i −0.964430 0.264338i \(-0.914847\pi\)
0.964430 0.264338i \(-0.0851534\pi\)
\(182\) −267.474 906.230i −0.108937 0.369089i
\(183\) 1066.72 0.430898
\(184\) 2372.81 613.139i 0.950685 0.245659i
\(185\) 467.583 0.185824
\(186\) −592.615 851.726i −0.233616 0.335761i
\(187\) −808.234 −0.316064
\(188\) −3264.78 1210.34i −1.26653 0.469537i
\(189\) −192.433 −0.0740605
\(190\) 249.654 + 358.811i 0.0953251 + 0.137004i
\(191\) −891.876 −0.337874 −0.168937 0.985627i \(-0.554033\pi\)
−0.168937 + 0.985627i \(0.554033\pi\)
\(192\) −744.124 1343.72i −0.279701 0.505075i
\(193\) 2859.21i 1.06638i −0.845997 0.533188i \(-0.820994\pi\)
0.845997 0.533188i \(-0.179006\pi\)
\(194\) 2715.33 1889.28i 1.00490 0.699187i
\(195\) −261.739 86.9956i −0.0961207 0.0319481i
\(196\) −812.578 + 2191.86i −0.296129 + 0.798781i
\(197\) 4253.86 1.53845 0.769226 0.638977i \(-0.220642\pi\)
0.769226 + 0.638977i \(0.220642\pi\)
\(198\) −576.073 827.952i −0.206766 0.297172i
\(199\) 1669.44 0.594690 0.297345 0.954770i \(-0.403899\pi\)
0.297345 + 0.954770i \(0.403899\pi\)
\(200\) 2654.19 685.847i 0.938398 0.242483i
\(201\) 2376.60i 0.833993i
\(202\) −2591.26 + 1802.95i −0.902577 + 0.627996i
\(203\) −2182.58 −0.754615
\(204\) −459.022 170.172i −0.157539 0.0584039i
\(205\) 222.826i 0.0759162i
\(206\) −1363.03 1959.00i −0.461005 0.662572i
\(207\) 974.780 0.327304
\(208\) 2573.17 1541.98i 0.857775 0.514026i
\(209\) −3121.89 −1.03323
\(210\) −67.7498 97.3723i −0.0222628 0.0319968i
\(211\) 4935.05i 1.61016i −0.593169 0.805078i \(-0.702124\pi\)
0.593169 0.805078i \(-0.297876\pi\)
\(212\) 3726.36 + 1381.46i 1.20721 + 0.447543i
\(213\) 624.413 0.200864
\(214\) −370.156 + 257.548i −0.118240 + 0.0822691i
\(215\) 869.390i 0.275776i
\(216\) −152.847 591.511i −0.0481479 0.186330i
\(217\) 871.531 0.272642
\(218\) 3600.49 + 5174.75i 1.11861 + 1.60770i
\(219\) −3225.74 −0.995320
\(220\) 216.131 582.993i 0.0662343 0.178661i
\(221\) 301.561 907.293i 0.0917883 0.276159i
\(222\) −1660.37 + 1155.26i −0.501968 + 0.349260i
\(223\) 4519.69i 1.35722i 0.734498 + 0.678611i \(0.237418\pi\)
−0.734498 + 0.678611i \(0.762582\pi\)
\(224\) 1283.43 + 131.558i 0.382824 + 0.0392414i
\(225\) 1090.37 0.323073
\(226\) −1835.23 2637.66i −0.540168 0.776347i
\(227\) −3561.18 −1.04125 −0.520626 0.853785i \(-0.674301\pi\)
−0.520626 + 0.853785i \(0.674301\pi\)
\(228\) −1773.02 657.306i −0.515006 0.190926i
\(229\) −1225.27 −0.353573 −0.176786 0.984249i \(-0.556570\pi\)
−0.176786 + 0.984249i \(0.556570\pi\)
\(230\) 343.190 + 493.245i 0.0983883 + 0.141407i
\(231\) 847.203 0.241307
\(232\) −1733.60 6708.93i −0.490587 1.89855i
\(233\) −5389.72 −1.51542 −0.757709 0.652593i \(-0.773681\pi\)
−0.757709 + 0.652593i \(0.773681\pi\)
\(234\) 1144.37 337.760i 0.319699 0.0943591i
\(235\) 853.718i 0.236980i
\(236\) 2413.91 6511.29i 0.665814 1.79597i
\(237\) 3687.69i 1.01072i
\(238\) 337.531 234.848i 0.0919281 0.0639619i
\(239\) 1979.91i 0.535856i 0.963439 + 0.267928i \(0.0863389\pi\)
−0.963439 + 0.267928i \(0.913661\pi\)
\(240\) 245.495 285.595i 0.0660278 0.0768128i
\(241\) 3797.63i 1.01505i −0.861637 0.507525i \(-0.830561\pi\)
0.861637 0.507525i \(-0.169439\pi\)
\(242\) 386.095 + 554.909i 0.102558 + 0.147400i
\(243\) 243.000i 0.0641500i
\(244\) −2667.20 988.803i −0.699796 0.259433i
\(245\) −573.156 −0.149459
\(246\) −550.534 791.246i −0.142686 0.205073i
\(247\) 1164.81 3504.51i 0.300062 0.902781i
\(248\) 692.248 + 2678.96i 0.177249 + 0.685944i
\(249\) 2103.52i 0.535362i
\(250\) 779.965 + 1120.99i 0.197317 + 0.283591i
\(251\) 4440.20i 1.11658i 0.829644 + 0.558292i \(0.188543\pi\)
−0.829644 + 0.558292i \(0.811457\pi\)
\(252\) 481.154 + 178.377i 0.120277 + 0.0445899i
\(253\) −4291.56 −1.06643
\(254\) 854.315 + 1227.85i 0.211041 + 0.303316i
\(255\) 120.031i 0.0294771i
\(256\) 615.023 + 4049.56i 0.150152 + 0.988663i
\(257\) 4237.67 1.02856 0.514278 0.857624i \(-0.328060\pi\)
0.514278 + 0.857624i \(0.328060\pi\)
\(258\) 2148.00 + 3087.17i 0.518327 + 0.744957i
\(259\) 1698.98i 0.407604i
\(260\) 573.805 + 460.142i 0.136869 + 0.109757i
\(261\) 2756.11i 0.653635i
\(262\) −5011.07 + 3486.61i −1.18162 + 0.822150i
\(263\) −1562.99 −0.366457 −0.183228 0.983070i \(-0.558655\pi\)
−0.183228 + 0.983070i \(0.558655\pi\)
\(264\) 672.925 + 2604.18i 0.156878 + 0.607107i
\(265\) 974.419i 0.225880i
\(266\) 1303.75 907.124i 0.300519 0.209095i
\(267\) −42.8570 −0.00982324
\(268\) −2203.00 + 5942.40i −0.502126 + 1.35444i
\(269\) 1057.42i 0.239673i 0.992794 + 0.119837i \(0.0382371\pi\)
−0.992794 + 0.119837i \(0.961763\pi\)
\(270\) 122.960 85.5529i 0.0277151 0.0192836i
\(271\) 3139.09i 0.703638i −0.936068 0.351819i \(-0.885563\pi\)
0.936068 0.351819i \(-0.114437\pi\)
\(272\) 989.986 + 850.985i 0.220686 + 0.189701i
\(273\) −316.101 + 951.038i −0.0700781 + 0.210840i
\(274\) −1729.45 + 1203.32i −0.381314 + 0.265311i
\(275\) −4800.46 −1.05265
\(276\) −2437.31 903.576i −0.531555 0.197061i
\(277\) 1799.10i 0.390242i −0.980779 0.195121i \(-0.937490\pi\)
0.980779 0.195121i \(-0.0625100\pi\)
\(278\) −3872.43 + 2694.36i −0.835442 + 0.581285i
\(279\) 1100.55i 0.236158i
\(280\) 79.1402 + 306.268i 0.0168912 + 0.0653679i
\(281\) 2289.86i 0.486126i 0.970010 + 0.243063i \(0.0781522\pi\)
−0.970010 + 0.243063i \(0.921848\pi\)
\(282\) 2109.27 + 3031.52i 0.445410 + 0.640158i
\(283\) 2069.31i 0.434655i −0.976099 0.217328i \(-0.930266\pi\)
0.976099 0.217328i \(-0.0697340\pi\)
\(284\) −1561.27 578.802i −0.326212 0.120935i
\(285\) 463.633i 0.0963624i
\(286\) −5038.18 + 1487.02i −1.04166 + 0.307445i
\(287\) 809.645 0.166522
\(288\) −166.128 + 1620.68i −0.0339902 + 0.331596i
\(289\) −4496.92 −0.915311
\(290\) 1394.61 970.342i 0.282394 0.196484i
\(291\) −3508.59 −0.706795
\(292\) 8065.54 + 2990.11i 1.61644 + 0.599256i
\(293\) −3205.38 −0.639114 −0.319557 0.947567i \(-0.603534\pi\)
−0.319557 + 0.947567i \(0.603534\pi\)
\(294\) 2035.26 1416.09i 0.403736 0.280912i
\(295\) 1702.66 0.336043
\(296\) 5222.42 1349.48i 1.02550 0.264990i
\(297\) 1069.83i 0.209016i
\(298\) 3091.06 + 4442.57i 0.600873 + 0.863594i
\(299\) 1601.23 4817.54i 0.309704 0.931791i
\(300\) −2726.34 1010.73i −0.524684 0.194514i
\(301\) −3158.96 −0.604914
\(302\) −3812.78 + 2652.86i −0.726493 + 0.505480i
\(303\) 3348.27 0.634829
\(304\) 3823.93 + 3287.02i 0.721438 + 0.620143i
\(305\) 697.456i 0.130938i
\(306\) 296.561 + 426.227i 0.0554027 + 0.0796267i
\(307\) −3977.40 −0.739420 −0.369710 0.929147i \(-0.620543\pi\)
−0.369710 + 0.929147i \(0.620543\pi\)
\(308\) −2118.32 785.319i −0.391892 0.145285i
\(309\) 2531.30i 0.466021i
\(310\) −556.885 + 387.470i −0.102029 + 0.0709897i
\(311\) −9844.30 −1.79492 −0.897458 0.441100i \(-0.854588\pi\)
−0.897458 + 0.441100i \(0.854588\pi\)
\(312\) −3174.43 216.250i −0.576015 0.0392395i
\(313\) 1209.11 0.218349 0.109174 0.994023i \(-0.465179\pi\)
0.109174 + 0.994023i \(0.465179\pi\)
\(314\) −818.886 + 569.766i −0.147173 + 0.102400i
\(315\) 125.819i 0.0225050i
\(316\) −3418.32 + 9220.61i −0.608531 + 1.64146i
\(317\) −29.0546 −0.00514784 −0.00257392 0.999997i \(-0.500819\pi\)
−0.00257392 + 0.999997i \(0.500819\pi\)
\(318\) −2407.49 3460.13i −0.424545 0.610171i
\(319\) 12134.0i 2.12970i
\(320\) −878.564 + 486.531i −0.153479 + 0.0849935i
\(321\) 478.293 0.0831643
\(322\) 1792.22 1246.99i 0.310176 0.215814i
\(323\) 1607.14 0.276853
\(324\) −225.250 + 607.591i −0.0386231 + 0.104182i
\(325\) 1791.11 5388.82i 0.305701 0.919747i
\(326\) −1134.94 1631.17i −0.192817 0.277123i
\(327\) 6686.50i 1.13078i
\(328\) 643.092 + 2488.73i 0.108259 + 0.418955i
\(329\) −3102.01 −0.519816
\(330\) −541.340 + 376.654i −0.0903024 + 0.0628307i
\(331\) 5174.18 0.859210 0.429605 0.903017i \(-0.358653\pi\)
0.429605 + 0.903017i \(0.358653\pi\)
\(332\) −1949.86 + 5259.58i −0.322328 + 0.869449i
\(333\) 2145.43 0.353060
\(334\) −4993.84 + 3474.62i −0.818117 + 0.569230i
\(335\) −1553.90 −0.253428
\(336\) −1037.72 892.016i −0.168489 0.144832i
\(337\) 6593.59 1.06580 0.532901 0.846177i \(-0.321102\pi\)
0.532901 + 0.846177i \(0.321102\pi\)
\(338\) 210.532 6210.49i 0.0338799 0.999426i
\(339\) 3408.23i 0.546045i
\(340\) −111.263 + 300.123i −0.0177474 + 0.0478719i
\(341\) 4845.27i 0.769460i
\(342\) 1145.50 + 1646.35i 0.181115 + 0.260305i
\(343\) 4527.19i 0.712669i
\(344\) −2509.13 9710.18i −0.393265 1.52191i
\(345\) 637.341i 0.0994588i
\(346\) 2005.02 1395.06i 0.311533 0.216759i
\(347\) 1471.21i 0.227604i 0.993503 + 0.113802i \(0.0363030\pi\)
−0.993503 + 0.113802i \(0.963697\pi\)
\(348\) −2554.79 + 6891.30i −0.393537 + 1.06153i
\(349\) −2830.48 −0.434132 −0.217066 0.976157i \(-0.569649\pi\)
−0.217066 + 0.976157i \(0.569649\pi\)
\(350\) 2004.75 1394.87i 0.306167 0.213025i
\(351\) −1200.95 399.165i −0.182627 0.0607005i
\(352\) 731.393 7135.20i 0.110748 1.08042i
\(353\) 2140.98i 0.322813i −0.986888 0.161407i \(-0.948397\pi\)
0.986888 0.161407i \(-0.0516031\pi\)
\(354\) −6046.08 + 4206.75i −0.907756 + 0.631600i
\(355\) 408.261i 0.0610372i
\(356\) 107.158 + 39.7265i 0.0159533 + 0.00591432i
\(357\) −436.137 −0.0646578
\(358\) 165.867 115.407i 0.0244870 0.0170376i
\(359\) 8556.42i 1.25791i 0.777441 + 0.628956i \(0.216517\pi\)
−0.777441 + 0.628956i \(0.783483\pi\)
\(360\) −386.748 + 99.9364i −0.0566206 + 0.0146309i
\(361\) −651.259 −0.0949496
\(362\) 2988.95 2079.66i 0.433967 0.301946i
\(363\) 717.020i 0.103674i
\(364\) 1671.94 2084.94i 0.240751 0.300221i
\(365\) 2109.09i 0.302451i
\(366\) 1723.20 + 2476.64i 0.246101 + 0.353705i
\(367\) 3384.19 0.481344 0.240672 0.970606i \(-0.422632\pi\)
0.240672 + 0.970606i \(0.422632\pi\)
\(368\) 5256.62 + 4518.56i 0.744621 + 0.640071i
\(369\) 1022.40i 0.144239i
\(370\) 755.341 + 1085.60i 0.106131 + 0.152535i
\(371\) 3540.58 0.495466
\(372\) 1020.16 2751.78i 0.142185 0.383531i
\(373\) 8794.40i 1.22080i 0.792095 + 0.610398i \(0.208991\pi\)
−0.792095 + 0.610398i \(0.791009\pi\)
\(374\) −1305.63 1876.50i −0.180515 0.259443i
\(375\) 1448.48i 0.199464i
\(376\) −2463.89 9535.13i −0.337941 1.30781i
\(377\) −13621.2 4527.34i −1.86081 0.618487i
\(378\) −310.859 446.777i −0.0422986 0.0607930i
\(379\) 12072.7 1.63623 0.818117 0.575052i \(-0.195018\pi\)
0.818117 + 0.575052i \(0.195018\pi\)
\(380\) −429.767 + 1159.26i −0.0580173 + 0.156496i
\(381\) 1586.55i 0.213338i
\(382\) −1440.75 2070.70i −0.192972 0.277346i
\(383\) 10016.6i 1.33636i −0.744001 0.668178i \(-0.767074\pi\)
0.744001 0.668178i \(-0.232926\pi\)
\(384\) 1917.68 3898.32i 0.254847 0.518060i
\(385\) 553.928i 0.0733267i
\(386\) 6638.31 4618.81i 0.875340 0.609045i
\(387\) 3989.06i 0.523967i
\(388\) 8772.79 + 3252.30i 1.14786 + 0.425543i
\(389\) 3792.53i 0.494316i 0.968975 + 0.247158i \(0.0794967\pi\)
−0.968975 + 0.247158i \(0.920503\pi\)
\(390\) −220.838 748.222i −0.0286732 0.0971479i
\(391\) 2209.28 0.285750
\(392\) −6401.55 + 1654.17i −0.824814 + 0.213133i
\(393\) 6475.00 0.831096
\(394\) 6871.76 + 9876.32i 0.878665 + 1.26285i
\(395\) −2411.13 −0.307132
\(396\) 991.683 2674.97i 0.125843 0.339451i
\(397\) −3697.88 −0.467484 −0.233742 0.972299i \(-0.575097\pi\)
−0.233742 + 0.972299i \(0.575097\pi\)
\(398\) 2696.84 + 3875.99i 0.339649 + 0.488155i
\(399\) −1684.63 −0.211370
\(400\) 5879.97 + 5054.38i 0.734996 + 0.631798i
\(401\) 625.662i 0.0779154i 0.999241 + 0.0389577i \(0.0124038\pi\)
−0.999241 + 0.0389577i \(0.987596\pi\)
\(402\) 5517.83 3839.20i 0.684588 0.476324i
\(403\) 5439.11 + 1807.82i 0.672311 + 0.223459i
\(404\) −8371.93 3103.69i −1.03099 0.382214i
\(405\) −158.881 −0.0194935
\(406\) −3525.77 5067.35i −0.430988 0.619430i
\(407\) −9445.46 −1.15035
\(408\) −346.419 1340.62i −0.0420351 0.162673i
\(409\) 5895.18i 0.712709i −0.934351 0.356354i \(-0.884020\pi\)
0.934351 0.356354i \(-0.115980\pi\)
\(410\) −517.341 + 359.956i −0.0623163 + 0.0433585i
\(411\) 2234.69 0.268198
\(412\) 2346.40 6329.20i 0.280580 0.756838i
\(413\) 6186.67i 0.737109i
\(414\) 1574.68 + 2263.18i 0.186935 + 0.268669i
\(415\) −1375.35 −0.162682
\(416\) 7736.81 + 3483.26i 0.911847 + 0.410531i
\(417\) 5003.72 0.587610
\(418\) −5043.15 7248.19i −0.590116 0.848135i
\(419\) 11124.1i 1.29701i −0.761209 0.648506i \(-0.775394\pi\)
0.761209 0.648506i \(-0.224606\pi\)
\(420\) 116.628 314.593i 0.0135497 0.0365490i
\(421\) −13498.0 −1.56260 −0.781299 0.624157i \(-0.785443\pi\)
−0.781299 + 0.624157i \(0.785443\pi\)
\(422\) 11457.9 7972.16i 1.32171 0.919617i
\(423\) 3917.15i 0.450256i
\(424\) 2812.25 + 10883.2i 0.322111 + 1.24655i
\(425\) 2471.26 0.282056
\(426\) 1008.69 + 1449.72i 0.114721 + 0.164881i
\(427\) −2534.23 −0.287213
\(428\) −1195.91 443.356i −0.135062 0.0500711i
\(429\) 5287.29 + 1757.36i 0.595041 + 0.197777i
\(430\) 2018.49 1404.43i 0.226373 0.157506i
\(431\) 6562.32i 0.733401i −0.930339 0.366701i \(-0.880487\pi\)
0.930339 0.366701i \(-0.119513\pi\)
\(432\) 1126.42 1310.41i 0.125451 0.145942i
\(433\) 2471.18 0.274266 0.137133 0.990553i \(-0.456211\pi\)
0.137133 + 0.990553i \(0.456211\pi\)
\(434\) 1407.88 + 2023.46i 0.155716 + 0.223800i
\(435\) −1802.03 −0.198622
\(436\) −6198.08 + 16718.8i −0.680812 + 1.83643i
\(437\) 8533.57 0.934133
\(438\) −5210.90 7489.29i −0.568463 0.817014i
\(439\) 10095.1 1.09753 0.548764 0.835977i \(-0.315098\pi\)
0.548764 + 0.835977i \(0.315098\pi\)
\(440\) 1702.69 439.979i 0.184484 0.0476709i
\(441\) −2629.83 −0.283969
\(442\) 2593.64 765.512i 0.279110 0.0823793i
\(443\) 3059.12i 0.328088i 0.986453 + 0.164044i \(0.0524539\pi\)
−0.986453 + 0.164044i \(0.947546\pi\)
\(444\) −5364.38 1988.72i −0.573384 0.212568i
\(445\) 28.0212i 0.00298502i
\(446\) −10493.5 + 7301.17i −1.11408 + 0.775158i
\(447\) 5740.42i 0.607411i
\(448\) 1767.83 + 3192.29i 0.186433 + 0.336655i
\(449\) 14487.4i 1.52273i 0.648325 + 0.761364i \(0.275470\pi\)
−0.648325 + 0.761364i \(0.724530\pi\)
\(450\) 1761.41 + 2531.55i 0.184519 + 0.265197i
\(451\) 4501.21i 0.469964i
\(452\) 3159.27 8521.84i 0.328760 0.886800i
\(453\) 4926.64 0.510980
\(454\) −5752.79 8268.11i −0.594696 0.854717i
\(455\) 621.818 + 206.677i 0.0640688 + 0.0212948i
\(456\) −1338.08 5178.30i −0.137415 0.531790i
\(457\) 17435.8i 1.78471i 0.451332 + 0.892356i \(0.350949\pi\)
−0.451332 + 0.892356i \(0.649051\pi\)
\(458\) −1979.32 2844.75i −0.201938 0.290232i
\(459\) 550.745i 0.0560056i
\(460\) −590.786 + 1593.59i −0.0598816 + 0.161525i
\(461\) 11637.1 1.17569 0.587843 0.808975i \(-0.299977\pi\)
0.587843 + 0.808975i \(0.299977\pi\)
\(462\) 1368.59 + 1966.98i 0.137819 + 0.198078i
\(463\) 7443.25i 0.747122i 0.927606 + 0.373561i \(0.121863\pi\)
−0.927606 + 0.373561i \(0.878137\pi\)
\(464\) 12775.8 14862.7i 1.27824 1.48703i
\(465\) 719.573 0.0717622
\(466\) −8706.64 12513.5i −0.865509 1.24394i
\(467\) 1670.75i 0.165553i 0.996568 + 0.0827763i \(0.0263787\pi\)
−0.996568 + 0.0827763i \(0.973621\pi\)
\(468\) 2632.81 + 2111.29i 0.260047 + 0.208535i
\(469\) 5646.13i 0.555894i
\(470\) 1982.10 1379.11i 0.194527 0.135348i
\(471\) 1058.12 0.103515
\(472\) 19016.9 4914.01i 1.85450 0.479207i
\(473\) 17562.2i 1.70721i
\(474\) 8561.83 5957.16i 0.829658 0.577260i
\(475\) 9545.51 0.922059
\(476\) 1090.51 + 404.279i 0.105007 + 0.0389288i
\(477\) 4470.97i 0.429165i
\(478\) −4596.81 + 3198.37i −0.439860 + 0.306046i
\(479\) 15019.1i 1.43265i −0.697764 0.716327i \(-0.745822\pi\)
0.697764 0.716327i \(-0.254178\pi\)
\(480\) 1059.65 + 108.620i 0.100763 + 0.0103287i
\(481\) 3524.21 10603.1i 0.334075 1.00511i
\(482\) 8817.07 6134.75i 0.833209 0.579731i
\(483\) −2315.80 −0.218163
\(484\) −664.644 + 1792.82i −0.0624196 + 0.168371i
\(485\) 2294.03i 0.214776i
\(486\) 564.180 392.546i 0.0526579 0.0366384i
\(487\) 10089.1i 0.938773i 0.882993 + 0.469386i \(0.155525\pi\)
−0.882993 + 0.469386i \(0.844475\pi\)
\(488\) −2012.91 7789.86i −0.186722 0.722603i
\(489\) 2107.70i 0.194915i
\(490\) −925.885 1330.71i −0.0853616 0.122685i
\(491\) 12881.4i 1.18397i 0.805949 + 0.591985i \(0.201656\pi\)
−0.805949 + 0.591985i \(0.798344\pi\)
\(492\) 947.719 2556.38i 0.0868424 0.234249i
\(493\) 6246.55i 0.570650i
\(494\) 10018.2 2956.87i 0.912429 0.269303i
\(495\) 699.487 0.0635144
\(496\) −5101.56 + 5934.85i −0.461828 + 0.537263i
\(497\) −1483.43 −0.133885
\(498\) 4883.80 3398.06i 0.439455 0.305764i
\(499\) 13395.7 1.20175 0.600874 0.799344i \(-0.294819\pi\)
0.600874 + 0.799344i \(0.294819\pi\)
\(500\) −1342.67 + 3621.74i −0.120092 + 0.323938i
\(501\) 6452.74 0.575424
\(502\) −10308.9 + 7172.76i −0.916555 + 0.637721i
\(503\) 3123.84 0.276909 0.138454 0.990369i \(-0.455787\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(504\) 363.122 + 1405.26i 0.0320928 + 0.124197i
\(505\) 2189.20i 0.192907i
\(506\) −6932.65 9963.84i −0.609079 0.875389i
\(507\) −3945.49 + 5279.62i −0.345613 + 0.462477i
\(508\) −1470.66 + 3966.98i −0.128445 + 0.346469i
\(509\) −18899.4 −1.64578 −0.822888 0.568203i \(-0.807639\pi\)
−0.822888 + 0.568203i \(0.807639\pi\)
\(510\) 278.680 193.900i 0.0241964 0.0168354i
\(511\) 7663.43 0.663425
\(512\) −8408.48 + 7969.65i −0.725792 + 0.687914i
\(513\) 2127.31i 0.183086i
\(514\) 6845.60 + 9838.73i 0.587445 + 0.844295i
\(515\) 1655.04 0.141611
\(516\) −3697.67 + 9974.14i −0.315467 + 0.850944i
\(517\) 17245.6i 1.46704i
\(518\) 3944.57 2744.56i 0.334584 0.232797i
\(519\) −2590.77 −0.219118
\(520\) −141.391 + 2075.54i −0.0119238 + 0.175036i
\(521\) 16479.0 1.38571 0.692857 0.721075i \(-0.256352\pi\)
0.692857 + 0.721075i \(0.256352\pi\)
\(522\) 6398.94 4452.26i 0.536540 0.373315i
\(523\) 1172.62i 0.0980401i 0.998798 + 0.0490200i \(0.0156098\pi\)
−0.998798 + 0.0490200i \(0.984390\pi\)
\(524\) −16189.9 6002.03i −1.34973 0.500382i
\(525\) −2590.42 −0.215343
\(526\) −2524.88 3628.84i −0.209297 0.300808i
\(527\) 2494.33i 0.206176i
\(528\) −4959.15 + 5769.19i −0.408749 + 0.475514i
\(529\) −436.182 −0.0358496
\(530\) −2262.34 + 1574.09i −0.185415 + 0.129008i
\(531\) 7812.39 0.638472
\(532\) 4212.20 + 1561.57i 0.343274 + 0.127261i
\(533\) 5052.89 + 1679.45i 0.410628 + 0.136483i
\(534\) −69.2319 99.5024i −0.00561040 0.00806346i
\(535\) 312.723i 0.0252714i
\(536\) −17355.4 + 4484.67i −1.39858 + 0.361396i
\(537\) −214.323 −0.0172230
\(538\) −2455.05 + 1708.18i −0.196737 + 0.136886i
\(539\) 11578.1 0.925238
\(540\) 397.262 + 147.275i 0.0316582 + 0.0117365i
\(541\) −12163.0 −0.966594 −0.483297 0.875456i \(-0.660561\pi\)
−0.483297 + 0.875456i \(0.660561\pi\)
\(542\) 7288.11 5070.93i 0.577585 0.401873i
\(543\) −3862.15 −0.305231
\(544\) −376.519 + 3673.18i −0.0296748 + 0.289497i
\(545\) −4371.84 −0.343613
\(546\) −2718.69 + 802.421i −0.213094 + 0.0628946i
\(547\) 7645.69i 0.597635i −0.954310 0.298817i \(-0.903408\pi\)
0.954310 0.298817i \(-0.0965922\pi\)
\(548\) −5587.57 2071.46i −0.435564 0.161475i
\(549\) 3200.17i 0.248779i
\(550\) −7754.75 11145.4i −0.601206 0.864074i
\(551\) 24128.0i 1.86549i
\(552\) −1839.42 7118.44i −0.141831 0.548878i
\(553\) 8760.91i 0.673692i
\(554\) 4177.01 2906.29i 0.320333 0.222881i
\(555\) 1402.75i 0.107285i
\(556\) −12511.2 4638.22i −0.954302 0.353785i
\(557\) 7827.70 0.595459 0.297729 0.954650i \(-0.403771\pi\)
0.297729 + 0.954650i \(0.403771\pi\)
\(558\) −2555.18 + 1777.85i −0.193852 + 0.134878i
\(559\) −19714.6 6552.65i −1.49166 0.495792i
\(560\) −583.227 + 678.492i −0.0440105 + 0.0511992i
\(561\) 2424.70i 0.182480i
\(562\) −5316.43 + 3699.07i −0.399039 + 0.277644i
\(563\) 10807.8i 0.809050i 0.914527 + 0.404525i \(0.132563\pi\)
−0.914527 + 0.404525i \(0.867437\pi\)
\(564\) −3631.02 + 9794.33i −0.271088 + 0.731234i
\(565\) 2228.40 0.165929
\(566\) 4804.37 3342.79i 0.356789 0.248247i
\(567\) 577.299i 0.0427589i
\(568\) −1178.27 4559.84i −0.0870408 0.336843i
\(569\) 1092.63 0.0805015 0.0402508 0.999190i \(-0.487184\pi\)
0.0402508 + 0.999190i \(0.487184\pi\)
\(570\) 1076.43 748.961i 0.0790996 0.0550360i
\(571\) 25324.4i 1.85603i 0.372540 + 0.928016i \(0.378487\pi\)
−0.372540 + 0.928016i \(0.621513\pi\)
\(572\) −11591.2 9295.13i −0.847295 0.679456i
\(573\) 2675.63i 0.195072i
\(574\) 1307.91 + 1879.78i 0.0951067 + 0.136691i
\(575\) 13121.9 0.951689
\(576\) −4031.15 + 2232.37i −0.291605 + 0.161485i
\(577\) 5334.07i 0.384853i 0.981311 + 0.192427i \(0.0616357\pi\)
−0.981311 + 0.192427i \(0.938364\pi\)
\(578\) −7264.40 10440.6i −0.522767 0.751338i
\(579\) −8577.63 −0.615672
\(580\) 4505.74 + 1670.40i 0.322570 + 0.119585i
\(581\) 4997.36i 0.356842i
\(582\) −5667.84 8146.00i −0.403676 0.580177i
\(583\) 19683.8i 1.39832i
\(584\) 6086.98 + 23556.3i 0.431303 + 1.66912i
\(585\) −260.987 + 785.218i −0.0184452 + 0.0554953i
\(586\) −5178.03 7442.04i −0.365021 0.524621i
\(587\) 9169.90 0.644774 0.322387 0.946608i \(-0.395515\pi\)
0.322387 + 0.946608i \(0.395515\pi\)
\(588\) 6575.57 + 2437.74i 0.461177 + 0.170970i
\(589\) 9634.60i 0.674001i
\(590\) 2750.50 + 3953.12i 0.191926 + 0.275843i
\(591\) 12761.6i 0.888226i
\(592\) 11569.5 + 9945.07i 0.803216 + 0.690439i
\(593\) 11447.3i 0.792719i 0.918095 + 0.396359i \(0.129727\pi\)
−0.918095 + 0.396359i \(0.870273\pi\)
\(594\) −2483.86 + 1728.22i −0.171572 + 0.119377i
\(595\) 285.160i 0.0196478i
\(596\) −5321.11 + 14353.2i −0.365706 + 0.986459i
\(597\) 5008.32i 0.343345i
\(598\) 13771.7 4064.71i 0.941749 0.277957i
\(599\) 133.223 0.00908740 0.00454370 0.999990i \(-0.498554\pi\)
0.00454370 + 0.999990i \(0.498554\pi\)
\(600\) −2057.54 7962.57i −0.139998 0.541784i
\(601\) 22130.3 1.50202 0.751009 0.660292i \(-0.229567\pi\)
0.751009 + 0.660292i \(0.229567\pi\)
\(602\) −5103.03 7334.24i −0.345488 0.496547i
\(603\) −7129.81 −0.481506
\(604\) −12318.4 4566.77i −0.829852 0.307648i
\(605\) −468.810 −0.0315038
\(606\) 5408.85 + 7773.78i 0.362574 + 0.521103i
\(607\) −17566.5 −1.17463 −0.587316 0.809357i \(-0.699816\pi\)
−0.587316 + 0.809357i \(0.699816\pi\)
\(608\) −1454.34 + 14188.0i −0.0970089 + 0.946382i
\(609\) 6547.73i 0.435677i
\(610\) 1619.31 1126.68i 0.107482 0.0747836i
\(611\) −19359.3 6434.53i −1.28182 0.426044i
\(612\) −510.515 + 1377.07i −0.0337195 + 0.0909553i
\(613\) −26186.1 −1.72536 −0.862681 0.505748i \(-0.831217\pi\)
−0.862681 + 0.505748i \(0.831217\pi\)
\(614\) −6425.15 9234.44i −0.422309 0.606957i
\(615\) 668.477 0.0438303
\(616\) −1598.68 6186.79i −0.104566 0.404664i
\(617\) 23951.0i 1.56278i −0.624046 0.781388i \(-0.714512\pi\)
0.624046 0.781388i \(-0.285488\pi\)
\(618\) −5877.00 + 4089.10i −0.382536 + 0.266162i
\(619\) 5760.47 0.374044 0.187022 0.982356i \(-0.440117\pi\)
0.187022 + 0.982356i \(0.440117\pi\)
\(620\) −1799.20 667.011i −0.116545 0.0432062i
\(621\) 2924.34i 0.188969i
\(622\) −15902.6 22855.8i −1.02514 1.47337i
\(623\) 101.816 0.00654763
\(624\) −4625.95 7719.51i −0.296773 0.495236i
\(625\) 14197.0 0.908609
\(626\) 1953.22 + 2807.24i 0.124707 + 0.179233i
\(627\) 9365.67i 0.596537i
\(628\) −2645.68 980.825i −0.168112 0.0623235i
\(629\) 4862.49 0.308236
\(630\) −292.117 + 203.249i −0.0184734 + 0.0128534i
\(631\) 1160.57i 0.0732194i 0.999330 + 0.0366097i \(0.0116558\pi\)
−0.999330 + 0.0366097i \(0.988344\pi\)
\(632\) −26929.8 + 6958.70i −1.69495 + 0.437978i
\(633\) −14805.1 −0.929624
\(634\) −46.9352 67.4569i −0.00294012 0.00422564i
\(635\) −1037.34 −0.0648276
\(636\) 4144.38 11179.1i 0.258389 0.696981i
\(637\) −4319.91 + 12997.1i −0.268699 + 0.808421i
\(638\) −28171.9 + 19601.5i −1.74818 + 1.21635i
\(639\) 1873.24i 0.115969i
\(640\) −2548.84 1253.84i −0.157425 0.0774411i
\(641\) 17057.7 1.05108 0.525538 0.850770i \(-0.323864\pi\)
0.525538 + 0.850770i \(0.323864\pi\)
\(642\) 772.643 + 1110.47i 0.0474981 + 0.0682659i
\(643\) 14838.5 0.910066 0.455033 0.890475i \(-0.349627\pi\)
0.455033 + 0.890475i \(0.349627\pi\)
\(644\) 5790.37 + 2146.64i 0.354305 + 0.131350i
\(645\) −2608.17 −0.159220
\(646\) 2596.20 + 3731.34i 0.158121 + 0.227256i
\(647\) 12658.0 0.769144 0.384572 0.923095i \(-0.374349\pi\)
0.384572 + 0.923095i \(0.374349\pi\)
\(648\) −1774.53 + 458.542i −0.107578 + 0.0277982i
\(649\) −34394.7 −2.08030
\(650\) 15404.8 4546.72i 0.929576 0.274364i
\(651\) 2614.59i 0.157410i
\(652\) 1953.74 5270.03i 0.117353 0.316549i
\(653\) 16485.5i 0.987944i 0.869478 + 0.493972i \(0.164456\pi\)
−0.869478 + 0.493972i \(0.835544\pi\)
\(654\) 15524.3 10801.5i 0.928205 0.645828i
\(655\) 4233.56i 0.252548i
\(656\) −4739.30 + 5513.42i −0.282071 + 0.328145i
\(657\) 9677.21i 0.574648i
\(658\) −5011.04 7202.03i −0.296885 0.426694i
\(659\) 12672.0i 0.749059i 0.927215 + 0.374530i \(0.122196\pi\)
−0.927215 + 0.374530i \(0.877804\pi\)
\(660\) −1748.98 648.393i −0.103150 0.0382404i
\(661\) −10745.0 −0.632271 −0.316135 0.948714i \(-0.602385\pi\)
−0.316135 + 0.948714i \(0.602385\pi\)
\(662\) 8358.45 + 12013.0i 0.490726 + 0.705287i
\(663\) −2721.88 904.684i −0.159440 0.0529940i
\(664\) −15361.2 + 3969.35i −0.897785 + 0.231989i
\(665\) 1101.46i 0.0642298i
\(666\) 3465.77 + 4981.11i 0.201645 + 0.289811i
\(667\) 33167.9i 1.92544i
\(668\) −16134.3 5981.40i −0.934511 0.346448i
\(669\) 13559.1 0.783593
\(670\) −2510.19 3607.73i −0.144742 0.208028i
\(671\) 14089.0i 0.810582i
\(672\) 394.673 3850.28i 0.0226560 0.221023i
\(673\) −18235.1 −1.04444 −0.522222 0.852810i \(-0.674897\pi\)
−0.522222 + 0.852810i \(0.674897\pi\)
\(674\) 10651.4 + 15308.5i 0.608718 + 0.874870i
\(675\) 3271.12i 0.186527i
\(676\) 14759.2 9543.72i 0.839734 0.542997i
\(677\) 3337.54i 0.189471i −0.995502 0.0947356i \(-0.969799\pi\)
0.995502 0.0947356i \(-0.0302006\pi\)
\(678\) −7912.98 + 5505.70i −0.448224 + 0.311866i
\(679\) 8335.42 0.471110
\(680\) −876.541 + 226.500i −0.0494321 + 0.0127733i
\(681\) 10683.6i 0.601167i
\(682\) 11249.4 7827.12i 0.631616 0.439466i
\(683\) −20013.4 −1.12122 −0.560609 0.828081i \(-0.689433\pi\)
−0.560609 + 0.828081i \(0.689433\pi\)
\(684\) −1971.92 + 5319.07i −0.110231 + 0.297339i
\(685\) 1461.11i 0.0814981i
\(686\) −10510.9 + 7313.30i −0.584998 + 0.407031i
\(687\) 3675.81i 0.204135i
\(688\) 18491.1 21511.5i 1.02466 1.19203i
\(689\) 22096.3 + 7344.26i 1.22178 + 0.406087i
\(690\) 1479.73 1029.57i 0.0816414 0.0568045i
\(691\) −4659.99 −0.256547 −0.128274 0.991739i \(-0.540944\pi\)
−0.128274 + 0.991739i \(0.540944\pi\)
\(692\) 6477.89 + 2401.52i 0.355856 + 0.131925i
\(693\) 2541.61i 0.139319i
\(694\) −3415.76 + 2376.62i −0.186830 + 0.129993i
\(695\) 3271.59i 0.178559i
\(696\) −20126.8 + 5200.79i −1.09613 + 0.283241i
\(697\) 2317.21i 0.125926i
\(698\) −4572.40 6571.60i −0.247948 0.356359i
\(699\) 16169.2i 0.874927i
\(700\) 6477.01 + 2401.20i 0.349725 + 0.129652i
\(701\) 34527.6i 1.86033i 0.367146 + 0.930163i \(0.380335\pi\)
−0.367146 + 0.930163i \(0.619665\pi\)
\(702\) −1013.28 3433.10i −0.0544783 0.184578i
\(703\) 18781.9 1.00764
\(704\) 17747.5 9828.21i 0.950120 0.526157i
\(705\) −2561.15 −0.136821
\(706\) 4970.79 3458.58i 0.264983 0.184370i
\(707\) −7954.54 −0.423142
\(708\) −19533.9 7241.72i −1.03690 0.384408i
\(709\) 89.4916 0.00474038 0.00237019 0.999997i \(-0.499246\pi\)
0.00237019 + 0.999997i \(0.499246\pi\)
\(710\) 947.871 659.511i 0.0501028 0.0348605i
\(711\) −11063.1 −0.583541
\(712\) 80.8714 + 312.968i 0.00425672 + 0.0164733i
\(713\) 13244.4i 0.695660i
\(714\) −704.544 1012.59i −0.0369284 0.0530747i
\(715\) 1149.02 3456.99i 0.0600990 0.180817i
\(716\) 535.888 + 198.668i 0.0279708 + 0.0103695i
\(717\) 5939.72 0.309377
\(718\) −19865.7 + 13822.2i −1.03256 + 0.718439i
\(719\) −26608.2 −1.38013 −0.690067 0.723745i \(-0.742419\pi\)
−0.690067 + 0.723745i \(0.742419\pi\)
\(720\) −856.785 736.486i −0.0443479 0.0381212i
\(721\) 6013.65i 0.310624i
\(722\) −1052.05 1512.05i −0.0542291 0.0779399i
\(723\) −11392.9 −0.586039
\(724\) 9656.81 + 3580.03i 0.495708 + 0.183772i
\(725\) 37101.1i 1.90055i
\(726\) 1664.73 1158.29i 0.0851016 0.0592121i
\(727\) −7882.87 −0.402145 −0.201073 0.979576i \(-0.564443\pi\)
−0.201073 + 0.979576i \(0.564443\pi\)
\(728\) 7541.54 + 513.748i 0.383940 + 0.0261549i
\(729\) −729.000 −0.0370370
\(730\) −4896.73 + 3407.05i −0.248268 + 0.172741i
\(731\) 9040.96i 0.457445i
\(732\) −2966.41 + 8001.61i −0.149784 + 0.404028i
\(733\) 11514.6 0.580219 0.290110 0.956993i \(-0.406308\pi\)
0.290110 + 0.956993i \(0.406308\pi\)
\(734\) 5466.88 + 7857.18i 0.274913 + 0.395114i
\(735\) 1719.47i 0.0862905i
\(736\) −1999.24 + 19503.8i −0.100126 + 0.976793i
\(737\) 31389.6 1.56886
\(738\) −2373.74 + 1651.60i −0.118399 + 0.0823799i
\(739\) 12266.7 0.610607 0.305304 0.952255i \(-0.401242\pi\)
0.305304 + 0.952255i \(0.401242\pi\)
\(740\) −1300.28 + 3507.40i −0.0645938 + 0.174236i
\(741\) −10513.5 3494.44i −0.521221 0.173241i
\(742\) 5719.51 + 8220.28i 0.282978 + 0.406706i
\(743\) 9024.07i 0.445573i −0.974867 0.222787i \(-0.928485\pi\)
0.974867 0.222787i \(-0.0715153\pi\)
\(744\) 8036.88 2076.74i 0.396030 0.102335i
\(745\) −3753.26 −0.184576
\(746\) −20418.2 + 14206.6i −1.00210 + 0.697240i
\(747\) −6310.56 −0.309091
\(748\) 2247.59 6062.66i 0.109866 0.296354i
\(749\) −1136.29 −0.0554327
\(750\) 3362.98 2339.90i 0.163731 0.113921i
\(751\) 11628.6 0.565027 0.282514 0.959263i \(-0.408832\pi\)
0.282514 + 0.959263i \(0.408832\pi\)
\(752\) 18157.8 21123.7i 0.880514 1.02434i
\(753\) 13320.6 0.644660
\(754\) −11492.6 38938.2i −0.555088 1.88070i
\(755\) 3221.19i 0.155273i
\(756\) 535.130 1443.46i 0.0257440 0.0694421i
\(757\) 20413.1i 0.980090i −0.871697 0.490045i \(-0.836980\pi\)
0.871697 0.490045i \(-0.163020\pi\)
\(758\) 19502.4 + 28029.5i 0.934512 + 1.34311i
\(759\) 12874.7i 0.615706i
\(760\) −3385.73 + 874.879i −0.161597 + 0.0417568i
\(761\) 7463.82i 0.355537i 0.984072 + 0.177768i \(0.0568878\pi\)
−0.984072 + 0.177768i \(0.943112\pi\)
\(762\) 3683.55 2562.94i 0.175119 0.121845i
\(763\) 15885.2i 0.753714i
\(764\) 2480.19 6690.07i 0.117448 0.316804i
\(765\) −360.094 −0.0170186
\(766\) 23255.9 16181.0i 1.09696 0.763241i
\(767\) 12833.1 38610.2i 0.604140 1.81765i
\(768\) 12148.7 1845.07i 0.570805 0.0866903i
\(769\) 24780.4i 1.16203i −0.813892 0.581016i \(-0.802655\pi\)
0.813892 0.581016i \(-0.197345\pi\)
\(770\) 1286.07 894.824i 0.0601906 0.0418795i
\(771\) 12713.0i 0.593837i
\(772\) 21447.3 + 7951.07i 0.999876 + 0.370680i
\(773\) −37842.9 −1.76082 −0.880410