Properties

Label 312.4.m.a.181.56
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.56
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.55

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33907 + 2.49136i) q^{2} +3.00000i q^{3} +(-4.41379 + 6.67222i) q^{4} -12.3731 q^{5} +(-7.47409 + 4.01721i) q^{6} +26.6265i q^{7} +(-22.5333 - 2.06180i) q^{8} -9.00000 q^{9} +(-16.5684 - 30.8259i) q^{10} +33.2518 q^{11} +(-20.0166 - 13.2414i) q^{12} +(-46.5141 + 5.78242i) q^{13} +(-66.3362 + 35.6547i) q^{14} -37.1193i q^{15} +(-25.0369 - 58.8995i) q^{16} +16.3112 q^{17} +(-12.0516 - 22.4223i) q^{18} +43.9139 q^{19} +(54.6122 - 82.5560i) q^{20} -79.8794 q^{21} +(44.5265 + 82.8424i) q^{22} +60.7638 q^{23} +(6.18539 - 67.5999i) q^{24} +28.0936 q^{25} +(-76.6917 - 108.141i) q^{26} -27.0000i q^{27} +(-177.657 - 117.524i) q^{28} -218.423i q^{29} +(92.4777 - 49.7053i) q^{30} +12.9421i q^{31} +(113.214 - 141.247i) q^{32} +99.7554i q^{33} +(21.8418 + 40.6372i) q^{34} -329.452i q^{35} +(39.7241 - 60.0499i) q^{36} -295.814 q^{37} +(58.8037 + 109.405i) q^{38} +(-17.3473 - 139.542i) q^{39} +(278.807 + 25.5108i) q^{40} +241.804i q^{41} +(-106.964 - 199.009i) q^{42} -290.617i q^{43} +(-146.766 + 221.863i) q^{44} +111.358 q^{45} +(81.3669 + 151.385i) q^{46} +385.921i q^{47} +(176.699 - 75.1108i) q^{48} -365.968 q^{49} +(37.6192 + 69.9913i) q^{50} +48.9337i q^{51} +(166.722 - 335.875i) q^{52} +220.063i q^{53} +(67.2668 - 36.1549i) q^{54} -411.428 q^{55} +(54.8983 - 599.981i) q^{56} +131.742i q^{57} +(544.171 - 292.484i) q^{58} -310.241 q^{59} +(247.668 + 163.837i) q^{60} -156.672i q^{61} +(-32.2434 + 17.3303i) q^{62} -239.638i q^{63} +(503.498 + 92.9181i) q^{64} +(575.524 - 71.5465i) q^{65} +(-248.527 + 133.579i) q^{66} +586.837 q^{67} +(-71.9943 + 108.832i) q^{68} +182.291i q^{69} +(820.784 - 441.159i) q^{70} +1144.05i q^{71} +(202.800 + 18.5562i) q^{72} -792.744i q^{73} +(-396.115 - 736.981i) q^{74} +84.2808i q^{75} +(-193.827 + 293.003i) q^{76} +885.378i q^{77} +(324.422 - 230.075i) q^{78} -1067.92 q^{79} +(309.785 + 728.769i) q^{80} +81.0000 q^{81} +(-602.423 + 323.793i) q^{82} -1488.87 q^{83} +(352.571 - 532.972i) q^{84} -201.820 q^{85} +(724.033 - 389.156i) q^{86} +655.269 q^{87} +(-749.273 - 68.5585i) q^{88} +216.421i q^{89} +(149.116 + 277.433i) q^{90} +(-153.965 - 1238.51i) q^{91} +(-268.199 + 405.429i) q^{92} -38.8262 q^{93} +(-961.469 + 516.774i) q^{94} -543.351 q^{95} +(423.740 + 339.642i) q^{96} +789.333i q^{97} +(-490.056 - 911.759i) q^{98} -299.266 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33907 + 2.49136i 0.473432 + 0.880830i
\(3\) 3.00000i 0.577350i
\(4\) −4.41379 + 6.67222i −0.551724 + 0.834027i
\(5\) −12.3731 −1.10668 −0.553342 0.832954i \(-0.686648\pi\)
−0.553342 + 0.832954i \(0.686648\pi\)
\(6\) −7.47409 + 4.01721i −0.508548 + 0.273336i
\(7\) 26.6265i 1.43769i 0.695169 + 0.718847i \(0.255330\pi\)
−0.695169 + 0.718847i \(0.744670\pi\)
\(8\) −22.5333 2.06180i −0.995840 0.0911194i
\(9\) −9.00000 −0.333333
\(10\) −16.5684 30.8259i −0.523940 0.974800i
\(11\) 33.2518 0.911436 0.455718 0.890124i \(-0.349383\pi\)
0.455718 + 0.890124i \(0.349383\pi\)
\(12\) −20.0166 13.2414i −0.481526 0.318538i
\(13\) −46.5141 + 5.78242i −0.992361 + 0.123366i
\(14\) −66.3362 + 35.6547i −1.26636 + 0.680651i
\(15\) 37.1193i 0.638944i
\(16\) −25.0369 58.8995i −0.391202 0.920305i
\(17\) 16.3112 0.232709 0.116354 0.993208i \(-0.462879\pi\)
0.116354 + 0.993208i \(0.462879\pi\)
\(18\) −12.0516 22.4223i −0.157811 0.293610i
\(19\) 43.9139 0.530239 0.265119 0.964216i \(-0.414589\pi\)
0.265119 + 0.964216i \(0.414589\pi\)
\(20\) 54.6122 82.5560i 0.610583 0.923004i
\(21\) −79.8794 −0.830053
\(22\) 44.5265 + 82.8424i 0.431503 + 0.802821i
\(23\) 60.7638 0.550875 0.275438 0.961319i \(-0.411177\pi\)
0.275438 + 0.961319i \(0.411177\pi\)
\(24\) 6.18539 67.5999i 0.0526078 0.574948i
\(25\) 28.0936 0.224749
\(26\) −76.6917 108.141i −0.578480 0.815696i
\(27\) 27.0000i 0.192450i
\(28\) −177.657 117.524i −1.19908 0.793209i
\(29\) 218.423i 1.39863i −0.714816 0.699313i \(-0.753489\pi\)
0.714816 0.699313i \(-0.246511\pi\)
\(30\) 92.4777 49.7053i 0.562801 0.302497i
\(31\) 12.9421i 0.0749827i 0.999297 + 0.0374914i \(0.0119367\pi\)
−0.999297 + 0.0374914i \(0.988063\pi\)
\(32\) 113.214 141.247i 0.625424 0.780285i
\(33\) 99.7554i 0.526218i
\(34\) 21.8418 + 40.6372i 0.110172 + 0.204977i
\(35\) 329.452i 1.59107i
\(36\) 39.7241 60.0499i 0.183908 0.278009i
\(37\) −295.814 −1.31437 −0.657183 0.753731i \(-0.728252\pi\)
−0.657183 + 0.753731i \(0.728252\pi\)
\(38\) 58.8037 + 109.405i 0.251032 + 0.467050i
\(39\) −17.3473 139.542i −0.0712252 0.572940i
\(40\) 278.807 + 25.5108i 1.10208 + 0.100840i
\(41\) 241.804i 0.921061i 0.887644 + 0.460530i \(0.152341\pi\)
−0.887644 + 0.460530i \(0.847659\pi\)
\(42\) −106.964 199.009i −0.392974 0.731135i
\(43\) 290.617i 1.03067i −0.856990 0.515333i \(-0.827668\pi\)
0.856990 0.515333i \(-0.172332\pi\)
\(44\) −146.766 + 221.863i −0.502861 + 0.760162i
\(45\) 111.358 0.368895
\(46\) 81.3669 + 151.385i 0.260802 + 0.485227i
\(47\) 385.921i 1.19771i 0.800858 + 0.598854i \(0.204377\pi\)
−0.800858 + 0.598854i \(0.795623\pi\)
\(48\) 176.699 75.1108i 0.531338 0.225861i
\(49\) −365.968 −1.06696
\(50\) 37.6192 + 69.9913i 0.106403 + 0.197965i
\(51\) 48.9337i 0.134355i
\(52\) 166.722 335.875i 0.444619 0.895720i
\(53\) 220.063i 0.570338i 0.958477 + 0.285169i \(0.0920498\pi\)
−0.958477 + 0.285169i \(0.907950\pi\)
\(54\) 67.2668 36.1549i 0.169516 0.0911121i
\(55\) −411.428 −1.00867
\(56\) 54.8983 599.981i 0.131002 1.43171i
\(57\) 131.742i 0.306133i
\(58\) 544.171 292.484i 1.23195 0.662155i
\(59\) −310.241 −0.684575 −0.342288 0.939595i \(-0.611202\pi\)
−0.342288 + 0.939595i \(0.611202\pi\)
\(60\) 247.668 + 163.837i 0.532897 + 0.352521i
\(61\) 156.672i 0.328848i −0.986390 0.164424i \(-0.947423\pi\)
0.986390 0.164424i \(-0.0525766\pi\)
\(62\) −32.2434 + 17.3303i −0.0660470 + 0.0354992i
\(63\) 239.638i 0.479231i
\(64\) 503.498 + 92.9181i 0.983395 + 0.181481i
\(65\) 575.524 71.5465i 1.09823 0.136527i
\(66\) −248.527 + 133.579i −0.463509 + 0.249129i
\(67\) 586.837 1.07005 0.535027 0.844835i \(-0.320301\pi\)
0.535027 + 0.844835i \(0.320301\pi\)
\(68\) −71.9943 + 108.832i −0.128391 + 0.194086i
\(69\) 182.291i 0.318048i
\(70\) 820.784 441.159i 1.40146 0.753265i
\(71\) 1144.05i 1.91231i 0.292857 + 0.956156i \(0.405394\pi\)
−0.292857 + 0.956156i \(0.594606\pi\)
\(72\) 202.800 + 18.5562i 0.331947 + 0.0303731i
\(73\) 792.744i 1.27101i −0.772097 0.635505i \(-0.780792\pi\)
0.772097 0.635505i \(-0.219208\pi\)
\(74\) −396.115 736.981i −0.622263 1.15773i
\(75\) 84.2808i 0.129759i
\(76\) −193.827 + 293.003i −0.292545 + 0.442233i
\(77\) 885.378i 1.31037i
\(78\) 324.422 230.075i 0.470943 0.333986i
\(79\) −1067.92 −1.52090 −0.760449 0.649398i \(-0.775021\pi\)
−0.760449 + 0.649398i \(0.775021\pi\)
\(80\) 309.785 + 728.769i 0.432937 + 1.01849i
\(81\) 81.0000 0.111111
\(82\) −602.423 + 323.793i −0.811298 + 0.436060i
\(83\) −1488.87 −1.96897 −0.984484 0.175474i \(-0.943854\pi\)
−0.984484 + 0.175474i \(0.943854\pi\)
\(84\) 352.571 532.972i 0.457960 0.692286i
\(85\) −201.820 −0.257535
\(86\) 724.033 389.156i 0.907842 0.487951i
\(87\) 655.269 0.807497
\(88\) −749.273 68.5585i −0.907645 0.0830495i
\(89\) 216.421i 0.257759i 0.991660 + 0.128879i \(0.0411380\pi\)
−0.991660 + 0.128879i \(0.958862\pi\)
\(90\) 149.116 + 277.433i 0.174647 + 0.324933i
\(91\) −153.965 1238.51i −0.177362 1.42671i
\(92\) −268.199 + 405.429i −0.303931 + 0.459445i
\(93\) −38.8262 −0.0432913
\(94\) −961.469 + 516.774i −1.05498 + 0.567034i
\(95\) −543.351 −0.586806
\(96\) 423.740 + 339.642i 0.450498 + 0.361089i
\(97\) 789.333i 0.826233i 0.910678 + 0.413116i \(0.135560\pi\)
−0.910678 + 0.413116i \(0.864440\pi\)
\(98\) −490.056 911.759i −0.505134 0.939812i
\(99\) −299.266 −0.303812
\(100\) −123.999 + 187.446i −0.123999 + 0.187446i
\(101\) 330.153i 0.325262i −0.986687 0.162631i \(-0.948002\pi\)
0.986687 0.162631i \(-0.0519980\pi\)
\(102\) −121.912 + 65.5255i −0.118344 + 0.0636078i
\(103\) 1253.95 1.19957 0.599786 0.800161i \(-0.295253\pi\)
0.599786 + 0.800161i \(0.295253\pi\)
\(104\) 1060.04 34.3943i 0.999474 0.0324292i
\(105\) 988.355 0.918606
\(106\) −548.256 + 294.679i −0.502371 + 0.270017i
\(107\) 338.058i 0.305433i −0.988270 0.152716i \(-0.951198\pi\)
0.988270 0.152716i \(-0.0488021\pi\)
\(108\) 180.150 + 119.172i 0.160509 + 0.106179i
\(109\) −2042.84 −1.79512 −0.897560 0.440892i \(-0.854662\pi\)
−0.897560 + 0.440892i \(0.854662\pi\)
\(110\) −550.930 1025.02i −0.477538 0.888468i
\(111\) 887.442i 0.758849i
\(112\) 1568.28 666.645i 1.32312 0.562429i
\(113\) 698.175 0.581228 0.290614 0.956840i \(-0.406140\pi\)
0.290614 + 0.956840i \(0.406140\pi\)
\(114\) −328.216 + 176.411i −0.269652 + 0.144933i
\(115\) −751.836 −0.609644
\(116\) 1457.37 + 964.073i 1.16649 + 0.771655i
\(117\) 418.627 52.0418i 0.330787 0.0411219i
\(118\) −415.434 772.923i −0.324100 0.602994i
\(119\) 434.310i 0.334564i
\(120\) −76.5324 + 836.420i −0.0582202 + 0.636286i
\(121\) −225.317 −0.169284
\(122\) 390.326 209.794i 0.289660 0.155687i
\(123\) −725.413 −0.531775
\(124\) −86.3523 57.1236i −0.0625376 0.0413697i
\(125\) 1199.03 0.857958
\(126\) 597.026 320.892i 0.422121 0.226884i
\(127\) −2143.64 −1.49777 −0.748887 0.662698i \(-0.769411\pi\)
−0.748887 + 0.662698i \(0.769411\pi\)
\(128\) 442.726 + 1378.82i 0.305717 + 0.952122i
\(129\) 871.851 0.595056
\(130\) 948.914 + 1338.03i 0.640195 + 0.902718i
\(131\) 737.484i 0.491865i 0.969287 + 0.245932i \(0.0790941\pi\)
−0.969287 + 0.245932i \(0.920906\pi\)
\(132\) −665.590 440.299i −0.438880 0.290327i
\(133\) 1169.27i 0.762321i
\(134\) 785.816 + 1462.03i 0.506598 + 0.942536i
\(135\) 334.074i 0.212981i
\(136\) −367.545 33.6304i −0.231741 0.0212043i
\(137\) 675.377i 0.421178i 0.977575 + 0.210589i \(0.0675381\pi\)
−0.977575 + 0.210589i \(0.932462\pi\)
\(138\) −454.154 + 244.101i −0.280146 + 0.150574i
\(139\) 1169.92i 0.713894i 0.934125 + 0.356947i \(0.116182\pi\)
−0.934125 + 0.356947i \(0.883818\pi\)
\(140\) 2198.17 + 1454.13i 1.32700 + 0.877832i
\(141\) −1157.76 −0.691497
\(142\) −2850.25 + 1531.97i −1.68442 + 0.905351i
\(143\) −1546.68 + 192.276i −0.904474 + 0.112440i
\(144\) 225.332 + 530.096i 0.130401 + 0.306768i
\(145\) 2702.57i 1.54784i
\(146\) 1975.01 1061.54i 1.11954 0.601737i
\(147\) 1097.90i 0.616011i
\(148\) 1305.66 1973.74i 0.725167 1.09622i
\(149\) −345.352 −0.189881 −0.0949407 0.995483i \(-0.530266\pi\)
−0.0949407 + 0.995483i \(0.530266\pi\)
\(150\) −209.974 + 112.858i −0.114295 + 0.0614320i
\(151\) 3320.28i 1.78941i −0.446659 0.894704i \(-0.647386\pi\)
0.446659 0.894704i \(-0.352614\pi\)
\(152\) −989.524 90.5415i −0.528033 0.0483150i
\(153\) −146.801 −0.0775696
\(154\) −2205.80 + 1185.58i −1.15421 + 0.620370i
\(155\) 160.134i 0.0829821i
\(156\) 1007.62 + 500.166i 0.517144 + 0.256701i
\(157\) 1992.84i 1.01303i 0.862231 + 0.506515i \(0.169066\pi\)
−0.862231 + 0.506515i \(0.830934\pi\)
\(158\) −1430.03 2660.59i −0.720042 1.33965i
\(159\) −660.188 −0.329285
\(160\) −1400.81 + 1747.66i −0.692147 + 0.863528i
\(161\) 1617.92i 0.791989i
\(162\) 108.465 + 201.800i 0.0526036 + 0.0978700i
\(163\) −1280.70 −0.615411 −0.307706 0.951482i \(-0.599561\pi\)
−0.307706 + 0.951482i \(0.599561\pi\)
\(164\) −1613.37 1067.27i −0.768190 0.508171i
\(165\) 1234.28i 0.582357i
\(166\) −1993.70 3709.31i −0.932173 1.73433i
\(167\) 607.816i 0.281642i −0.990035 0.140821i \(-0.955026\pi\)
0.990035 0.140821i \(-0.0449742\pi\)
\(168\) 1799.94 + 164.695i 0.826600 + 0.0756339i
\(169\) 2130.13 537.928i 0.969562 0.244847i
\(170\) −270.251 502.808i −0.121925 0.226845i
\(171\) −395.225 −0.176746
\(172\) 1939.06 + 1282.72i 0.859604 + 0.568643i
\(173\) 880.682i 0.387035i 0.981097 + 0.193517i \(0.0619896\pi\)
−0.981097 + 0.193517i \(0.938010\pi\)
\(174\) 877.451 + 1632.51i 0.382295 + 0.711268i
\(175\) 748.032i 0.323120i
\(176\) −832.524 1958.52i −0.356556 0.838799i
\(177\) 930.723i 0.395240i
\(178\) −539.182 + 289.802i −0.227042 + 0.122031i
\(179\) 592.328i 0.247333i 0.992324 + 0.123667i \(0.0394654\pi\)
−0.992324 + 0.123667i \(0.960535\pi\)
\(180\) −491.510 + 743.004i −0.203528 + 0.307668i
\(181\) 4237.05i 1.73999i 0.493062 + 0.869994i \(0.335877\pi\)
−0.493062 + 0.869994i \(0.664123\pi\)
\(182\) 2879.40 2042.03i 1.17272 0.831677i
\(183\) 470.015 0.189861
\(184\) −1369.21 125.283i −0.548583 0.0501954i
\(185\) 3660.14 1.45459
\(186\) −51.9910 96.7302i −0.0204955 0.0381323i
\(187\) 542.378 0.212099
\(188\) −2574.95 1703.37i −0.998921 0.660804i
\(189\) 718.914 0.276684
\(190\) −727.584 1353.68i −0.277813 0.516877i
\(191\) −3247.76 −1.23037 −0.615183 0.788385i \(-0.710918\pi\)
−0.615183 + 0.788385i \(0.710918\pi\)
\(192\) −278.754 + 1510.49i −0.104778 + 0.567763i
\(193\) 3309.31i 1.23424i −0.786868 0.617122i \(-0.788299\pi\)
0.786868 0.617122i \(-0.211701\pi\)
\(194\) −1966.52 + 1056.97i −0.727771 + 0.391165i
\(195\) 214.639 + 1726.57i 0.0788238 + 0.634063i
\(196\) 1615.31 2441.82i 0.588668 0.889875i
\(197\) 927.123 0.335304 0.167652 0.985846i \(-0.446382\pi\)
0.167652 + 0.985846i \(0.446382\pi\)
\(198\) −400.738 745.581i −0.143834 0.267607i
\(199\) −2866.60 −1.02114 −0.510572 0.859835i \(-0.670566\pi\)
−0.510572 + 0.859835i \(0.670566\pi\)
\(200\) −633.041 57.9233i −0.223814 0.0204790i
\(201\) 1760.51i 0.617796i
\(202\) 822.532 442.098i 0.286501 0.153990i
\(203\) 5815.83 2.01079
\(204\) −326.496 215.983i −0.112055 0.0741266i
\(205\) 2991.87i 1.01932i
\(206\) 1679.13 + 3124.06i 0.567916 + 1.05662i
\(207\) −546.874 −0.183625
\(208\) 1505.15 + 2594.88i 0.501748 + 0.865014i
\(209\) 1460.22 0.483279
\(210\) 1323.48 + 2462.35i 0.434898 + 0.809136i
\(211\) 2889.60i 0.942788i 0.881923 + 0.471394i \(0.156249\pi\)
−0.881923 + 0.471394i \(0.843751\pi\)
\(212\) −1468.31 971.310i −0.475678 0.314669i
\(213\) −3432.16 −1.10407
\(214\) 842.226 452.683i 0.269035 0.144602i
\(215\) 3595.83i 1.14062i
\(216\) −55.6685 + 608.399i −0.0175359 + 0.191649i
\(217\) −344.601 −0.107802
\(218\) −2735.50 5089.45i −0.849868 1.58120i
\(219\) 2378.23 0.733818
\(220\) 1815.96 2745.14i 0.556508 0.841259i
\(221\) −758.702 + 94.3183i −0.230931 + 0.0287083i
\(222\) 2210.94 1188.35i 0.668417 0.359264i
\(223\) 2734.42i 0.821122i 0.911833 + 0.410561i \(0.134667\pi\)
−0.911833 + 0.410561i \(0.865333\pi\)
\(224\) 3760.90 + 3014.48i 1.12181 + 0.899168i
\(225\) −252.842 −0.0749162
\(226\) 934.904 + 1739.41i 0.275172 + 0.511963i
\(227\) 5723.82 1.67358 0.836792 0.547522i \(-0.184429\pi\)
0.836792 + 0.547522i \(0.184429\pi\)
\(228\) −879.009 581.480i −0.255324 0.168901i
\(229\) 1732.49 0.499940 0.249970 0.968254i \(-0.419579\pi\)
0.249970 + 0.968254i \(0.419579\pi\)
\(230\) −1006.76 1873.10i −0.288625 0.536993i
\(231\) −2656.13 −0.756540
\(232\) −450.344 + 4921.79i −0.127442 + 1.39281i
\(233\) −215.288 −0.0605321 −0.0302661 0.999542i \(-0.509635\pi\)
−0.0302661 + 0.999542i \(0.509635\pi\)
\(234\) 690.226 + 973.265i 0.192827 + 0.271899i
\(235\) 4775.03i 1.32548i
\(236\) 1369.34 2069.99i 0.377696 0.570954i
\(237\) 3203.77i 0.878091i
\(238\) −1082.02 + 581.571i −0.294694 + 0.158393i
\(239\) 1089.11i 0.294765i −0.989080 0.147382i \(-0.952915\pi\)
0.989080 0.147382i \(-0.0470848\pi\)
\(240\) −2186.31 + 929.354i −0.588023 + 0.249956i
\(241\) 662.017i 0.176947i −0.996079 0.0884736i \(-0.971801\pi\)
0.996079 0.0884736i \(-0.0281989\pi\)
\(242\) −301.715 561.347i −0.0801445 0.149110i
\(243\) 243.000i 0.0641500i
\(244\) 1045.35 + 691.516i 0.274268 + 0.181433i
\(245\) 4528.16 1.18079
\(246\) −971.378 1807.27i −0.251759 0.468403i
\(247\) −2042.62 + 253.928i −0.526188 + 0.0654133i
\(248\) 26.6839 291.627i 0.00683238 0.0746708i
\(249\) 4466.60i 1.13678i
\(250\) 1605.59 + 2987.23i 0.406185 + 0.755715i
\(251\) 3890.75i 0.978414i −0.872168 0.489207i \(-0.837286\pi\)
0.872168 0.489207i \(-0.162714\pi\)
\(252\) 1598.92 + 1057.71i 0.399692 + 0.264403i
\(253\) 2020.51 0.502088
\(254\) −2870.48 5340.59i −0.709095 1.31928i
\(255\) 605.461i 0.148688i
\(256\) −2842.30 + 2949.33i −0.693922 + 0.720050i
\(257\) 5412.97 1.31382 0.656910 0.753969i \(-0.271863\pi\)
0.656910 + 0.753969i \(0.271863\pi\)
\(258\) 1167.47 + 2172.10i 0.281719 + 0.524143i
\(259\) 7876.48i 1.88965i
\(260\) −2062.87 + 4155.81i −0.492052 + 0.991279i
\(261\) 1965.81i 0.466209i
\(262\) −1837.34 + 987.542i −0.433249 + 0.232865i
\(263\) 4583.78 1.07471 0.537354 0.843357i \(-0.319424\pi\)
0.537354 + 0.843357i \(0.319424\pi\)
\(264\) 205.675 2247.82i 0.0479487 0.524029i
\(265\) 2722.86i 0.631184i
\(266\) −2913.08 + 1565.73i −0.671475 + 0.360907i
\(267\) −649.262 −0.148817
\(268\) −2590.18 + 3915.51i −0.590374 + 0.892454i
\(269\) 7190.74i 1.62984i −0.579574 0.814920i \(-0.696781\pi\)
0.579574 0.814920i \(-0.303219\pi\)
\(270\) −832.299 + 447.348i −0.187600 + 0.100832i
\(271\) 4023.60i 0.901906i −0.892548 0.450953i \(-0.851084\pi\)
0.892548 0.450953i \(-0.148916\pi\)
\(272\) −408.383 960.723i −0.0910362 0.214163i
\(273\) 3715.52 461.896i 0.823712 0.102400i
\(274\) −1682.61 + 904.376i −0.370986 + 0.199399i
\(275\) 934.163 0.204844
\(276\) −1216.29 804.596i −0.265261 0.175475i
\(277\) 4021.05i 0.872208i 0.899896 + 0.436104i \(0.143642\pi\)
−0.899896 + 0.436104i \(0.856358\pi\)
\(278\) −2914.69 + 1566.60i −0.628819 + 0.337980i
\(279\) 116.479i 0.0249942i
\(280\) −679.262 + 7423.63i −0.144977 + 1.58445i
\(281\) 3305.74i 0.701794i −0.936414 0.350897i \(-0.885877\pi\)
0.936414 0.350897i \(-0.114123\pi\)
\(282\) −1550.32 2884.41i −0.327377 0.609092i
\(283\) 1829.42i 0.384268i −0.981369 0.192134i \(-0.938459\pi\)
0.981369 0.192134i \(-0.0615409\pi\)
\(284\) −7633.37 5049.61i −1.59492 1.05507i
\(285\) 1630.05i 0.338793i
\(286\) −2550.14 3595.87i −0.527248 0.743455i
\(287\) −6438.39 −1.32420
\(288\) −1018.93 + 1271.22i −0.208475 + 0.260095i
\(289\) −4646.94 −0.945847
\(290\) −6733.09 + 3618.93i −1.36338 + 0.732796i
\(291\) −2368.00 −0.477026
\(292\) 5289.36 + 3499.00i 1.06006 + 0.701246i
\(293\) −2987.24 −0.595620 −0.297810 0.954625i \(-0.596256\pi\)
−0.297810 + 0.954625i \(0.596256\pi\)
\(294\) 2735.28 1470.17i 0.542601 0.291639i
\(295\) 3838.64 0.757608
\(296\) 6665.66 + 609.908i 1.30890 + 0.119764i
\(297\) 897.799i 0.175406i
\(298\) −462.450 860.398i −0.0898960 0.167253i
\(299\) −2826.37 + 351.362i −0.546667 + 0.0679591i
\(300\) −562.339 371.997i −0.108222 0.0715909i
\(301\) 7738.10 1.48178
\(302\) 8272.03 4446.09i 1.57617 0.847164i
\(303\) 990.460 0.187790
\(304\) −1099.47 2586.51i −0.207431 0.487981i
\(305\) 1938.51i 0.363931i
\(306\) −196.577 365.735i −0.0367240 0.0683257i
\(307\) −2216.84 −0.412123 −0.206061 0.978539i \(-0.566065\pi\)
−0.206061 + 0.978539i \(0.566065\pi\)
\(308\) −5907.43 3907.87i −1.09288 0.722960i
\(309\) 3761.86i 0.692573i
\(310\) 398.951 214.430i 0.0730932 0.0392864i
\(311\) 5640.21 1.02838 0.514191 0.857676i \(-0.328092\pi\)
0.514191 + 0.857676i \(0.328092\pi\)
\(312\) 103.183 + 3180.11i 0.0187230 + 0.577047i
\(313\) 9322.22 1.68346 0.841730 0.539899i \(-0.181537\pi\)
0.841730 + 0.539899i \(0.181537\pi\)
\(314\) −4964.88 + 2668.54i −0.892307 + 0.479601i
\(315\) 2965.07i 0.530357i
\(316\) 4713.59 7125.43i 0.839115 1.26847i
\(317\) 5397.79 0.956372 0.478186 0.878259i \(-0.341295\pi\)
0.478186 + 0.878259i \(0.341295\pi\)
\(318\) −884.037 1644.77i −0.155894 0.290044i
\(319\) 7262.96i 1.27476i
\(320\) −6229.83 1149.68i −1.08831 0.200842i
\(321\) 1014.17 0.176342
\(322\) −4030.84 + 2166.51i −0.697608 + 0.374953i
\(323\) 716.289 0.123391
\(324\) −357.517 + 540.450i −0.0613026 + 0.0926697i
\(325\) −1306.75 + 162.449i −0.223032 + 0.0277263i
\(326\) −1714.94 3190.69i −0.291356 0.542073i
\(327\) 6128.51i 1.03641i
\(328\) 498.551 5448.65i 0.0839265 0.917229i
\(329\) −10275.7 −1.72194
\(330\) 3075.05 1652.79i 0.512957 0.275707i
\(331\) −3179.90 −0.528046 −0.264023 0.964516i \(-0.585049\pi\)
−0.264023 + 0.964516i \(0.585049\pi\)
\(332\) 6571.54 9934.04i 1.08633 1.64217i
\(333\) 2662.33 0.438122
\(334\) 1514.29 813.908i 0.248079 0.133339i
\(335\) −7261.00 −1.18421
\(336\) 1999.93 + 4704.85i 0.324718 + 0.763901i
\(337\) −3425.43 −0.553694 −0.276847 0.960914i \(-0.589290\pi\)
−0.276847 + 0.960914i \(0.589290\pi\)
\(338\) 4192.56 + 4586.60i 0.674690 + 0.738101i
\(339\) 2094.52i 0.335572i
\(340\) 890.792 1346.59i 0.142088 0.214791i
\(341\) 430.347i 0.0683420i
\(342\) −529.233 984.649i −0.0836774 0.155683i
\(343\) 611.554i 0.0962706i
\(344\) −599.193 + 6548.55i −0.0939137 + 1.02638i
\(345\) 2255.51i 0.351978i
\(346\) −2194.10 + 1179.29i −0.340912 + 0.183235i
\(347\) 12219.0i 1.89035i 0.326558 + 0.945177i \(0.394111\pi\)
−0.326558 + 0.945177i \(0.605889\pi\)
\(348\) −2892.22 + 4372.10i −0.445515 + 0.673474i
\(349\) −5703.61 −0.874805 −0.437403 0.899266i \(-0.644102\pi\)
−0.437403 + 0.899266i \(0.644102\pi\)
\(350\) −1863.62 + 1001.67i −0.284614 + 0.152975i
\(351\) 156.125 + 1255.88i 0.0237417 + 0.190980i
\(352\) 3764.57 4696.71i 0.570035 0.711180i
\(353\) 6902.30i 1.04071i 0.853949 + 0.520357i \(0.174201\pi\)
−0.853949 + 0.520357i \(0.825799\pi\)
\(354\) 2318.77 1246.30i 0.348139 0.187119i
\(355\) 14155.5i 2.11632i
\(356\) −1444.01 955.235i −0.214978 0.142212i
\(357\) −1302.93 −0.193161
\(358\) −1475.70 + 793.168i −0.217859 + 0.117096i
\(359\) 5910.58i 0.868937i −0.900687 0.434468i \(-0.856936\pi\)
0.900687 0.434468i \(-0.143064\pi\)
\(360\) −2509.26 229.597i −0.367360 0.0336134i
\(361\) −4930.57 −0.718847
\(362\) −10556.0 + 5673.71i −1.53263 + 0.823767i
\(363\) 675.951i 0.0977362i
\(364\) 8943.15 + 4439.21i 1.28777 + 0.639225i
\(365\) 9808.70i 1.40661i
\(366\) 629.383 + 1170.98i 0.0898862 + 0.167235i
\(367\) 8817.17 1.25409 0.627047 0.778982i \(-0.284263\pi\)
0.627047 + 0.778982i \(0.284263\pi\)
\(368\) −1521.34 3578.96i −0.215504 0.506973i
\(369\) 2176.24i 0.307020i
\(370\) 4901.18 + 9118.73i 0.688649 + 1.28124i
\(371\) −5859.49 −0.819972
\(372\) 171.371 259.057i 0.0238848 0.0361061i
\(373\) 7090.83i 0.984314i 0.870506 + 0.492157i \(0.163791\pi\)
−0.870506 + 0.492157i \(0.836209\pi\)
\(374\) 726.281 + 1351.26i 0.100415 + 0.186823i
\(375\) 3597.10i 0.495342i
\(376\) 795.690 8696.06i 0.109134 1.19273i
\(377\) 1263.01 + 10159.8i 0.172543 + 1.38794i
\(378\) 962.676 + 1791.08i 0.130991 + 0.243712i
\(379\) 7150.31 0.969094 0.484547 0.874765i \(-0.338984\pi\)
0.484547 + 0.874765i \(0.338984\pi\)
\(380\) 2398.24 3625.35i 0.323755 0.489412i
\(381\) 6430.92i 0.864740i
\(382\) −4348.98 8091.36i −0.582495 1.08374i
\(383\) 6280.67i 0.837930i 0.908002 + 0.418965i \(0.137607\pi\)
−0.908002 + 0.418965i \(0.862393\pi\)
\(384\) −4136.46 + 1328.18i −0.549708 + 0.176506i
\(385\) 10954.9i 1.45016i
\(386\) 8244.69 4431.39i 1.08716 0.584331i
\(387\) 2615.55i 0.343556i
\(388\) −5266.60 3483.95i −0.689101 0.455852i
\(389\) 5719.43i 0.745467i 0.927938 + 0.372734i \(0.121579\pi\)
−0.927938 + 0.372734i \(0.878421\pi\)
\(390\) −4014.10 + 2846.74i −0.521184 + 0.369617i
\(391\) 991.132 0.128194
\(392\) 8246.46 + 754.551i 1.06252 + 0.0972209i
\(393\) −2212.45 −0.283978
\(394\) 1241.48 + 2309.80i 0.158744 + 0.295345i
\(395\) 13213.5 1.68315
\(396\) 1320.90 1996.77i 0.167620 0.253387i
\(397\) −2754.07 −0.348168 −0.174084 0.984731i \(-0.555696\pi\)
−0.174084 + 0.984731i \(0.555696\pi\)
\(398\) −3838.57 7141.73i −0.483442 0.899454i
\(399\) −3507.81 −0.440126
\(400\) −703.377 1654.70i −0.0879222 0.206837i
\(401\) 12405.6i 1.54490i 0.635073 + 0.772452i \(0.280970\pi\)
−0.635073 + 0.772452i \(0.719030\pi\)
\(402\) −4386.08 + 2357.45i −0.544173 + 0.292485i
\(403\) −74.8365 601.989i −0.00925030 0.0744099i
\(404\) 2202.85 + 1457.23i 0.271277 + 0.179455i
\(405\) −1002.22 −0.122965
\(406\) 7787.80 + 14489.4i 0.951975 + 1.77117i
\(407\) −9836.35 −1.19796
\(408\) 100.891 1102.64i 0.0122423 0.133796i
\(409\) 2163.40i 0.261549i 0.991412 + 0.130774i \(0.0417463\pi\)
−0.991412 + 0.130774i \(0.958254\pi\)
\(410\) 7453.84 4006.32i 0.897851 0.482581i
\(411\) −2026.13 −0.243167
\(412\) −5534.69 + 8366.66i −0.661832 + 1.00047i
\(413\) 8260.61i 0.984209i
\(414\) −732.302 1362.46i −0.0869340 0.161742i
\(415\) 18421.9 2.17902
\(416\) −4449.30 + 7224.61i −0.524387 + 0.851480i
\(417\) −3509.76 −0.412167
\(418\) 1955.33 + 3637.93i 0.228800 + 0.425687i
\(419\) 1787.02i 0.208357i 0.994559 + 0.104178i \(0.0332213\pi\)
−0.994559 + 0.104178i \(0.966779\pi\)
\(420\) −4362.39 + 6594.52i −0.506816 + 0.766142i
\(421\) −6432.75 −0.744686 −0.372343 0.928095i \(-0.621446\pi\)
−0.372343 + 0.928095i \(0.621446\pi\)
\(422\) −7199.05 + 3869.37i −0.830436 + 0.446346i
\(423\) 3473.29i 0.399236i
\(424\) 453.724 4958.73i 0.0519689 0.567966i
\(425\) 458.241 0.0523010
\(426\) −4595.90 8550.76i −0.522704 0.972502i
\(427\) 4171.61 0.472783
\(428\) 2255.60 + 1492.12i 0.254739 + 0.168515i
\(429\) −576.828 4640.04i −0.0649173 0.522198i
\(430\) −8958.53 + 4815.07i −1.00469 + 0.540007i
\(431\) 13495.7i 1.50828i −0.656716 0.754138i \(-0.728055\pi\)
0.656716 0.754138i \(-0.271945\pi\)
\(432\) −1590.29 + 675.997i −0.177113 + 0.0752869i
\(433\) −8248.31 −0.915447 −0.457724 0.889095i \(-0.651335\pi\)
−0.457724 + 0.889095i \(0.651335\pi\)
\(434\) −461.445 858.527i −0.0510370 0.0949554i
\(435\) −8107.71 −0.893644
\(436\) 9016.64 13630.2i 0.990410 1.49718i
\(437\) 2668.37 0.292095
\(438\) 3184.62 + 5925.04i 0.347413 + 0.646369i
\(439\) −1721.73 −0.187184 −0.0935918 0.995611i \(-0.529835\pi\)
−0.0935918 + 0.995611i \(0.529835\pi\)
\(440\) 9270.82 + 848.281i 1.00448 + 0.0919095i
\(441\) 3293.71 0.355654
\(442\) −1250.94 1763.90i −0.134617 0.189820i
\(443\) 6001.77i 0.643686i 0.946793 + 0.321843i \(0.104302\pi\)
−0.946793 + 0.321843i \(0.895698\pi\)
\(444\) 5921.21 + 3916.98i 0.632901 + 0.418675i
\(445\) 2677.79i 0.285258i
\(446\) −6812.44 + 3661.58i −0.723269 + 0.388746i
\(447\) 1036.06i 0.109628i
\(448\) −2474.08 + 13406.4i −0.260914 + 1.41382i
\(449\) 2201.06i 0.231346i 0.993287 + 0.115673i \(0.0369025\pi\)
−0.993287 + 0.115673i \(0.963098\pi\)
\(450\) −338.573 629.922i −0.0354678 0.0659885i
\(451\) 8040.43i 0.839488i
\(452\) −3081.60 + 4658.37i −0.320677 + 0.484760i
\(453\) 9960.85 1.03312
\(454\) 7664.59 + 14260.1i 0.792328 + 1.47414i
\(455\) 1905.03 + 15324.2i 0.196284 + 1.57892i
\(456\) 271.624 2968.57i 0.0278947 0.304860i
\(457\) 3684.35i 0.377126i 0.982061 + 0.188563i \(0.0603830\pi\)
−0.982061 + 0.188563i \(0.939617\pi\)
\(458\) 2319.93 + 4316.27i 0.236688 + 0.440363i
\(459\) 440.403i 0.0447848i
\(460\) 3318.45 5016.42i 0.336355 0.508460i
\(461\) 9222.51 0.931746 0.465873 0.884851i \(-0.345740\pi\)
0.465873 + 0.884851i \(0.345740\pi\)
\(462\) −3556.75 6617.39i −0.358171 0.666383i
\(463\) 8406.97i 0.843856i 0.906629 + 0.421928i \(0.138646\pi\)
−0.906629 + 0.421928i \(0.861354\pi\)
\(464\) −12865.0 + 5468.64i −1.28716 + 0.547145i
\(465\) 480.401 0.0479098
\(466\) −288.285 536.361i −0.0286579 0.0533185i
\(467\) 2355.31i 0.233385i −0.993168 0.116692i \(-0.962771\pi\)
0.993168 0.116692i \(-0.0372291\pi\)
\(468\) −1500.50 + 3022.87i −0.148206 + 0.298573i
\(469\) 15625.4i 1.53841i
\(470\) 11896.3 6394.10i 1.16753 0.627527i
\(471\) −5978.51 −0.584873
\(472\) 6990.75 + 639.654i 0.681727 + 0.0623781i
\(473\) 9663.54i 0.939387i
\(474\) 7981.77 4290.08i 0.773449 0.415717i
\(475\) 1233.70 0.119170
\(476\) −2897.81 1916.95i −0.279035 0.184587i
\(477\) 1980.56i 0.190113i
\(478\) 2713.37 1458.40i 0.259638 0.139551i
\(479\) 15585.6i 1.48669i 0.668909 + 0.743345i \(0.266762\pi\)
−0.668909 + 0.743345i \(0.733238\pi\)
\(480\) −5242.98 4202.42i −0.498558 0.399611i
\(481\) 13759.5 1710.52i 1.30433 0.162148i
\(482\) 1649.33 886.487i 0.155860 0.0837726i
\(483\) −4853.77 −0.457255
\(484\) 994.502 1503.36i 0.0933980 0.141187i
\(485\) 9766.49i 0.914379i
\(486\) −605.401 + 325.394i −0.0565053 + 0.0303707i
\(487\) 12945.1i 1.20452i 0.798302 + 0.602258i \(0.205732\pi\)
−0.798302 + 0.602258i \(0.794268\pi\)
\(488\) −323.025 + 3530.33i −0.0299645 + 0.327480i
\(489\) 3842.09i 0.355308i
\(490\) 6063.52 + 11281.3i 0.559024 + 1.04007i
\(491\) 2831.65i 0.260266i 0.991497 + 0.130133i \(0.0415404\pi\)
−0.991497 + 0.130133i \(0.958460\pi\)
\(492\) 3201.82 4840.11i 0.293393 0.443515i
\(493\) 3562.75i 0.325473i
\(494\) −3367.83 4748.87i −0.306733 0.432514i
\(495\) 3702.85 0.336224
\(496\) 762.281 324.030i 0.0690070 0.0293334i
\(497\) −30462.1 −2.74932
\(498\) 11127.9 5981.09i 1.00131 0.538190i
\(499\) 617.209 0.0553708 0.0276854 0.999617i \(-0.491186\pi\)
0.0276854 + 0.999617i \(0.491186\pi\)
\(500\) −5292.28 + 8000.21i −0.473356 + 0.715560i
\(501\) 1823.45 0.162606
\(502\) 9693.27 5209.98i 0.861817 0.463213i
\(503\) 21442.2 1.90071 0.950356 0.311164i \(-0.100719\pi\)
0.950356 + 0.311164i \(0.100719\pi\)
\(504\) −494.085 + 5399.83i −0.0436672 + 0.477237i
\(505\) 4085.02i 0.359962i
\(506\) 2705.60 + 5033.82i 0.237704 + 0.442254i
\(507\) 1613.79 + 6390.38i 0.141362 + 0.559777i
\(508\) 9461.57 14302.8i 0.826357 1.24918i
\(509\) −21026.3 −1.83099 −0.915497 0.402324i \(-0.868203\pi\)
−0.915497 + 0.402324i \(0.868203\pi\)
\(510\) 1508.42 810.754i 0.130969 0.0703937i
\(511\) 21108.0 1.82732
\(512\) −11153.9 3131.86i −0.962767 0.270332i
\(513\) 1185.67i 0.102044i
\(514\) 7248.33 + 13485.7i 0.622004 + 1.15725i
\(515\) −15515.3 −1.32755
\(516\) −3848.16 + 5817.18i −0.328306 + 0.496292i
\(517\) 12832.6i 1.09163i
\(518\) 19623.2 10547.1i 1.66446 0.894624i
\(519\) −2642.05 −0.223455
\(520\) −13116.0 + 425.564i −1.10610 + 0.0358889i
\(521\) −13521.4 −1.13702 −0.568508 0.822678i \(-0.692479\pi\)
−0.568508 + 0.822678i \(0.692479\pi\)
\(522\) −4897.54 + 2632.35i −0.410651 + 0.220718i
\(523\) 7317.92i 0.611836i 0.952058 + 0.305918i \(0.0989634\pi\)
−0.952058 + 0.305918i \(0.901037\pi\)
\(524\) −4920.65 3255.10i −0.410229 0.271373i
\(525\) −2244.10 −0.186553
\(526\) 6138.00 + 11419.9i 0.508801 + 0.946635i
\(527\) 211.101i 0.0174491i
\(528\) 5875.55 2497.57i 0.484281 0.205858i
\(529\) −8474.76 −0.696537
\(530\) 6783.63 3646.09i 0.555966 0.298823i
\(531\) 2792.17 0.228192
\(532\) −7801.63 5160.91i −0.635796 0.420590i
\(533\) −1398.21 11247.3i −0.113627 0.914025i
\(534\) −869.406 1617.55i −0.0704549 0.131083i
\(535\) 4182.83i 0.338018i
\(536\) −13223.4 1209.94i −1.06560 0.0975026i
\(537\) −1776.98 −0.142798
\(538\) 17914.7 9628.89i 1.43561 0.771619i
\(539\) −12169.1 −0.972468
\(540\) −2229.01 1474.53i −0.177632 0.117507i
\(541\) −19861.4 −1.57839 −0.789196 0.614141i \(-0.789502\pi\)
−0.789196 + 0.614141i \(0.789502\pi\)
\(542\) 10024.3 5387.88i 0.794426 0.426991i
\(543\) −12711.2 −1.00458
\(544\) 1846.66 2303.90i 0.145542 0.181579i
\(545\) 25276.2 1.98663
\(546\) 6126.09 + 8638.20i 0.480169 + 0.677071i
\(547\) 5823.75i 0.455221i −0.973752 0.227610i \(-0.926909\pi\)
0.973752 0.227610i \(-0.0730912\pi\)
\(548\) −4506.26 2980.97i −0.351273 0.232374i
\(549\) 1410.05i 0.109616i
\(550\) 1250.91 + 2327.34i 0.0969798 + 0.180433i
\(551\) 9591.80i 0.741605i
\(552\) 375.848 4107.62i 0.0289803 0.316725i
\(553\) 28435.1i 2.18658i
\(554\) −10017.9 + 5384.47i −0.768267 + 0.412932i
\(555\) 10980.4i 0.839806i
\(556\) −7805.95 5163.77i −0.595407 0.393872i
\(557\) −900.989 −0.0685388 −0.0342694 0.999413i \(-0.510910\pi\)
−0.0342694 + 0.999413i \(0.510910\pi\)
\(558\) 290.191 155.973i 0.0220157 0.0118331i
\(559\) 1680.47 + 13517.8i 0.127149 + 1.02279i
\(560\) −19404.5 + 8248.46i −1.46427 + 0.622431i
\(561\) 1627.13i 0.122456i
\(562\) 8235.81 4426.62i 0.618161 0.332252i
\(563\) 21415.2i 1.60310i 0.597930 + 0.801548i \(0.295990\pi\)
−0.597930 + 0.801548i \(0.704010\pi\)
\(564\) 5110.12 7724.84i 0.381515 0.576727i
\(565\) −8638.58 −0.643235
\(566\) 4557.76 2449.72i 0.338475 0.181925i
\(567\) 2156.74i 0.159744i
\(568\) 2358.81 25779.3i 0.174249 1.90436i
\(569\) 18554.5 1.36704 0.683519 0.729933i \(-0.260449\pi\)
0.683519 + 0.729933i \(0.260449\pi\)
\(570\) 4061.05 2182.75i 0.298419 0.160396i
\(571\) 3256.22i 0.238649i −0.992855 0.119325i \(-0.961927\pi\)
0.992855 0.119325i \(-0.0380729\pi\)
\(572\) 5543.81 11168.4i 0.405242 0.816392i
\(573\) 9743.29i 0.710352i
\(574\) −8621.45 16040.4i −0.626921 1.16640i
\(575\) 1707.07 0.123808
\(576\) −4531.48 836.263i −0.327798 0.0604936i
\(577\) 25127.4i 1.81294i 0.422271 + 0.906469i \(0.361233\pi\)
−0.422271 + 0.906469i \(0.638767\pi\)
\(578\) −6222.58 11577.2i −0.447794 0.833130i
\(579\) 9927.92 0.712591
\(580\) −18032.1 11928.6i −1.29094 0.853978i
\(581\) 39643.2i 2.83077i
\(582\) −3170.91 5899.55i −0.225839 0.420179i
\(583\) 7317.48i 0.519827i
\(584\) −1634.48 + 17863.1i −0.115814 + 1.26572i
\(585\) −5179.71 + 643.918i −0.366077 + 0.0455090i
\(586\) −4000.13 7442.31i −0.281986 0.524640i
\(587\) −20095.7 −1.41301 −0.706506 0.707707i \(-0.749729\pi\)
−0.706506 + 0.707707i \(0.749729\pi\)
\(588\) 7325.45 + 4845.92i 0.513770 + 0.339868i
\(589\) 568.336i 0.0397587i
\(590\) 5140.21 + 9563.45i 0.358676 + 0.667324i
\(591\) 2781.37i 0.193588i
\(592\) 7406.28 + 17423.3i 0.514183 + 1.20962i
\(593\) 13639.0i 0.944498i −0.881465 0.472249i \(-0.843442\pi\)
0.881465 0.472249i \(-0.156558\pi\)
\(594\) 2236.74 1202.21i 0.154503 0.0830429i
\(595\) 5373.76i 0.370257i
\(596\) 1524.31 2304.26i 0.104762 0.158366i
\(597\) 8599.79i 0.589557i
\(598\) −4660.08 6571.03i −0.318670 0.449347i
\(599\) 185.240 0.0126356 0.00631779 0.999980i \(-0.497989\pi\)
0.00631779 + 0.999980i \(0.497989\pi\)
\(600\) 173.770 1899.12i 0.0118235 0.129219i
\(601\) −14787.9 −1.00368 −0.501841 0.864960i \(-0.667344\pi\)
−0.501841 + 0.864960i \(0.667344\pi\)
\(602\) 10361.8 + 19278.4i 0.701524 + 1.30520i
\(603\) −5281.54 −0.356685
\(604\) 22153.6 + 14655.0i 1.49242 + 0.987259i
\(605\) 2787.87 0.187344
\(606\) 1326.29 + 2467.60i 0.0889060 + 0.165411i
\(607\) 17628.9 1.17880 0.589402 0.807840i \(-0.299363\pi\)
0.589402 + 0.807840i \(0.299363\pi\)
\(608\) 4971.66 6202.69i 0.331624 0.413737i
\(609\) 17447.5i 1.16093i
\(610\) −4829.54 + 2595.80i −0.320562 + 0.172297i
\(611\) −2231.55 17950.8i −0.147756 1.18856i
\(612\) 647.948 979.488i 0.0427970 0.0646952i
\(613\) 952.713 0.0627728 0.0313864 0.999507i \(-0.490008\pi\)
0.0313864 + 0.999507i \(0.490008\pi\)
\(614\) −2968.50 5522.96i −0.195112 0.363010i
\(615\) 8975.61 0.588506
\(616\) 1825.47 19950.5i 0.119400 1.30491i
\(617\) 5438.09i 0.354828i −0.984136 0.177414i \(-0.943227\pi\)
0.984136 0.177414i \(-0.0567732\pi\)
\(618\) −9372.17 + 5037.40i −0.610039 + 0.327886i
\(619\) −6308.80 −0.409648 −0.204824 0.978799i \(-0.565662\pi\)
−0.204824 + 0.978799i \(0.565662\pi\)
\(620\) 1068.45 + 706.795i 0.0692094 + 0.0457832i
\(621\) 1640.62i 0.106016i
\(622\) 7552.62 + 14051.8i 0.486869 + 0.905830i
\(623\) −5762.51 −0.370578
\(624\) −7784.65 + 4515.46i −0.499416 + 0.289684i
\(625\) −18347.4 −1.17424
\(626\) 12483.1 + 23225.0i 0.797004 + 1.48284i
\(627\) 4380.65i 0.279021i
\(628\) −13296.6 8795.95i −0.844894 0.558912i
\(629\) −4825.09 −0.305865
\(630\) −7387.06 + 3970.43i −0.467155 + 0.251088i
\(631\) 27401.6i 1.72875i −0.502847 0.864376i \(-0.667714\pi\)
0.502847 0.864376i \(-0.332286\pi\)
\(632\) 24063.9 + 2201.84i 1.51457 + 0.138583i
\(633\) −8668.80 −0.544319
\(634\) 7228.01 + 13447.9i 0.452777 + 0.842401i
\(635\) 26523.5 1.65756
\(636\) 2913.93 4404.92i 0.181674 0.274633i
\(637\) 17022.7 2116.18i 1.05881 0.131627i
\(638\) 18094.7 9725.61i 1.12285 0.603512i
\(639\) 10296.5i 0.637437i
\(640\) −5477.89 17060.3i −0.338332 1.05370i
\(641\) −12116.7 −0.746613 −0.373306 0.927708i \(-0.621776\pi\)
−0.373306 + 0.927708i \(0.621776\pi\)
\(642\) 1358.05 + 2526.68i 0.0834859 + 0.155327i
\(643\) −13041.8 −0.799875 −0.399938 0.916542i \(-0.630968\pi\)
−0.399938 + 0.916542i \(0.630968\pi\)
\(644\) −10795.1 7141.18i −0.660541 0.436959i
\(645\) −10787.5 −0.658538
\(646\) 959.160 + 1784.54i 0.0584174 + 0.108687i
\(647\) −22126.1 −1.34446 −0.672232 0.740341i \(-0.734664\pi\)
−0.672232 + 0.740341i \(0.734664\pi\)
\(648\) −1825.20 167.006i −0.110649 0.0101244i
\(649\) −10316.1 −0.623946
\(650\) −2154.55 3038.06i −0.130013 0.183327i
\(651\) 1033.80i 0.0622396i
\(652\) 5652.73 8545.10i 0.339537 0.513270i
\(653\) 20990.8i 1.25794i 0.777431 + 0.628969i \(0.216523\pi\)
−0.777431 + 0.628969i \(0.783477\pi\)
\(654\) 15268.3 8206.49i 0.912904 0.490672i
\(655\) 9124.96i 0.544339i
\(656\) 14242.2 6054.04i 0.847657 0.360321i
\(657\) 7134.70i 0.423670i
\(658\) −13759.9 25600.5i −0.815221 1.51673i
\(659\) 8421.74i 0.497822i 0.968526 + 0.248911i \(0.0800726\pi\)
−0.968526 + 0.248911i \(0.919927\pi\)
\(660\) 8235.41 + 5447.87i 0.485701 + 0.321300i
\(661\) −23890.2 −1.40578 −0.702891 0.711298i \(-0.748108\pi\)
−0.702891 + 0.711298i \(0.748108\pi\)
\(662\) −4258.11 7922.29i −0.249994 0.465119i
\(663\) −282.955 2276.11i −0.0165747 0.133328i
\(664\) 33549.1 + 3069.74i 1.96078 + 0.179411i
\(665\) 14467.5i 0.843648i
\(666\) 3565.04 + 6632.82i 0.207421 + 0.385911i
\(667\) 13272.2i 0.770468i
\(668\) 4055.48 + 2682.77i 0.234897 + 0.155389i
\(669\) −8203.26 −0.474075
\(670\) −9722.98 18089.8i −0.560644 1.04309i
\(671\) 5209.62i 0.299724i
\(672\) −9043.45 + 11282.7i −0.519135 + 0.647677i
\(673\) −22344.0 −1.27979 −0.639894 0.768463i \(-0.721022\pi\)
−0.639894 + 0.768463i \(0.721022\pi\)
\(674\) −4586.89 8533.99i −0.262137 0.487711i
\(675\) 758.527i 0.0432529i
\(676\) −5812.76 + 16587.0i −0.330721 + 0.943728i
\(677\) 28460.2i 1.61568i −0.589404 0.807838i \(-0.700637\pi\)
0.589404 0.807838i \(-0.299363\pi\)
\(678\) −5218.22 + 2804.71i −0.295582 + 0.158871i
\(679\) −21017.1 −1.18787
\(680\) 4547.67 + 416.112i 0.256464 + 0.0234664i
\(681\) 17171.5i 0.966244i
\(682\) −1072.15 + 576.265i −0.0601977 + 0.0323553i
\(683\) −18506.1 −1.03677 −0.518387 0.855146i \(-0.673467\pi\)
−0.518387 + 0.855146i \(0.673467\pi\)
\(684\) 1744.44 2637.03i 0.0975151 0.147411i
\(685\) 8356.50i 0.466110i
\(686\) 1523.60 818.913i 0.0847981 0.0455776i
\(687\) 5197.48i 0.288641i
\(688\) −17117.2 + 7276.16i −0.948527 + 0.403199i
\(689\) −1272.49 10236.0i −0.0703602 0.565982i
\(690\) 5619.30 3020.28i 0.310033 0.166638i
\(691\) −827.958 −0.0455818 −0.0227909 0.999740i \(-0.507255\pi\)
−0.0227909 + 0.999740i \(0.507255\pi\)
\(692\) −5876.10 3887.14i −0.322797 0.213536i
\(693\) 7968.40i 0.436789i
\(694\) −30442.1 + 16362.1i −1.66508 + 0.894955i
\(695\) 14475.5i 0.790054i
\(696\) −14765.4 1351.03i −0.804138 0.0735786i
\(697\) 3944.12i 0.214339i
\(698\) −7637.52 14209.8i −0.414161 0.770555i
\(699\) 645.864i 0.0349482i
\(700\) −4991.03 3301.66i −0.269491 0.178273i
\(701\) 14181.4i 0.764085i 0.924145 + 0.382043i \(0.124779\pi\)
−0.924145 + 0.382043i \(0.875221\pi\)
\(702\) −2919.79 + 2070.68i −0.156981 + 0.111329i
\(703\) −12990.3 −0.696928
\(704\) 16742.2 + 3089.70i 0.896301 + 0.165408i
\(705\) 14325.1 0.765269
\(706\) −17196.1 + 9242.66i −0.916693 + 0.492708i
\(707\) 8790.81 0.467627
\(708\) 6209.98 + 4108.01i 0.329640 + 0.218063i
\(709\) 31124.9 1.64869 0.824343 0.566090i \(-0.191545\pi\)
0.824343 + 0.566090i \(0.191545\pi\)
\(710\) 35266.5 18955.2i 1.86412 1.00194i
\(711\) 9611.32 0.506966
\(712\) 446.215 4876.67i 0.0234868 0.256687i
\(713\) 786.409i 0.0413061i
\(714\) −1744.71 3246.07i −0.0914485 0.170142i
\(715\) 19137.2 2379.05i 1.00097 0.124436i
\(716\) −3952.14 2614.41i −0.206283 0.136460i
\(717\) 3267.33 0.170182
\(718\) 14725.4 7914.67i 0.765386 0.411383i
\(719\) 32557.2 1.68871 0.844353 0.535787i \(-0.179985\pi\)
0.844353 + 0.535787i \(0.179985\pi\)
\(720\) −2788.06 6558.92i −0.144312 0.339495i
\(721\) 33388.4i 1.72462i
\(722\) −6602.37 12283.8i −0.340325 0.633182i
\(723\) 1986.05 0.102161
\(724\) −28270.5 18701.5i −1.45120 0.959992i
\(725\) 6136.29i 0.314339i
\(726\) 1684.04 905.145i 0.0860890 0.0462715i
\(727\) 7446.98 0.379908 0.189954 0.981793i \(-0.439166\pi\)
0.189954 + 0.981793i \(0.439166\pi\)
\(728\) 915.797 + 28225.1i 0.0466232 + 1.43694i
\(729\) −729.000 −0.0370370
\(730\) −24437.0 + 13134.5i −1.23898 + 0.665932i
\(731\) 4740.32i 0.239845i
\(732\) −2074.55 + 3136.04i −0.104751 + 0.158349i
\(733\) 20527.0 1.03435 0.517177 0.855878i \(-0.326983\pi\)
0.517177 + 0.855878i \(0.326983\pi\)
\(734\) 11806.8 + 21966.8i 0.593728 + 1.10464i
\(735\) 13584.5i 0.681729i
\(736\) 6879.31 8582.68i 0.344531 0.429839i
\(737\) 19513.4 0.975286
\(738\) 5421.80 2914.13i 0.270433 0.145353i
\(739\) −29880.4 −1.48737 −0.743686 0.668529i \(-0.766924\pi\)
−0.743686 + 0.668529i \(0.766924\pi\)
\(740\) −16155.1 + 24421.2i −0.802530 + 1.21316i
\(741\) −761.785 6127.85i −0.0377664 0.303795i
\(742\) −7846.26 14598.1i −0.388201 0.722256i
\(743\) 7500.75i 0.370358i 0.982705 + 0.185179i \(0.0592865\pi\)
−0.982705 + 0.185179i \(0.940714\pi\)
\(744\) 874.882 + 80.0517i 0.0431112 + 0.00394468i
\(745\) 4273.08 0.210139
\(746\) −17665.8 + 9495.11i −0.867014 + 0.466006i
\(747\) 13399.8 0.656323
\(748\) −2393.94 + 3618.86i −0.117020 + 0.176897i
\(749\) 9001.29 0.439119
\(750\) −8961.68 + 4816.76i −0.436312 + 0.234511i
\(751\) 27102.8 1.31691 0.658453 0.752622i \(-0.271211\pi\)
0.658453 + 0.752622i \(0.271211\pi\)
\(752\) 22730.5 9662.27i 1.10226 0.468546i
\(753\) 11672.3 0.564888
\(754\) −23620.4 + 16751.2i −1.14085 + 0.809077i
\(755\) 41082.2i 1.98031i
\(756\) −3173.14 + 4796.75i −0.152653 + 0.230762i
\(757\) 18795.2i 0.902409i −0.892421 0.451205i \(-0.850994\pi\)
0.892421 0.451205i \(-0.149006\pi\)
\(758\) 9574.76 + 17814.0i 0.458801 + 0.853608i
\(759\) 6061.52i 0.289880i
\(760\) 12243.5 + 1120.28i 0.584365 + 0.0534694i
\(761\) 19585.4i 0.932942i −0.884537 0.466471i \(-0.845525\pi\)
0.884537 0.466471i \(-0.154475\pi\)
\(762\) 16021.8 8611.45i 0.761689 0.409396i
\(763\) 54393.5i 2.58083i
\(764\) 14334.9 21669.8i 0.678822 1.02616i
\(765\) 1816.38 0.0858450
\(766\) −15647.4 + 8410.25i −0.738074 + 0.396703i
\(767\) 14430.6 1793.94i 0.679346 0.0844531i
\(768\) −8847.98 8526.91i −0.415721 0.400636i
\(769\) 39015.6i 1.82957i 0.403940 + 0.914785i \(0.367640\pi\)
−0.403940 + 0.914785i \(0.632360\pi\)
\(770\) 27292.6 14669.3i 1.27734 0.686553i
\(771\) 16238.9i 0.758534i
\(772\) 22080.4 + 14606.6i 1.02939 + 0.680961i
\(773\) 38584.9 1.79535 0.897673 0.440663i \(-0.145257\pi\)
0.897673 + 0.440663i \(0.145257\pi\)
\(774\) −6516.29 + 3502.40i −0.302614