Properties

Label 312.4.m.a.181.52
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.52
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.51

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.800675 + 2.71273i) q^{2} +3.00000i q^{3} +(-6.71784 + 4.34403i) q^{4} -12.1272 q^{5} +(-8.13820 + 2.40203i) q^{6} -21.1519i q^{7} +(-17.1630 - 14.7455i) q^{8} -9.00000 q^{9} +(-9.70993 - 32.8978i) q^{10} -16.0069 q^{11} +(-13.0321 - 20.1535i) q^{12} +(36.8012 + 29.0288i) q^{13} +(57.3793 - 16.9358i) q^{14} -36.3815i q^{15} +(26.2587 - 58.3651i) q^{16} +45.8045 q^{17} +(-7.20608 - 24.4146i) q^{18} +117.007 q^{19} +(81.4684 - 52.6809i) q^{20} +63.4556 q^{21} +(-12.8163 - 43.4224i) q^{22} -97.3972 q^{23} +(44.2366 - 51.4890i) q^{24} +22.0685 q^{25} +(-49.2817 + 123.074i) q^{26} -27.0000i q^{27} +(91.8844 + 142.095i) q^{28} -90.0375i q^{29} +(98.6934 - 29.1298i) q^{30} -151.350i q^{31} +(179.354 + 24.5015i) q^{32} -48.0206i q^{33} +(36.6745 + 124.255i) q^{34} +256.512i q^{35} +(60.4606 - 39.0963i) q^{36} +66.3382 q^{37} +(93.6845 + 317.409i) q^{38} +(-87.0865 + 110.404i) q^{39} +(208.139 + 178.822i) q^{40} -112.250i q^{41} +(50.8073 + 172.138i) q^{42} +234.339i q^{43} +(107.532 - 69.5345i) q^{44} +109.145 q^{45} +(-77.9835 - 264.213i) q^{46} -580.433i q^{47} +(175.095 + 78.7762i) q^{48} -104.401 q^{49} +(17.6697 + 59.8660i) q^{50} +137.414i q^{51} +(-373.327 - 35.1454i) q^{52} -241.092i q^{53} +(73.2438 - 21.6182i) q^{54} +194.118 q^{55} +(-311.896 + 363.029i) q^{56} +351.021i q^{57} +(244.248 - 72.0908i) q^{58} -313.006 q^{59} +(158.043 + 244.405i) q^{60} -334.114i q^{61} +(410.572 - 121.182i) q^{62} +190.367i q^{63} +(77.1380 + 506.156i) q^{64} +(-446.295 - 352.038i) q^{65} +(130.267 - 38.4489i) q^{66} +315.258 q^{67} +(-307.707 + 198.976i) q^{68} -292.192i q^{69} +(-695.849 + 205.383i) q^{70} -503.306i q^{71} +(154.467 + 132.710i) q^{72} -757.602i q^{73} +(53.1154 + 179.958i) q^{74} +66.2055i q^{75} +(-786.034 + 508.282i) q^{76} +338.575i q^{77} +(-369.223 - 147.845i) q^{78} +1134.30 q^{79} +(-318.444 + 707.804i) q^{80} +81.0000 q^{81} +(304.503 - 89.8754i) q^{82} +822.684 q^{83} +(-426.284 + 275.653i) q^{84} -555.480 q^{85} +(-635.698 + 187.629i) q^{86} +270.113 q^{87} +(274.726 + 236.030i) q^{88} +803.525i q^{89} +(87.3894 + 296.080i) q^{90} +(614.014 - 778.413i) q^{91} +(654.299 - 423.097i) q^{92} +454.049 q^{93} +(1574.56 - 464.738i) q^{94} -1418.96 q^{95} +(-73.5044 + 538.061i) q^{96} -750.474i q^{97} +(-83.5911 - 283.211i) q^{98} +144.062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.800675 + 2.71273i 0.283081 + 0.959096i
\(3\) 3.00000i 0.577350i
\(4\) −6.71784 + 4.34403i −0.839730 + 0.543004i
\(5\) −12.1272 −1.08469 −0.542344 0.840157i \(-0.682463\pi\)
−0.542344 + 0.840157i \(0.682463\pi\)
\(6\) −8.13820 + 2.40203i −0.553734 + 0.163437i
\(7\) 21.1519i 1.14209i −0.820918 0.571046i \(-0.806538\pi\)
0.820918 0.571046i \(-0.193462\pi\)
\(8\) −17.1630 14.7455i −0.758505 0.651667i
\(9\) −9.00000 −0.333333
\(10\) −9.70993 32.8978i −0.307055 1.04032i
\(11\) −16.0069 −0.438751 −0.219375 0.975641i \(-0.570402\pi\)
−0.219375 + 0.975641i \(0.570402\pi\)
\(12\) −13.0321 20.1535i −0.313504 0.484818i
\(13\) 36.8012 + 29.0288i 0.785139 + 0.619319i
\(14\) 57.3793 16.9358i 1.09538 0.323305i
\(15\) 36.3815i 0.626245i
\(16\) 26.2587 58.3651i 0.410293 0.911954i
\(17\) 45.8045 0.653484 0.326742 0.945114i \(-0.394049\pi\)
0.326742 + 0.945114i \(0.394049\pi\)
\(18\) −7.20608 24.4146i −0.0943605 0.319699i
\(19\) 117.007 1.41280 0.706401 0.707812i \(-0.250318\pi\)
0.706401 + 0.707812i \(0.250318\pi\)
\(20\) 81.4684 52.6809i 0.910845 0.588990i
\(21\) 63.4556 0.659387
\(22\) −12.8163 43.4224i −0.124202 0.420804i
\(23\) −97.3972 −0.882988 −0.441494 0.897264i \(-0.645551\pi\)
−0.441494 + 0.897264i \(0.645551\pi\)
\(24\) 44.2366 51.4890i 0.376240 0.437923i
\(25\) 22.0685 0.176548
\(26\) −49.2817 + 123.074i −0.371728 + 0.928342i
\(27\) 27.0000i 0.192450i
\(28\) 91.8844 + 142.095i 0.620161 + 0.959049i
\(29\) 90.0375i 0.576536i −0.957550 0.288268i \(-0.906921\pi\)
0.957550 0.288268i \(-0.0930794\pi\)
\(30\) 98.6934 29.1298i 0.600629 0.177278i
\(31\) 151.350i 0.876878i −0.898761 0.438439i \(-0.855531\pi\)
0.898761 0.438439i \(-0.144469\pi\)
\(32\) 179.354 + 24.5015i 0.990797 + 0.135353i
\(33\) 48.0206i 0.253313i
\(34\) 36.6745 + 124.255i 0.184989 + 0.626754i
\(35\) 256.512i 1.23881i
\(36\) 60.4606 39.0963i 0.279910 0.181001i
\(37\) 66.3382 0.294755 0.147378 0.989080i \(-0.452917\pi\)
0.147378 + 0.989080i \(0.452917\pi\)
\(38\) 93.6845 + 317.409i 0.399938 + 1.35501i
\(39\) −87.0865 + 110.404i −0.357564 + 0.453300i
\(40\) 208.139 + 178.822i 0.822741 + 0.706855i
\(41\) 112.250i 0.427572i −0.976881 0.213786i \(-0.931421\pi\)
0.976881 0.213786i \(-0.0685795\pi\)
\(42\) 50.8073 + 172.138i 0.186660 + 0.632416i
\(43\) 234.339i 0.831077i 0.909576 + 0.415538i \(0.136407\pi\)
−0.909576 + 0.415538i \(0.863593\pi\)
\(44\) 107.532 69.5345i 0.368432 0.238243i
\(45\) 109.145 0.361563
\(46\) −77.9835 264.213i −0.249957 0.846870i
\(47\) 580.433i 1.80138i −0.434461 0.900690i \(-0.643061\pi\)
0.434461 0.900690i \(-0.356939\pi\)
\(48\) 175.095 + 78.7762i 0.526517 + 0.236882i
\(49\) −104.401 −0.304375
\(50\) 17.6697 + 59.8660i 0.0499775 + 0.169327i
\(51\) 137.414i 0.377289i
\(52\) −373.327 35.1454i −0.995598 0.0937269i
\(53\) 241.092i 0.624841i −0.949944 0.312420i \(-0.898860\pi\)
0.949944 0.312420i \(-0.101140\pi\)
\(54\) 73.2438 21.6182i 0.184578 0.0544790i
\(55\) 194.118 0.475908
\(56\) −311.896 + 363.029i −0.744264 + 0.866283i
\(57\) 351.021i 0.815681i
\(58\) 244.248 72.0908i 0.552954 0.163207i
\(59\) −313.006 −0.690677 −0.345339 0.938478i \(-0.612236\pi\)
−0.345339 + 0.938478i \(0.612236\pi\)
\(60\) 158.043 + 244.405i 0.340054 + 0.525877i
\(61\) 334.114i 0.701293i −0.936508 0.350647i \(-0.885962\pi\)
0.936508 0.350647i \(-0.114038\pi\)
\(62\) 410.572 121.182i 0.841011 0.248228i
\(63\) 190.367i 0.380698i
\(64\) 77.1380 + 506.156i 0.150660 + 0.988586i
\(65\) −446.295 352.038i −0.851631 0.671768i
\(66\) 130.267 38.4489i 0.242951 0.0717081i
\(67\) 315.258 0.574848 0.287424 0.957803i \(-0.407201\pi\)
0.287424 + 0.957803i \(0.407201\pi\)
\(68\) −307.707 + 198.976i −0.548750 + 0.354845i
\(69\) 292.192i 0.509793i
\(70\) −695.849 + 205.383i −1.18814 + 0.350685i
\(71\) 503.306i 0.841288i −0.907226 0.420644i \(-0.861804\pi\)
0.907226 0.420644i \(-0.138196\pi\)
\(72\) 154.467 + 132.710i 0.252835 + 0.217222i
\(73\) 757.602i 1.21467i −0.794447 0.607333i \(-0.792239\pi\)
0.794447 0.607333i \(-0.207761\pi\)
\(74\) 53.1154 + 179.958i 0.0834397 + 0.282698i
\(75\) 66.2055i 0.101930i
\(76\) −786.034 + 508.282i −1.18637 + 0.767157i
\(77\) 338.575i 0.501094i
\(78\) −369.223 147.845i −0.535978 0.214617i
\(79\) 1134.30 1.61543 0.807717 0.589571i \(-0.200703\pi\)
0.807717 + 0.589571i \(0.200703\pi\)
\(80\) −318.444 + 707.804i −0.445039 + 0.989186i
\(81\) 81.0000 0.111111
\(82\) 304.503 89.8754i 0.410082 0.121038i
\(83\) 822.684 1.08797 0.543984 0.839096i \(-0.316915\pi\)
0.543984 + 0.839096i \(0.316915\pi\)
\(84\) −426.284 + 275.653i −0.553707 + 0.358050i
\(85\) −555.480 −0.708826
\(86\) −635.698 + 187.629i −0.797082 + 0.235262i
\(87\) 270.113 0.332863
\(88\) 274.726 + 236.030i 0.332795 + 0.285919i
\(89\) 803.525i 0.957005i 0.878086 + 0.478503i \(0.158820\pi\)
−0.878086 + 0.478503i \(0.841180\pi\)
\(90\) 87.3894 + 296.080i 0.102352 + 0.346773i
\(91\) 614.014 778.413i 0.707320 0.896702i
\(92\) 654.299 423.097i 0.741471 0.479466i
\(93\) 454.049 0.506266
\(94\) 1574.56 464.738i 1.72770 0.509937i
\(95\) −1418.96 −1.53245
\(96\) −73.5044 + 538.061i −0.0781459 + 0.572037i
\(97\) 750.474i 0.785557i −0.919633 0.392779i \(-0.871514\pi\)
0.919633 0.392779i \(-0.128486\pi\)
\(98\) −83.5911 283.211i −0.0861630 0.291925i
\(99\) 144.062 0.146250
\(100\) −148.253 + 95.8664i −0.148253 + 0.0958664i
\(101\) 460.391i 0.453570i 0.973945 + 0.226785i \(0.0728215\pi\)
−0.973945 + 0.226785i \(0.927178\pi\)
\(102\) −372.766 + 110.024i −0.361857 + 0.106804i
\(103\) 1245.30 1.19129 0.595645 0.803248i \(-0.296897\pi\)
0.595645 + 0.803248i \(0.296897\pi\)
\(104\) −203.573 1040.88i −0.191942 0.981406i
\(105\) −769.537 −0.715230
\(106\) 654.019 193.037i 0.599282 0.176881i
\(107\) 488.541i 0.441393i −0.975343 0.220696i \(-0.929167\pi\)
0.975343 0.220696i \(-0.0708330\pi\)
\(108\) 117.289 + 181.382i 0.104501 + 0.161606i
\(109\) −703.953 −0.618591 −0.309296 0.950966i \(-0.600093\pi\)
−0.309296 + 0.950966i \(0.600093\pi\)
\(110\) 155.426 + 526.591i 0.134721 + 0.456441i
\(111\) 199.015i 0.170177i
\(112\) −1234.53 555.421i −1.04154 0.468592i
\(113\) −2263.50 −1.88435 −0.942177 0.335115i \(-0.891225\pi\)
−0.942177 + 0.335115i \(0.891225\pi\)
\(114\) −952.226 + 281.054i −0.782317 + 0.230904i
\(115\) 1181.15 0.957766
\(116\) 391.126 + 604.858i 0.313062 + 0.484135i
\(117\) −331.211 261.260i −0.261713 0.206440i
\(118\) −250.616 849.102i −0.195518 0.662426i
\(119\) 968.851i 0.746339i
\(120\) −536.466 + 624.417i −0.408103 + 0.475010i
\(121\) −1074.78 −0.807498
\(122\) 906.361 267.516i 0.672607 0.198523i
\(123\) 336.749 0.246859
\(124\) 657.469 + 1016.74i 0.476149 + 0.736341i
\(125\) 1248.27 0.893188
\(126\) −516.414 + 152.422i −0.365125 + 0.107768i
\(127\) −1539.77 −1.07585 −0.537923 0.842994i \(-0.680791\pi\)
−0.537923 + 0.842994i \(0.680791\pi\)
\(128\) −1311.30 + 614.521i −0.905499 + 0.424348i
\(129\) −703.016 −0.479822
\(130\) 597.648 1492.55i 0.403209 1.00696i
\(131\) 833.576i 0.555953i 0.960588 + 0.277977i \(0.0896637\pi\)
−0.960588 + 0.277977i \(0.910336\pi\)
\(132\) 208.603 + 322.595i 0.137550 + 0.212714i
\(133\) 2474.91i 1.61355i
\(134\) 252.419 + 855.210i 0.162729 + 0.551335i
\(135\) 327.434i 0.208748i
\(136\) −786.144 675.413i −0.495671 0.425854i
\(137\) 1012.44i 0.631379i 0.948863 + 0.315689i \(0.102236\pi\)
−0.948863 + 0.315689i \(0.897764\pi\)
\(138\) 792.638 233.950i 0.488940 0.144313i
\(139\) 2463.08i 1.50299i −0.659739 0.751495i \(-0.729333\pi\)
0.659739 0.751495i \(-0.270667\pi\)
\(140\) −1114.30 1723.21i −0.672681 1.04027i
\(141\) 1741.30 1.04003
\(142\) 1365.34 402.985i 0.806876 0.238153i
\(143\) −589.072 464.661i −0.344480 0.271727i
\(144\) −236.328 + 525.285i −0.136764 + 0.303985i
\(145\) 1091.90i 0.625362i
\(146\) 2055.17 606.593i 1.16498 0.343849i
\(147\) 313.202i 0.175731i
\(148\) −445.650 + 288.176i −0.247515 + 0.160053i
\(149\) −2991.00 −1.64451 −0.822257 0.569117i \(-0.807285\pi\)
−0.822257 + 0.569117i \(0.807285\pi\)
\(150\) −179.598 + 53.0091i −0.0977607 + 0.0288545i
\(151\) 2307.79i 1.24374i −0.783120 0.621871i \(-0.786373\pi\)
0.783120 0.621871i \(-0.213627\pi\)
\(152\) −2008.19 1725.33i −1.07162 0.920676i
\(153\) −412.241 −0.217828
\(154\) −918.464 + 271.089i −0.480597 + 0.141850i
\(155\) 1835.45i 0.951140i
\(156\) 105.436 1119.98i 0.0541132 0.574809i
\(157\) 1097.78i 0.558042i −0.960285 0.279021i \(-0.909990\pi\)
0.960285 0.279021i \(-0.0900099\pi\)
\(158\) 908.210 + 3077.07i 0.457299 + 1.54936i
\(159\) 723.277 0.360752
\(160\) −2175.05 297.134i −1.07471 0.146815i
\(161\) 2060.13i 1.00845i
\(162\) 64.8547 + 219.731i 0.0314535 + 0.106566i
\(163\) −2138.86 −1.02778 −0.513891 0.857856i \(-0.671796\pi\)
−0.513891 + 0.857856i \(0.671796\pi\)
\(164\) 487.616 + 754.075i 0.232173 + 0.359045i
\(165\) 582.355i 0.274765i
\(166\) 658.703 + 2231.72i 0.307983 + 1.04347i
\(167\) 2341.22i 1.08484i −0.840106 0.542422i \(-0.817507\pi\)
0.840106 0.542422i \(-0.182493\pi\)
\(168\) −1089.09 935.687i −0.500149 0.429701i
\(169\) 511.653 + 2136.59i 0.232887 + 0.972504i
\(170\) −444.759 1506.87i −0.200656 0.679832i
\(171\) −1053.06 −0.470934
\(172\) −1017.98 1574.25i −0.451278 0.697880i
\(173\) 1655.20i 0.727413i 0.931514 + 0.363706i \(0.118489\pi\)
−0.931514 + 0.363706i \(0.881511\pi\)
\(174\) 216.272 + 732.743i 0.0942274 + 0.319248i
\(175\) 466.790i 0.201634i
\(176\) −420.320 + 934.243i −0.180016 + 0.400120i
\(177\) 939.019i 0.398763i
\(178\) −2179.75 + 643.362i −0.917860 + 0.270910i
\(179\) 2005.28i 0.837326i −0.908142 0.418663i \(-0.862499\pi\)
0.908142 0.418663i \(-0.137501\pi\)
\(180\) −733.216 + 474.128i −0.303615 + 0.196330i
\(181\) 1629.54i 0.669184i −0.942363 0.334592i \(-0.891401\pi\)
0.942363 0.334592i \(-0.108599\pi\)
\(182\) 2603.25 + 1042.40i 1.06025 + 0.424548i
\(183\) 1002.34 0.404892
\(184\) 1671.63 + 1436.17i 0.669751 + 0.575414i
\(185\) −804.496 −0.319717
\(186\) 363.546 + 1231.71i 0.143314 + 0.485558i
\(187\) −733.188 −0.286717
\(188\) 2521.42 + 3899.26i 0.978158 + 1.51267i
\(189\) −571.100 −0.219796
\(190\) −1136.13 3849.27i −0.433808 1.46977i
\(191\) 4723.88 1.78957 0.894786 0.446495i \(-0.147328\pi\)
0.894786 + 0.446495i \(0.147328\pi\)
\(192\) −1518.47 + 231.414i −0.570760 + 0.0869837i
\(193\) 10.6845i 0.00398491i 0.999998 + 0.00199245i \(0.000634218\pi\)
−0.999998 + 0.00199245i \(0.999366\pi\)
\(194\) 2035.83 600.886i 0.753425 0.222377i
\(195\) 1056.11 1338.88i 0.387846 0.491689i
\(196\) 701.348 453.521i 0.255593 0.165277i
\(197\) −2024.67 −0.732244 −0.366122 0.930567i \(-0.619315\pi\)
−0.366122 + 0.930567i \(0.619315\pi\)
\(198\) 115.347 + 390.802i 0.0414007 + 0.140268i
\(199\) 1829.71 0.651782 0.325891 0.945407i \(-0.394336\pi\)
0.325891 + 0.945407i \(0.394336\pi\)
\(200\) −378.762 325.412i −0.133913 0.115051i
\(201\) 945.773i 0.331889i
\(202\) −1248.92 + 368.623i −0.435017 + 0.128397i
\(203\) −1904.46 −0.658458
\(204\) −596.929 923.122i −0.204870 0.316821i
\(205\) 1361.27i 0.463782i
\(206\) 997.079 + 3378.16i 0.337232 + 1.14256i
\(207\) 876.575 0.294329
\(208\) 2660.62 1385.64i 0.886927 0.461909i
\(209\) −1872.92 −0.619868
\(210\) −616.149 2087.55i −0.202468 0.685974i
\(211\) 2849.73i 0.929780i 0.885368 + 0.464890i \(0.153906\pi\)
−0.885368 + 0.464890i \(0.846094\pi\)
\(212\) 1047.31 + 1619.62i 0.339291 + 0.524698i
\(213\) 1509.92 0.485718
\(214\) 1325.28 391.162i 0.423338 0.124950i
\(215\) 2841.87i 0.901459i
\(216\) −398.130 + 463.401i −0.125413 + 0.145974i
\(217\) −3201.33 −1.00148
\(218\) −563.637 1909.64i −0.175112 0.593288i
\(219\) 2272.81 0.701288
\(220\) −1304.06 + 843.257i −0.399634 + 0.258420i
\(221\) 1685.66 + 1329.65i 0.513076 + 0.404715i
\(222\) −539.874 + 159.346i −0.163216 + 0.0481739i
\(223\) 1372.76i 0.412228i −0.978528 0.206114i \(-0.933918\pi\)
0.978528 0.206114i \(-0.0660817\pi\)
\(224\) 518.251 3793.66i 0.154585 1.13158i
\(225\) −198.617 −0.0588494
\(226\) −1812.33 6140.27i −0.533426 1.80728i
\(227\) −3957.76 −1.15720 −0.578602 0.815610i \(-0.696402\pi\)
−0.578602 + 0.815610i \(0.696402\pi\)
\(228\) −1524.85 2358.10i −0.442919 0.684952i
\(229\) −1499.02 −0.432569 −0.216284 0.976330i \(-0.569394\pi\)
−0.216284 + 0.976330i \(0.569394\pi\)
\(230\) 945.720 + 3204.15i 0.271126 + 0.918590i
\(231\) −1015.73 −0.289307
\(232\) −1327.65 + 1545.32i −0.375710 + 0.437306i
\(233\) 3777.11 1.06200 0.531001 0.847371i \(-0.321816\pi\)
0.531001 + 0.847371i \(0.321816\pi\)
\(234\) 443.535 1107.67i 0.123909 0.309447i
\(235\) 7039.02i 1.95394i
\(236\) 2102.73 1359.71i 0.579982 0.375041i
\(237\) 3402.91i 0.932671i
\(238\) 2628.23 775.734i 0.715811 0.211275i
\(239\) 4920.95i 1.33184i 0.746023 + 0.665920i \(0.231961\pi\)
−0.746023 + 0.665920i \(0.768039\pi\)
\(240\) −2123.41 955.333i −0.571107 0.256944i
\(241\) 1467.06i 0.392123i 0.980592 + 0.196061i \(0.0628152\pi\)
−0.980592 + 0.196061i \(0.937185\pi\)
\(242\) −860.549 2915.59i −0.228588 0.774468i
\(243\) 243.000i 0.0641500i
\(244\) 1451.40 + 2244.52i 0.380805 + 0.588897i
\(245\) 1266.09 0.330152
\(246\) 269.626 + 913.509i 0.0698811 + 0.236761i
\(247\) 4305.99 + 3396.57i 1.10925 + 0.874975i
\(248\) −2231.74 + 2597.62i −0.571433 + 0.665117i
\(249\) 2468.05i 0.628138i
\(250\) 999.458 + 3386.22i 0.252845 + 0.856653i
\(251\) 4882.12i 1.22772i 0.789416 + 0.613858i \(0.210383\pi\)
−0.789416 + 0.613858i \(0.789617\pi\)
\(252\) −826.959 1278.85i −0.206720 0.319683i
\(253\) 1559.03 0.387411
\(254\) −1232.85 4176.98i −0.304552 1.03184i
\(255\) 1666.44i 0.409241i
\(256\) −2716.96 3065.18i −0.663320 0.748336i
\(257\) −1903.23 −0.461946 −0.230973 0.972960i \(-0.574191\pi\)
−0.230973 + 0.972960i \(0.574191\pi\)
\(258\) −562.887 1907.09i −0.135829 0.460196i
\(259\) 1403.18i 0.336638i
\(260\) 4527.40 + 426.215i 1.07991 + 0.101664i
\(261\) 810.338i 0.192179i
\(262\) −2261.27 + 667.423i −0.533212 + 0.157380i
\(263\) 5914.88 1.38680 0.693398 0.720555i \(-0.256113\pi\)
0.693398 + 0.720555i \(0.256113\pi\)
\(264\) −708.090 + 824.179i −0.165076 + 0.192139i
\(265\) 2923.77i 0.677757i
\(266\) 6713.78 1981.60i 1.54755 0.456766i
\(267\) −2410.57 −0.552527
\(268\) −2117.85 + 1369.49i −0.482717 + 0.312145i
\(269\) 4203.72i 0.952808i 0.879226 + 0.476404i \(0.158060\pi\)
−0.879226 + 0.476404i \(0.841940\pi\)
\(270\) −888.241 + 262.168i −0.200210 + 0.0590928i
\(271\) 2759.47i 0.618545i 0.950974 + 0.309272i \(0.100085\pi\)
−0.950974 + 0.309272i \(0.899915\pi\)
\(272\) 1202.77 2673.38i 0.268120 0.595947i
\(273\) 2335.24 + 1842.04i 0.517711 + 0.408371i
\(274\) −2746.49 + 810.638i −0.605553 + 0.178732i
\(275\) −353.248 −0.0774606
\(276\) 1269.29 + 1962.90i 0.276820 + 0.428089i
\(277\) 8888.17i 1.92794i −0.266019 0.963968i \(-0.585708\pi\)
0.266019 0.963968i \(-0.414292\pi\)
\(278\) 6681.67 1972.12i 1.44151 0.425468i
\(279\) 1362.15i 0.292293i
\(280\) 3782.41 4402.52i 0.807294 0.939647i
\(281\) 4050.83i 0.859972i −0.902835 0.429986i \(-0.858518\pi\)
0.902835 0.429986i \(-0.141482\pi\)
\(282\) 1394.22 + 4723.68i 0.294412 + 0.997486i
\(283\) 4078.29i 0.856640i 0.903627 + 0.428320i \(0.140894\pi\)
−0.903627 + 0.428320i \(0.859106\pi\)
\(284\) 2186.38 + 3381.13i 0.456823 + 0.706455i
\(285\) 4256.89i 0.884760i
\(286\) 788.846 1970.04i 0.163096 0.407310i
\(287\) −2374.29 −0.488326
\(288\) −1614.18 220.513i −0.330266 0.0451176i
\(289\) −2814.95 −0.572959
\(290\) −2962.04 + 874.258i −0.599782 + 0.177028i
\(291\) 2251.42 0.453542
\(292\) 3291.05 + 5089.45i 0.659569 + 1.01999i
\(293\) −1590.21 −0.317069 −0.158535 0.987353i \(-0.550677\pi\)
−0.158535 + 0.987353i \(0.550677\pi\)
\(294\) 849.634 250.773i 0.168543 0.0497463i
\(295\) 3795.88 0.749169
\(296\) −1138.56 978.193i −0.223573 0.192082i
\(297\) 432.186i 0.0844376i
\(298\) −2394.82 8113.79i −0.465531 1.57725i
\(299\) −3584.33 2827.33i −0.693268 0.546851i
\(300\) −287.599 444.758i −0.0553485 0.0855937i
\(301\) 4956.70 0.949167
\(302\) 6260.41 1847.79i 1.19287 0.352080i
\(303\) −1381.17 −0.261869
\(304\) 3072.45 6829.12i 0.579662 1.28841i
\(305\) 4051.86i 0.760684i
\(306\) −330.071 1118.30i −0.0616631 0.208918i
\(307\) 6423.44 1.19415 0.597077 0.802184i \(-0.296329\pi\)
0.597077 + 0.802184i \(0.296329\pi\)
\(308\) −1470.78 2274.49i −0.272096 0.420783i
\(309\) 3735.89i 0.687791i
\(310\) −4979.08 + 1469.60i −0.912234 + 0.269250i
\(311\) 3419.21 0.623427 0.311713 0.950176i \(-0.399097\pi\)
0.311713 + 0.950176i \(0.399097\pi\)
\(312\) 3122.63 610.719i 0.566615 0.110818i
\(313\) 8831.43 1.59483 0.797415 0.603431i \(-0.206200\pi\)
0.797415 + 0.603431i \(0.206200\pi\)
\(314\) 2977.99 878.967i 0.535216 0.157971i
\(315\) 2308.61i 0.412938i
\(316\) −7620.08 + 4927.46i −1.35653 + 0.877188i
\(317\) −6479.78 −1.14808 −0.574039 0.818828i \(-0.694624\pi\)
−0.574039 + 0.818828i \(0.694624\pi\)
\(318\) 579.110 + 1962.06i 0.102122 + 0.345996i
\(319\) 1441.22i 0.252956i
\(320\) −935.466 6138.24i −0.163419 1.07231i
\(321\) 1465.62 0.254838
\(322\) −5588.58 + 1649.50i −0.967204 + 0.285474i
\(323\) 5359.45 0.923243
\(324\) −544.145 + 351.867i −0.0933033 + 0.0603338i
\(325\) 812.147 + 640.623i 0.138615 + 0.109340i
\(326\) −1712.53 5802.15i −0.290946 0.985741i
\(327\) 2111.86i 0.357144i
\(328\) −1655.18 + 1926.54i −0.278634 + 0.324315i
\(329\) −12277.2 −2.05734
\(330\) −1579.77 + 466.277i −0.263526 + 0.0777809i
\(331\) 8657.99 1.43772 0.718861 0.695154i \(-0.244664\pi\)
0.718861 + 0.695154i \(0.244664\pi\)
\(332\) −5526.66 + 3573.77i −0.913599 + 0.590771i
\(333\) −597.044 −0.0982517
\(334\) 6351.11 1874.56i 1.04047 0.307099i
\(335\) −3823.19 −0.623531
\(336\) 1666.26 3703.59i 0.270542 0.601331i
\(337\) 8924.60 1.44259 0.721297 0.692626i \(-0.243546\pi\)
0.721297 + 0.692626i \(0.243546\pi\)
\(338\) −5386.33 + 3098.69i −0.866798 + 0.498659i
\(339\) 6790.50i 1.08793i
\(340\) 3731.62 2413.02i 0.595223 0.384896i
\(341\) 2422.64i 0.384731i
\(342\) −843.161 2856.68i −0.133313 0.451671i
\(343\) 5046.81i 0.794468i
\(344\) 3455.45 4021.96i 0.541585 0.630376i
\(345\) 3543.46i 0.552966i
\(346\) −4490.11 + 1325.28i −0.697659 + 0.205917i
\(347\) 1537.77i 0.237901i 0.992900 + 0.118951i \(0.0379531\pi\)
−0.992900 + 0.118951i \(0.962047\pi\)
\(348\) −1814.57 + 1173.38i −0.279515 + 0.180746i
\(349\) −8471.05 −1.29927 −0.649634 0.760247i \(-0.725078\pi\)
−0.649634 + 0.760247i \(0.725078\pi\)
\(350\) 1266.28 373.747i 0.193387 0.0570789i
\(351\) 783.779 993.632i 0.119188 0.151100i
\(352\) −2870.89 392.192i −0.434713 0.0593861i
\(353\) 6922.13i 1.04370i −0.853036 0.521852i \(-0.825241\pi\)
0.853036 0.521852i \(-0.174759\pi\)
\(354\) 2547.31 751.849i 0.382452 0.112882i
\(355\) 6103.68i 0.912535i
\(356\) −3490.54 5397.95i −0.519658 0.803626i
\(357\) 2906.55 0.430899
\(358\) 5439.78 1605.57i 0.803076 0.237031i
\(359\) 4046.73i 0.594925i −0.954733 0.297463i \(-0.903860\pi\)
0.954733 0.297463i \(-0.0961404\pi\)
\(360\) −1873.25 1609.40i −0.274247 0.235618i
\(361\) 6831.62 0.996008
\(362\) 4420.49 1304.73i 0.641812 0.189434i
\(363\) 3224.34i 0.466209i
\(364\) −743.391 + 7896.55i −0.107045 + 1.13707i
\(365\) 9187.58i 1.31753i
\(366\) 802.549 + 2719.08i 0.114617 + 0.388330i
\(367\) −567.928 −0.0807783 −0.0403891 0.999184i \(-0.512860\pi\)
−0.0403891 + 0.999184i \(0.512860\pi\)
\(368\) −2557.53 + 5684.59i −0.362283 + 0.805244i
\(369\) 1010.25i 0.142524i
\(370\) −644.140 2182.38i −0.0905060 0.306640i
\(371\) −5099.55 −0.713626
\(372\) −3050.23 + 1972.41i −0.425127 + 0.274905i
\(373\) 4632.74i 0.643094i 0.946894 + 0.321547i \(0.104203\pi\)
−0.946894 + 0.321547i \(0.895797\pi\)
\(374\) −587.045 1988.94i −0.0811641 0.274989i
\(375\) 3744.81i 0.515683i
\(376\) −8558.80 + 9961.98i −1.17390 + 1.36636i
\(377\) 2613.68 3313.49i 0.357060 0.452661i
\(378\) −457.265 1549.24i −0.0622201 0.210805i
\(379\) 8005.02 1.08494 0.542468 0.840077i \(-0.317490\pi\)
0.542468 + 0.840077i \(0.317490\pi\)
\(380\) 9532.37 6164.03i 1.28684 0.832126i
\(381\) 4619.31i 0.621140i
\(382\) 3782.30 + 12814.6i 0.506595 + 1.71637i
\(383\) 9120.11i 1.21675i 0.793649 + 0.608376i \(0.208179\pi\)
−0.793649 + 0.608376i \(0.791821\pi\)
\(384\) −1843.56 3933.91i −0.244997 0.522790i
\(385\) 4105.96i 0.543530i
\(386\) −28.9842 + 8.55481i −0.00382191 + 0.00112805i
\(387\) 2109.05i 0.277026i
\(388\) 3260.08 + 5041.56i 0.426561 + 0.659656i
\(389\) 13700.5i 1.78571i −0.450339 0.892857i \(-0.648697\pi\)
0.450339 0.892857i \(-0.351303\pi\)
\(390\) 4477.64 + 1792.94i 0.581369 + 0.232793i
\(391\) −4461.23 −0.577018
\(392\) 1791.83 + 1539.45i 0.230870 + 0.198351i
\(393\) −2500.73 −0.320980
\(394\) −1621.11 5492.40i −0.207285 0.702292i
\(395\) −13755.9 −1.75224
\(396\) −967.785 + 625.810i −0.122811 + 0.0794145i
\(397\) −6204.37 −0.784354 −0.392177 0.919890i \(-0.628278\pi\)
−0.392177 + 0.919890i \(0.628278\pi\)
\(398\) 1465.00 + 4963.51i 0.184507 + 0.625122i
\(399\) 7424.74 0.931584
\(400\) 579.491 1288.03i 0.0724364 0.161004i
\(401\) 3377.04i 0.420552i 0.977642 + 0.210276i \(0.0674363\pi\)
−0.977642 + 0.210276i \(0.932564\pi\)
\(402\) −2565.63 + 757.257i −0.318313 + 0.0939516i
\(403\) 4393.51 5569.85i 0.543068 0.688472i
\(404\) −1999.95 3092.83i −0.246291 0.380876i
\(405\) −982.302 −0.120521
\(406\) −1524.85 5166.29i −0.186397 0.631524i
\(407\) −1061.87 −0.129324
\(408\) 2026.24 2358.43i 0.245867 0.286176i
\(409\) 5434.16i 0.656973i 0.944509 + 0.328486i \(0.106539\pi\)
−0.944509 + 0.328486i \(0.893461\pi\)
\(410\) −3692.76 + 1089.94i −0.444811 + 0.131288i
\(411\) −3037.33 −0.364527
\(412\) −8365.71 + 5409.62i −1.00036 + 0.646875i
\(413\) 6620.66i 0.788817i
\(414\) 701.851 + 2377.91i 0.0833191 + 0.282290i
\(415\) −9976.84 −1.18011
\(416\) 5889.17 + 6108.11i 0.694087 + 0.719891i
\(417\) 7389.23 0.867751
\(418\) −1499.60 5080.72i −0.175473 0.594512i
\(419\) 3615.54i 0.421553i −0.977534 0.210776i \(-0.932401\pi\)
0.977534 0.210776i \(-0.0675992\pi\)
\(420\) 5169.63 3342.90i 0.600600 0.388373i
\(421\) −9792.46 −1.13362 −0.566811 0.823848i \(-0.691823\pi\)
−0.566811 + 0.823848i \(0.691823\pi\)
\(422\) −7730.56 + 2281.71i −0.891748 + 0.263203i
\(423\) 5223.90i 0.600460i
\(424\) −3555.04 + 4137.87i −0.407188 + 0.473945i
\(425\) 1010.84 0.115371
\(426\) 1208.95 + 4096.01i 0.137498 + 0.465850i
\(427\) −7067.12 −0.800942
\(428\) 2122.24 + 3281.94i 0.239678 + 0.370651i
\(429\) 1393.98 1767.22i 0.156881 0.198886i
\(430\) 7709.23 2275.41i 0.864586 0.255186i
\(431\) 8176.94i 0.913850i −0.889505 0.456925i \(-0.848951\pi\)
0.889505 0.456925i \(-0.151049\pi\)
\(432\) −1575.86 708.985i −0.175506 0.0789608i
\(433\) −14447.6 −1.60348 −0.801740 0.597673i \(-0.796092\pi\)
−0.801740 + 0.597673i \(0.796092\pi\)
\(434\) −2563.22 8684.35i −0.283499 0.960512i
\(435\) −3275.70 −0.361053
\(436\) 4729.04 3058.00i 0.519450 0.335898i
\(437\) −11396.1 −1.24749
\(438\) 1819.78 + 6165.52i 0.198521 + 0.672602i
\(439\) −14823.9 −1.61163 −0.805816 0.592166i \(-0.798273\pi\)
−0.805816 + 0.592166i \(0.798273\pi\)
\(440\) −3331.66 2862.38i −0.360978 0.310133i
\(441\) 939.607 0.101458
\(442\) −2257.32 + 5637.37i −0.242919 + 0.606656i
\(443\) 6678.46i 0.716260i 0.933672 + 0.358130i \(0.116586\pi\)
−0.933672 + 0.358130i \(0.883414\pi\)
\(444\) −864.527 1336.95i −0.0924068 0.142903i
\(445\) 9744.49i 1.03805i
\(446\) 3723.93 1099.13i 0.395366 0.116694i
\(447\) 8973.01i 0.949460i
\(448\) 10706.1 1631.61i 1.12906 0.172068i
\(449\) 13672.9i 1.43712i −0.695467 0.718558i \(-0.744802\pi\)
0.695467 0.718558i \(-0.255198\pi\)
\(450\) −159.027 538.794i −0.0166592 0.0564422i
\(451\) 1796.77i 0.187597i
\(452\) 15205.8 9832.72i 1.58235 1.02321i
\(453\) 6923.36 0.718075
\(454\) −3168.88 10736.3i −0.327583 1.10987i
\(455\) −7446.25 + 9439.96i −0.767221 + 0.972642i
\(456\) 5175.99 6024.57i 0.531553 0.618698i
\(457\) 8454.03i 0.865345i 0.901551 + 0.432672i \(0.142429\pi\)
−0.901551 + 0.432672i \(0.857571\pi\)
\(458\) −1200.23 4066.45i −0.122452 0.414875i
\(459\) 1236.72i 0.125763i
\(460\) −7934.80 + 5130.97i −0.804265 + 0.520071i
\(461\) 12560.1 1.26895 0.634473 0.772945i \(-0.281217\pi\)
0.634473 + 0.772945i \(0.281217\pi\)
\(462\) −813.266 2755.39i −0.0818973 0.277473i
\(463\) 14540.8i 1.45954i 0.683690 + 0.729772i \(0.260374\pi\)
−0.683690 + 0.729772i \(0.739626\pi\)
\(464\) −5255.05 2364.27i −0.525774 0.236548i
\(465\) −5506.34 −0.549141
\(466\) 3024.24 + 10246.3i 0.300633 + 1.01856i
\(467\) 10533.0i 1.04370i 0.853038 + 0.521849i \(0.174758\pi\)
−0.853038 + 0.521849i \(0.825242\pi\)
\(468\) 3359.94 + 316.309i 0.331866 + 0.0312423i
\(469\) 6668.28i 0.656530i
\(470\) −19095.0 + 5635.97i −1.87401 + 0.553123i
\(471\) 3293.35 0.322186
\(472\) 5372.13 + 4615.45i 0.523882 + 0.450092i
\(473\) 3751.03i 0.364635i
\(474\) −9231.20 + 2724.63i −0.894521 + 0.264022i
\(475\) 2582.17 0.249427
\(476\) 4208.72 + 6508.58i 0.405266 + 0.626723i
\(477\) 2169.83i 0.208280i
\(478\) −13349.2 + 3940.08i −1.27736 + 0.377019i
\(479\) 9522.04i 0.908295i −0.890927 0.454147i \(-0.849944\pi\)
0.890927 0.454147i \(-0.150056\pi\)
\(480\) 891.401 6525.16i 0.0847639 0.620482i
\(481\) 2441.33 + 1925.72i 0.231424 + 0.182548i
\(482\) −3979.74 + 1174.64i −0.376083 + 0.111003i
\(483\) −6180.39 −0.582231
\(484\) 7220.20 4668.88i 0.678080 0.438475i
\(485\) 9101.13i 0.852085i
\(486\) −659.194 + 194.564i −0.0615260 + 0.0181597i
\(487\) 15094.0i 1.40446i 0.711950 + 0.702230i \(0.247812\pi\)
−0.711950 + 0.702230i \(0.752188\pi\)
\(488\) −4926.69 + 5734.40i −0.457010 + 0.531934i
\(489\) 6416.58i 0.593390i
\(490\) 1013.72 + 3434.56i 0.0934600 + 0.316648i
\(491\) 21589.6i 1.98437i −0.124791 0.992183i \(-0.539826\pi\)
0.124791 0.992183i \(-0.460174\pi\)
\(492\) −2262.22 + 1462.85i −0.207295 + 0.134045i
\(493\) 4124.13i 0.376757i
\(494\) −5766.30 + 14400.6i −0.525178 + 1.31156i
\(495\) −1747.07 −0.158636
\(496\) −8833.54 3974.25i −0.799673 0.359777i
\(497\) −10645.9 −0.960829
\(498\) −6695.17 + 1976.11i −0.602445 + 0.177814i
\(499\) 17274.5 1.54973 0.774863 0.632130i \(-0.217819\pi\)
0.774863 + 0.632130i \(0.217819\pi\)
\(500\) −8385.67 + 5422.52i −0.750037 + 0.485005i
\(501\) 7023.66 0.626335
\(502\) −13243.9 + 3908.99i −1.17750 + 0.347544i
\(503\) −5755.02 −0.510146 −0.255073 0.966922i \(-0.582100\pi\)
−0.255073 + 0.966922i \(0.582100\pi\)
\(504\) 2807.06 3267.27i 0.248088 0.288761i
\(505\) 5583.24i 0.491982i
\(506\) 1248.27 + 4229.22i 0.109669 + 0.371565i
\(507\) −6409.77 + 1534.96i −0.561475 + 0.134458i
\(508\) 10343.9 6688.81i 0.903420 0.584189i
\(509\) 8760.81 0.762900 0.381450 0.924389i \(-0.375425\pi\)
0.381450 + 0.924389i \(0.375425\pi\)
\(510\) 4520.60 1334.28i 0.392501 0.115849i
\(511\) −16024.7 −1.38726
\(512\) 6139.62 9824.60i 0.529952 0.848028i
\(513\) 3159.19i 0.271894i
\(514\) −1523.87 5162.95i −0.130768 0.443050i
\(515\) −15101.9 −1.29218
\(516\) 4722.75 3053.93i 0.402921 0.260546i
\(517\) 9290.93i 0.790357i
\(518\) 3806.44 1123.49i 0.322868 0.0952958i
\(519\) −4965.60 −0.419972
\(520\) 2468.77 + 12622.9i 0.208197 + 1.06452i
\(521\) 16422.2 1.38094 0.690468 0.723363i \(-0.257405\pi\)
0.690468 + 0.723363i \(0.257405\pi\)
\(522\) −2198.23 + 648.817i −0.184318 + 0.0544022i
\(523\) 15056.8i 1.25887i 0.777054 + 0.629434i \(0.216713\pi\)
−0.777054 + 0.629434i \(0.783287\pi\)
\(524\) −3621.08 5599.83i −0.301885 0.466850i
\(525\) 1400.37 0.116414
\(526\) 4735.90 + 16045.5i 0.392576 + 1.33007i
\(527\) 6932.51i 0.573026i
\(528\) −2802.73 1260.96i −0.231010 0.103932i
\(529\) −2680.79 −0.220333
\(530\) −7931.41 + 2340.99i −0.650034 + 0.191861i
\(531\) 2817.06 0.230226
\(532\) 10751.1 + 16626.1i 0.876165 + 1.35495i
\(533\) 3258.47 4130.92i 0.264803 0.335703i
\(534\) −1930.09 6539.24i −0.156410 0.529926i
\(535\) 5924.62i 0.478773i
\(536\) −5410.77 4648.64i −0.436026 0.374610i
\(537\) 6015.83 0.483430
\(538\) −11403.6 + 3365.81i −0.913835 + 0.269722i
\(539\) 1671.13 0.133545
\(540\) −1422.38 2199.65i −0.113351 0.175292i
\(541\) −2634.99 −0.209403 −0.104702 0.994504i \(-0.533389\pi\)
−0.104702 + 0.994504i \(0.533389\pi\)
\(542\) −7485.69 + 2209.43i −0.593244 + 0.175098i
\(543\) 4888.61 0.386354
\(544\) 8215.20 + 1122.28i 0.647470 + 0.0884508i
\(545\) 8536.96 0.670978
\(546\) −3127.20 + 7809.76i −0.245113 + 0.612137i
\(547\) 2007.56i 0.156923i −0.996917 0.0784616i \(-0.974999\pi\)
0.996917 0.0784616i \(-0.0250008\pi\)
\(548\) −4398.09 6801.43i −0.342841 0.530187i
\(549\) 3007.02i 0.233764i
\(550\) −282.837 958.268i −0.0219276 0.0742921i
\(551\) 10535.0i 0.814531i
\(552\) −4308.52 + 5014.89i −0.332215 + 0.386681i
\(553\) 23992.6i 1.84497i
\(554\) 24111.2 7116.53i 1.84907 0.545763i
\(555\) 2413.49i 0.184589i
\(556\) 10699.7 + 16546.6i 0.816130 + 1.26211i
\(557\) 15077.3 1.14694 0.573468 0.819228i \(-0.305598\pi\)
0.573468 + 0.819228i \(0.305598\pi\)
\(558\) −3695.14 + 1090.64i −0.280337 + 0.0827427i
\(559\) −6802.58 + 8623.94i −0.514702 + 0.652511i
\(560\) 14971.4 + 6735.69i 1.12974 + 0.508276i
\(561\) 2199.56i 0.165536i
\(562\) 10988.8 3243.40i 0.824796 0.243442i
\(563\) 14038.8i 1.05091i −0.850821 0.525455i \(-0.823895\pi\)
0.850821 0.525455i \(-0.176105\pi\)
\(564\) −11697.8 + 7564.27i −0.873342 + 0.564740i
\(565\) 27449.9 2.04394
\(566\) −11063.3 + 3265.39i −0.821600 + 0.242499i
\(567\) 1713.30i 0.126899i
\(568\) −7421.52 + 8638.25i −0.548240 + 0.638121i
\(569\) 5607.45 0.413140 0.206570 0.978432i \(-0.433770\pi\)
0.206570 + 0.978432i \(0.433770\pi\)
\(570\) 11547.8 3408.39i 0.848569 0.250459i
\(571\) 6820.92i 0.499906i −0.968258 0.249953i \(-0.919585\pi\)
0.968258 0.249953i \(-0.0804152\pi\)
\(572\) 5975.80 + 562.569i 0.436819 + 0.0411227i
\(573\) 14171.7i 1.03321i
\(574\) −1901.03 6440.80i −0.138236 0.468352i
\(575\) −2149.41 −0.155890
\(576\) −694.242 4555.40i −0.0502200 0.329529i
\(577\) 23328.9i 1.68318i −0.540117 0.841590i \(-0.681620\pi\)
0.540117 0.841590i \(-0.318380\pi\)
\(578\) −2253.86 7636.19i −0.162194 0.549522i
\(579\) −32.0535 −0.00230069
\(580\) −4743.26 7335.22i −0.339574 0.525135i
\(581\) 17401.3i 1.24256i
\(582\) 1802.66 + 6107.50i 0.128389 + 0.434990i
\(583\) 3859.14i 0.274149i
\(584\) −11171.3 + 13002.7i −0.791558 + 0.921330i
\(585\) 4016.65 + 3168.34i 0.283877 + 0.223923i
\(586\) −1273.24 4313.82i −0.0897564 0.304100i
\(587\) −11535.3 −0.811093 −0.405547 0.914074i \(-0.632919\pi\)
−0.405547 + 0.914074i \(0.632919\pi\)
\(588\) 1360.56 + 2104.04i 0.0954228 + 0.147567i
\(589\) 17709.0i 1.23886i
\(590\) 3039.27 + 10297.2i 0.212076 + 0.718525i
\(591\) 6074.02i 0.422761i
\(592\) 1741.96 3871.83i 0.120936 0.268803i
\(593\) 17605.5i 1.21917i −0.792720 0.609586i \(-0.791336\pi\)
0.792720 0.609586i \(-0.208664\pi\)
\(594\) −1172.40 + 346.040i −0.0809837 + 0.0239027i
\(595\) 11749.4i 0.809545i
\(596\) 20093.1 12993.0i 1.38095 0.892978i
\(597\) 5489.13i 0.376307i
\(598\) 4799.90 11987.1i 0.328231 0.819714i
\(599\) −23660.0 −1.61389 −0.806945 0.590627i \(-0.798881\pi\)
−0.806945 + 0.590627i \(0.798881\pi\)
\(600\) 976.237 1136.29i 0.0664245 0.0773145i
\(601\) −408.208 −0.0277057 −0.0138529 0.999904i \(-0.504410\pi\)
−0.0138529 + 0.999904i \(0.504410\pi\)
\(602\) 3968.70 + 13446.2i 0.268691 + 0.910342i
\(603\) −2837.32 −0.191616
\(604\) 10025.1 + 15503.3i 0.675357 + 1.04441i
\(605\) 13034.0 0.875883
\(606\) −1105.87 3746.75i −0.0741302 0.251157i
\(607\) 19900.9 1.33073 0.665363 0.746520i \(-0.268277\pi\)
0.665363 + 0.746520i \(0.268277\pi\)
\(608\) 20985.6 + 2866.84i 1.39980 + 0.191226i
\(609\) 5713.38i 0.380161i
\(610\) −10991.6 + 3244.22i −0.729569 + 0.215336i
\(611\) 16849.3 21360.6i 1.11563 1.41433i
\(612\) 2769.37 1790.79i 0.182917 0.118282i
\(613\) −710.858 −0.0468373 −0.0234187 0.999726i \(-0.507455\pi\)
−0.0234187 + 0.999726i \(0.507455\pi\)
\(614\) 5143.09 + 17425.1i 0.338043 + 1.14531i
\(615\) −4083.81 −0.267765
\(616\) 4992.47 5810.97i 0.326546 0.380082i
\(617\) 16609.5i 1.08375i 0.840459 + 0.541875i \(0.182286\pi\)
−0.840459 + 0.541875i \(0.817714\pi\)
\(618\) −10134.5 + 2991.24i −0.659658 + 0.194701i
\(619\) −19446.3 −1.26270 −0.631351 0.775497i \(-0.717499\pi\)
−0.631351 + 0.775497i \(0.717499\pi\)
\(620\) −7973.24 12330.2i −0.516473 0.798700i
\(621\) 2629.72i 0.169931i
\(622\) 2737.68 + 9275.41i 0.176481 + 0.597926i
\(623\) 16996.0 1.09299
\(624\) 4156.93 + 7981.86i 0.266683 + 0.512068i
\(625\) −17896.5 −1.14538
\(626\) 7071.10 + 23957.3i 0.451467 + 1.52960i
\(627\) 5618.75i 0.357881i
\(628\) 4768.81 + 7374.73i 0.303019 + 0.468605i
\(629\) 3038.59 0.192618
\(630\) 6262.64 1848.45i 0.396047 0.116895i
\(631\) 25295.7i 1.59589i −0.602733 0.797943i \(-0.705922\pi\)
0.602733 0.797943i \(-0.294078\pi\)
\(632\) −19468.1 16725.9i −1.22531 1.05272i
\(633\) −8549.20 −0.536809
\(634\) −5188.20 17577.9i −0.325000 1.10112i
\(635\) 18673.1 1.16696
\(636\) −4858.86 + 3141.94i −0.302934 + 0.195890i
\(637\) −3842.07 3030.63i −0.238977 0.188506i
\(638\) −3909.65 + 1153.95i −0.242609 + 0.0716070i
\(639\) 4529.76i 0.280429i
\(640\) 15902.4 7452.41i 0.982184 0.460285i
\(641\) 25718.1 1.58471 0.792357 0.610057i \(-0.208854\pi\)
0.792357 + 0.610057i \(0.208854\pi\)
\(642\) 1173.49 + 3975.84i 0.0721399 + 0.244414i
\(643\) 12820.0 0.786268 0.393134 0.919481i \(-0.371391\pi\)
0.393134 + 0.919481i \(0.371391\pi\)
\(644\) −8949.28 13839.6i −0.547595 0.846829i
\(645\) 8525.60 0.520458
\(646\) 4291.18 + 14538.7i 0.261353 + 0.885479i
\(647\) −5429.39 −0.329910 −0.164955 0.986301i \(-0.552748\pi\)
−0.164955 + 0.986301i \(0.552748\pi\)
\(648\) −1390.20 1194.39i −0.0842783 0.0724074i
\(649\) 5010.25 0.303035
\(650\) −1087.57 + 2716.07i −0.0656279 + 0.163897i
\(651\) 9603.99i 0.578203i
\(652\) 14368.5 9291.28i 0.863058 0.558090i
\(653\) 23782.4i 1.42523i 0.701553 + 0.712617i \(0.252490\pi\)
−0.701553 + 0.712617i \(0.747510\pi\)
\(654\) 5728.91 1690.91i 0.342535 0.101101i
\(655\) 10108.9i 0.603036i
\(656\) −6551.45 2947.53i −0.389926 0.175429i
\(657\) 6818.42i 0.404889i
\(658\) −9830.08 33304.9i −0.582396 1.97319i
\(659\) 27296.5i 1.61354i −0.590868 0.806768i \(-0.701215\pi\)
0.590868 0.806768i \(-0.298785\pi\)
\(660\) −2529.77 3912.17i −0.149199 0.230729i
\(661\) −27338.9 −1.60871 −0.804357 0.594147i \(-0.797490\pi\)
−0.804357 + 0.594147i \(0.797490\pi\)
\(662\) 6932.24 + 23486.8i 0.406992 + 1.37891i
\(663\) −3988.96 + 5056.98i −0.233662 + 0.296225i
\(664\) −14119.7 12130.9i −0.825229 0.708993i
\(665\) 30013.7i 1.75020i
\(666\) −478.038 1619.62i −0.0278132 0.0942328i
\(667\) 8769.40i 0.509074i
\(668\) 10170.3 + 15727.9i 0.589076 + 0.910977i
\(669\) 4118.28 0.238000
\(670\) −3061.13 10371.3i −0.176510 0.598026i
\(671\) 5348.12i 0.307693i
\(672\) 11381.0 + 1554.75i 0.653319 + 0.0892499i
\(673\) 26689.5 1.52868 0.764342 0.644811i \(-0.223064\pi\)
0.764342 + 0.644811i \(0.223064\pi\)
\(674\) 7145.70 + 24210.1i 0.408371 + 1.38359i
\(675\) 595.850i 0.0339767i
\(676\) −12718.6 12130.6i −0.723636 0.690182i
\(677\) 12731.9i 0.722787i 0.932413 + 0.361393i \(0.117699\pi\)
−0.932413 + 0.361393i \(0.882301\pi\)
\(678\) 18420.8 5436.98i 1.04343 0.307973i
\(679\) −15873.9 −0.897179
\(680\) 9533.71 + 8190.85i 0.537648 + 0.461919i
\(681\) 11873.3i 0.668112i
\(682\) −6571.97 + 1939.75i −0.368994 + 0.108910i
\(683\) 10423.4 0.583955 0.291977 0.956425i \(-0.405687\pi\)
0.291977 + 0.956425i \(0.405687\pi\)
\(684\) 7074.30 4574.54i 0.395457 0.255719i
\(685\) 12278.1i 0.684849i
\(686\) 13690.7 4040.86i 0.761971 0.224899i
\(687\) 4497.07i 0.249744i
\(688\) 13677.2 + 6153.43i 0.757904 + 0.340985i
\(689\) 6998.63 8872.48i 0.386976 0.490587i
\(690\) −9612.46 + 2837.16i −0.530348 + 0.156535i
\(691\) 12008.8 0.661124 0.330562 0.943784i \(-0.392762\pi\)
0.330562 + 0.943784i \(0.392762\pi\)
\(692\) −7190.24 11119.4i −0.394988 0.610830i
\(693\) 3047.18i 0.167031i
\(694\) −4171.56 + 1231.25i −0.228170 + 0.0673455i
\(695\) 29870.2i 1.63027i
\(696\) −4635.95 3982.96i −0.252479 0.216916i
\(697\) 5141.54i 0.279411i
\(698\) −6782.56 22979.7i −0.367799 1.24612i
\(699\) 11331.3i 0.613147i
\(700\) 2027.75 + 3135.82i 0.109488 + 0.169318i
\(701\) 10284.3i 0.554114i 0.960853 + 0.277057i \(0.0893591\pi\)
−0.960853 + 0.277057i \(0.910641\pi\)
\(702\) 3323.01 + 1330.61i 0.178659 + 0.0715391i
\(703\) 7762.03 0.416430
\(704\) −1234.74 8101.98i −0.0661022 0.433743i
\(705\) −21117.1 −1.12811
\(706\) 18777.9 5542.38i 1.00101 0.295453i
\(707\) 9738.12 0.518019
\(708\) 4079.13 + 6308.18i 0.216530 + 0.334853i
\(709\) −16944.0 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(710\) −16557.7 + 4887.07i −0.875209 + 0.258322i
\(711\) −10208.7 −0.538478
\(712\) 11848.4 13790.9i 0.623649 0.725893i
\(713\) 14741.0i 0.774273i
\(714\) 2327.20 + 7884.70i 0.121980 + 0.413274i
\(715\) 7143.78 + 5635.03i 0.373654 + 0.294739i
\(716\) 8710.99 + 13471.1i 0.454672 + 0.703128i
\(717\) −14762.9 −0.768939
\(718\) 10977.7 3240.12i 0.570590 0.168412i
\(719\) 14267.6 0.740041 0.370021 0.929023i \(-0.379351\pi\)
0.370021 + 0.929023i \(0.379351\pi\)
\(720\) 2866.00 6370.23i 0.148346 0.329729i
\(721\) 26340.3i 1.36056i
\(722\) 5469.91 + 18532.4i 0.281951 + 0.955267i
\(723\) −4401.18 −0.226392
\(724\) 7078.76 + 10947.0i 0.363370 + 0.561934i
\(725\) 1986.99i 0.101786i
\(726\) 8746.77 2581.65i 0.447139 0.131975i
\(727\) 7899.54 0.402996 0.201498 0.979489i \(-0.435419\pi\)
0.201498 + 0.979489i \(0.435419\pi\)
\(728\) −22016.4 + 4305.95i −1.12086 + 0.219216i
\(729\) −729.000 −0.0370370
\(730\) −24923.4 + 7356.26i −1.26364 + 0.372969i
\(731\) 10733.8i 0.543095i
\(732\) −6733.57 + 4354.20i −0.340000 + 0.219858i
\(733\) −18.8350 −0.000949093 −0.000474547 1.00000i \(-0.500151\pi\)
−0.000474547 1.00000i \(0.500151\pi\)
\(734\) −454.726 1540.64i −0.0228668 0.0774741i
\(735\) 3798.26i 0.190614i
\(736\) −17468.5 2386.37i −0.874862 0.119515i
\(737\) −5046.29 −0.252215
\(738\) −2740.53 + 808.879i −0.136694 + 0.0403459i
\(739\) −13711.5 −0.682525 −0.341262 0.939968i \(-0.610854\pi\)
−0.341262 + 0.939968i \(0.610854\pi\)
\(740\) 5404.47 3494.76i 0.268476 0.173608i
\(741\) −10189.7 + 12918.0i −0.505167 + 0.640423i
\(742\) −4083.08 13833.7i −0.202014 0.684436i
\(743\) 11169.5i 0.551506i −0.961229 0.275753i \(-0.911073\pi\)
0.961229 0.275753i \(-0.0889271\pi\)
\(744\) −7792.86 6695.21i −0.384005 0.329917i
\(745\) 36272.4 1.78378
\(746\) −12567.4 + 3709.32i −0.616789 + 0.182048i
\(747\) −7404.16 −0.362656
\(748\) 4925.44 3184.99i 0.240764 0.155688i
\(749\) −10333.5 −0.504111
\(750\) −10158.7 + 2998.37i −0.494589 + 0.145980i
\(751\) −31229.1 −1.51740 −0.758698 0.651443i \(-0.774164\pi\)
−0.758698 + 0.651443i \(0.774164\pi\)
\(752\) −33877.0 15241.4i −1.64278 0.739093i
\(753\) −14646.4 −0.708822
\(754\) 11081.3 + 4437.20i 0.535223 + 0.214315i
\(755\) 27987.0i 1.34907i
\(756\) 3836.56 2480.88i 0.184569 0.119350i
\(757\) 29792.5i 1.43042i 0.698911 + 0.715209i \(0.253668\pi\)
−0.698911 + 0.715209i \(0.746332\pi\)
\(758\) 6409.42 + 21715.5i 0.307125 + 1.04056i
\(759\) 4677.08i 0.223672i
\(760\) 24353.7 + 20923.4i 1.16237 + 0.998646i
\(761\) 3531.27i 0.168211i 0.996457 + 0.0841054i \(0.0268033\pi\)
−0.996457 + 0.0841054i \(0.973197\pi\)
\(762\) 12530.9 3698.56i 0.595733 0.175833i
\(763\) 14889.9i 0.706488i
\(764\) −31734.3 + 20520.7i −1.50276 + 0.971746i
\(765\) 4999.32 0.236275
\(766\) −24740.4 + 7302.25i −1.16698 + 0.344440i
\(767\) −11519.0 9086.21i −0.542278 0.427750i
\(768\) 9195.55 8150.88i 0.432052 0.382968i
\(769\) 10014.1i 0.469596i 0.972044 + 0.234798i \(0.0754428\pi\)
−0.972044 + 0.234798i \(0.924557\pi\)
\(770\) 11138.4 3287.54i 0.521298 0.153863i
\(771\) 5709.68i 0.266705i
\(772\) −46.4138 71.7767i −0.00216382 0.00334624i
\(773\) 18303.4 0.851652 0.425826 0.904805i \(-0.359984\pi\)
0.425826 + 0.904805i \(0.359984\pi\)
\(774\) 5721.28 1688.66i 0.265694 0.0784208<