Properties

Label 312.4.m.a.181.51
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.51
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.52

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.800675 - 2.71273i) q^{2} -3.00000i q^{3} +(-6.71784 - 4.34403i) q^{4} -12.1272 q^{5} +(-8.13820 - 2.40203i) q^{6} +21.1519i q^{7} +(-17.1630 + 14.7455i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(0.800675 - 2.71273i) q^{2} -3.00000i q^{3} +(-6.71784 - 4.34403i) q^{4} -12.1272 q^{5} +(-8.13820 - 2.40203i) q^{6} +21.1519i q^{7} +(-17.1630 + 14.7455i) q^{8} -9.00000 q^{9} +(-9.70993 + 32.8978i) q^{10} -16.0069 q^{11} +(-13.0321 + 20.1535i) q^{12} +(36.8012 - 29.0288i) q^{13} +(57.3793 + 16.9358i) q^{14} +36.3815i q^{15} +(26.2587 + 58.3651i) q^{16} +45.8045 q^{17} +(-7.20608 + 24.4146i) q^{18} +117.007 q^{19} +(81.4684 + 52.6809i) q^{20} +63.4556 q^{21} +(-12.8163 + 43.4224i) q^{22} -97.3972 q^{23} +(44.2366 + 51.4890i) q^{24} +22.0685 q^{25} +(-49.2817 - 123.074i) q^{26} +27.0000i q^{27} +(91.8844 - 142.095i) q^{28} +90.0375i q^{29} +(98.6934 + 29.1298i) q^{30} +151.350i q^{31} +(179.354 - 24.5015i) q^{32} +48.0206i q^{33} +(36.6745 - 124.255i) q^{34} -256.512i q^{35} +(60.4606 + 39.0963i) q^{36} +66.3382 q^{37} +(93.6845 - 317.409i) q^{38} +(-87.0865 - 110.404i) q^{39} +(208.139 - 178.822i) q^{40} +112.250i q^{41} +(50.8073 - 172.138i) q^{42} -234.339i q^{43} +(107.532 + 69.5345i) q^{44} +109.145 q^{45} +(-77.9835 + 264.213i) q^{46} +580.433i q^{47} +(175.095 - 78.7762i) q^{48} -104.401 q^{49} +(17.6697 - 59.8660i) q^{50} -137.414i q^{51} +(-373.327 + 35.1454i) q^{52} +241.092i q^{53} +(73.2438 + 21.6182i) q^{54} +194.118 q^{55} +(-311.896 - 363.029i) q^{56} -351.021i q^{57} +(244.248 + 72.0908i) q^{58} -313.006 q^{59} +(158.043 - 244.405i) q^{60} +334.114i q^{61} +(410.572 + 121.182i) q^{62} -190.367i q^{63} +(77.1380 - 506.156i) q^{64} +(-446.295 + 352.038i) q^{65} +(130.267 + 38.4489i) q^{66} +315.258 q^{67} +(-307.707 - 198.976i) q^{68} +292.192i q^{69} +(-695.849 - 205.383i) q^{70} +503.306i q^{71} +(154.467 - 132.710i) q^{72} +757.602i q^{73} +(53.1154 - 179.958i) q^{74} -66.2055i q^{75} +(-786.034 - 508.282i) q^{76} -338.575i q^{77} +(-369.223 + 147.845i) q^{78} +1134.30 q^{79} +(-318.444 - 707.804i) q^{80} +81.0000 q^{81} +(304.503 + 89.8754i) q^{82} +822.684 q^{83} +(-426.284 - 275.653i) q^{84} -555.480 q^{85} +(-635.698 - 187.629i) q^{86} +270.113 q^{87} +(274.726 - 236.030i) q^{88} -803.525i q^{89} +(87.3894 - 296.080i) q^{90} +(614.014 + 778.413i) q^{91} +(654.299 + 423.097i) q^{92} +454.049 q^{93} +(1574.56 + 464.738i) q^{94} -1418.96 q^{95} +(-73.5044 - 538.061i) q^{96} +750.474i q^{97} +(-83.5911 + 283.211i) q^{98} +144.062 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.800675 2.71273i 0.283081 0.959096i
\(3\) 3.00000i 0.577350i
\(4\) −6.71784 4.34403i −0.839730 0.543004i
\(5\) −12.1272 −1.08469 −0.542344 0.840157i \(-0.682463\pi\)
−0.542344 + 0.840157i \(0.682463\pi\)
\(6\) −8.13820 2.40203i −0.553734 0.163437i
\(7\) 21.1519i 1.14209i 0.820918 + 0.571046i \(0.193462\pi\)
−0.820918 + 0.571046i \(0.806538\pi\)
\(8\) −17.1630 + 14.7455i −0.758505 + 0.651667i
\(9\) −9.00000 −0.333333
\(10\) −9.70993 + 32.8978i −0.307055 + 1.04032i
\(11\) −16.0069 −0.438751 −0.219375 0.975641i \(-0.570402\pi\)
−0.219375 + 0.975641i \(0.570402\pi\)
\(12\) −13.0321 + 20.1535i −0.313504 + 0.484818i
\(13\) 36.8012 29.0288i 0.785139 0.619319i
\(14\) 57.3793 + 16.9358i 1.09538 + 0.323305i
\(15\) 36.3815i 0.626245i
\(16\) 26.2587 + 58.3651i 0.410293 + 0.911954i
\(17\) 45.8045 0.653484 0.326742 0.945114i \(-0.394049\pi\)
0.326742 + 0.945114i \(0.394049\pi\)
\(18\) −7.20608 + 24.4146i −0.0943605 + 0.319699i
\(19\) 117.007 1.41280 0.706401 0.707812i \(-0.250318\pi\)
0.706401 + 0.707812i \(0.250318\pi\)
\(20\) 81.4684 + 52.6809i 0.910845 + 0.588990i
\(21\) 63.4556 0.659387
\(22\) −12.8163 + 43.4224i −0.124202 + 0.420804i
\(23\) −97.3972 −0.882988 −0.441494 0.897264i \(-0.645551\pi\)
−0.441494 + 0.897264i \(0.645551\pi\)
\(24\) 44.2366 + 51.4890i 0.376240 + 0.437923i
\(25\) 22.0685 0.176548
\(26\) −49.2817 123.074i −0.371728 0.928342i
\(27\) 27.0000i 0.192450i
\(28\) 91.8844 142.095i 0.620161 0.959049i
\(29\) 90.0375i 0.576536i 0.957550 + 0.288268i \(0.0930794\pi\)
−0.957550 + 0.288268i \(0.906921\pi\)
\(30\) 98.6934 + 29.1298i 0.600629 + 0.177278i
\(31\) 151.350i 0.876878i 0.898761 + 0.438439i \(0.144469\pi\)
−0.898761 + 0.438439i \(0.855531\pi\)
\(32\) 179.354 24.5015i 0.990797 0.135353i
\(33\) 48.0206i 0.253313i
\(34\) 36.6745 124.255i 0.184989 0.626754i
\(35\) 256.512i 1.23881i
\(36\) 60.4606 + 39.0963i 0.279910 + 0.181001i
\(37\) 66.3382 0.294755 0.147378 0.989080i \(-0.452917\pi\)
0.147378 + 0.989080i \(0.452917\pi\)
\(38\) 93.6845 317.409i 0.399938 1.35501i
\(39\) −87.0865 110.404i −0.357564 0.453300i
\(40\) 208.139 178.822i 0.822741 0.706855i
\(41\) 112.250i 0.427572i 0.976881 + 0.213786i \(0.0685795\pi\)
−0.976881 + 0.213786i \(0.931421\pi\)
\(42\) 50.8073 172.138i 0.186660 0.632416i
\(43\) 234.339i 0.831077i −0.909576 0.415538i \(-0.863593\pi\)
0.909576 0.415538i \(-0.136407\pi\)
\(44\) 107.532 + 69.5345i 0.368432 + 0.238243i
\(45\) 109.145 0.361563
\(46\) −77.9835 + 264.213i −0.249957 + 0.846870i
\(47\) 580.433i 1.80138i 0.434461 + 0.900690i \(0.356939\pi\)
−0.434461 + 0.900690i \(0.643061\pi\)
\(48\) 175.095 78.7762i 0.526517 0.236882i
\(49\) −104.401 −0.304375
\(50\) 17.6697 59.8660i 0.0499775 0.169327i
\(51\) 137.414i 0.377289i
\(52\) −373.327 + 35.1454i −0.995598 + 0.0937269i
\(53\) 241.092i 0.624841i 0.949944 + 0.312420i \(0.101140\pi\)
−0.949944 + 0.312420i \(0.898860\pi\)
\(54\) 73.2438 + 21.6182i 0.184578 + 0.0544790i
\(55\) 194.118 0.475908
\(56\) −311.896 363.029i −0.744264 0.866283i
\(57\) 351.021i 0.815681i
\(58\) 244.248 + 72.0908i 0.552954 + 0.163207i
\(59\) −313.006 −0.690677 −0.345339 0.938478i \(-0.612236\pi\)
−0.345339 + 0.938478i \(0.612236\pi\)
\(60\) 158.043 244.405i 0.340054 0.525877i
\(61\) 334.114i 0.701293i 0.936508 + 0.350647i \(0.114038\pi\)
−0.936508 + 0.350647i \(0.885962\pi\)
\(62\) 410.572 + 121.182i 0.841011 + 0.248228i
\(63\) 190.367i 0.380698i
\(64\) 77.1380 506.156i 0.150660 0.988586i
\(65\) −446.295 + 352.038i −0.851631 + 0.671768i
\(66\) 130.267 + 38.4489i 0.242951 + 0.0717081i
\(67\) 315.258 0.574848 0.287424 0.957803i \(-0.407201\pi\)
0.287424 + 0.957803i \(0.407201\pi\)
\(68\) −307.707 198.976i −0.548750 0.354845i
\(69\) 292.192i 0.509793i
\(70\) −695.849 205.383i −1.18814 0.350685i
\(71\) 503.306i 0.841288i 0.907226 + 0.420644i \(0.138196\pi\)
−0.907226 + 0.420644i \(0.861804\pi\)
\(72\) 154.467 132.710i 0.252835 0.217222i
\(73\) 757.602i 1.21467i 0.794447 + 0.607333i \(0.207761\pi\)
−0.794447 + 0.607333i \(0.792239\pi\)
\(74\) 53.1154 179.958i 0.0834397 0.282698i
\(75\) 66.2055i 0.101930i
\(76\) −786.034 508.282i −1.18637 0.767157i
\(77\) 338.575i 0.501094i
\(78\) −369.223 + 147.845i −0.535978 + 0.214617i
\(79\) 1134.30 1.61543 0.807717 0.589571i \(-0.200703\pi\)
0.807717 + 0.589571i \(0.200703\pi\)
\(80\) −318.444 707.804i −0.445039 0.989186i
\(81\) 81.0000 0.111111
\(82\) 304.503 + 89.8754i 0.410082 + 0.121038i
\(83\) 822.684 1.08797 0.543984 0.839096i \(-0.316915\pi\)
0.543984 + 0.839096i \(0.316915\pi\)
\(84\) −426.284 275.653i −0.553707 0.358050i
\(85\) −555.480 −0.708826
\(86\) −635.698 187.629i −0.797082 0.235262i
\(87\) 270.113 0.332863
\(88\) 274.726 236.030i 0.332795 0.285919i
\(89\) 803.525i 0.957005i −0.878086 0.478503i \(-0.841180\pi\)
0.878086 0.478503i \(-0.158820\pi\)
\(90\) 87.3894 296.080i 0.102352 0.346773i
\(91\) 614.014 + 778.413i 0.707320 + 0.896702i
\(92\) 654.299 + 423.097i 0.741471 + 0.479466i
\(93\) 454.049 0.506266
\(94\) 1574.56 + 464.738i 1.72770 + 0.509937i
\(95\) −1418.96 −1.53245
\(96\) −73.5044 538.061i −0.0781459 0.572037i
\(97\) 750.474i 0.785557i 0.919633 + 0.392779i \(0.128486\pi\)
−0.919633 + 0.392779i \(0.871514\pi\)
\(98\) −83.5911 + 283.211i −0.0861630 + 0.291925i
\(99\) 144.062 0.146250
\(100\) −148.253 95.8664i −0.148253 0.0958664i
\(101\) 460.391i 0.453570i −0.973945 0.226785i \(-0.927178\pi\)
0.973945 0.226785i \(-0.0728215\pi\)
\(102\) −372.766 110.024i −0.361857 0.106804i
\(103\) 1245.30 1.19129 0.595645 0.803248i \(-0.296897\pi\)
0.595645 + 0.803248i \(0.296897\pi\)
\(104\) −203.573 + 1040.88i −0.191942 + 0.981406i
\(105\) −769.537 −0.715230
\(106\) 654.019 + 193.037i 0.599282 + 0.176881i
\(107\) 488.541i 0.441393i 0.975343 + 0.220696i \(0.0708330\pi\)
−0.975343 + 0.220696i \(0.929167\pi\)
\(108\) 117.289 181.382i 0.104501 0.161606i
\(109\) −703.953 −0.618591 −0.309296 0.950966i \(-0.600093\pi\)
−0.309296 + 0.950966i \(0.600093\pi\)
\(110\) 155.426 526.591i 0.134721 0.456441i
\(111\) 199.015i 0.170177i
\(112\) −1234.53 + 555.421i −1.04154 + 0.468592i
\(113\) −2263.50 −1.88435 −0.942177 0.335115i \(-0.891225\pi\)
−0.942177 + 0.335115i \(0.891225\pi\)
\(114\) −952.226 281.054i −0.782317 0.230904i
\(115\) 1181.15 0.957766
\(116\) 391.126 604.858i 0.313062 0.484135i
\(117\) −331.211 + 261.260i −0.261713 + 0.206440i
\(118\) −250.616 + 849.102i −0.195518 + 0.662426i
\(119\) 968.851i 0.746339i
\(120\) −536.466 624.417i −0.408103 0.475010i
\(121\) −1074.78 −0.807498
\(122\) 906.361 + 267.516i 0.672607 + 0.198523i
\(123\) 336.749 0.246859
\(124\) 657.469 1016.74i 0.476149 0.736341i
\(125\) 1248.27 0.893188
\(126\) −516.414 152.422i −0.365125 0.107768i
\(127\) −1539.77 −1.07585 −0.537923 0.842994i \(-0.680791\pi\)
−0.537923 + 0.842994i \(0.680791\pi\)
\(128\) −1311.30 614.521i −0.905499 0.424348i
\(129\) −703.016 −0.479822
\(130\) 597.648 + 1492.55i 0.403209 + 1.00696i
\(131\) 833.576i 0.555953i −0.960588 0.277977i \(-0.910336\pi\)
0.960588 0.277977i \(-0.0896637\pi\)
\(132\) 208.603 322.595i 0.137550 0.212714i
\(133\) 2474.91i 1.61355i
\(134\) 252.419 855.210i 0.162729 0.551335i
\(135\) 327.434i 0.208748i
\(136\) −786.144 + 675.413i −0.495671 + 0.425854i
\(137\) 1012.44i 0.631379i −0.948863 0.315689i \(-0.897764\pi\)
0.948863 0.315689i \(-0.102236\pi\)
\(138\) 792.638 + 233.950i 0.488940 + 0.144313i
\(139\) 2463.08i 1.50299i 0.659739 + 0.751495i \(0.270667\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(140\) −1114.30 + 1723.21i −0.672681 + 1.04027i
\(141\) 1741.30 1.04003
\(142\) 1365.34 + 402.985i 0.806876 + 0.238153i
\(143\) −589.072 + 464.661i −0.344480 + 0.271727i
\(144\) −236.328 525.285i −0.136764 0.303985i
\(145\) 1091.90i 0.625362i
\(146\) 2055.17 + 606.593i 1.16498 + 0.343849i
\(147\) 313.202i 0.175731i
\(148\) −445.650 288.176i −0.247515 0.160053i
\(149\) −2991.00 −1.64451 −0.822257 0.569117i \(-0.807285\pi\)
−0.822257 + 0.569117i \(0.807285\pi\)
\(150\) −179.598 53.0091i −0.0977607 0.0288545i
\(151\) 2307.79i 1.24374i 0.783120 + 0.621871i \(0.213627\pi\)
−0.783120 + 0.621871i \(0.786373\pi\)
\(152\) −2008.19 + 1725.33i −1.07162 + 0.920676i
\(153\) −412.241 −0.217828
\(154\) −918.464 271.089i −0.480597 0.141850i
\(155\) 1835.45i 0.951140i
\(156\) 105.436 + 1119.98i 0.0541132 + 0.574809i
\(157\) 1097.78i 0.558042i 0.960285 + 0.279021i \(0.0900099\pi\)
−0.960285 + 0.279021i \(0.909990\pi\)
\(158\) 908.210 3077.07i 0.457299 1.54936i
\(159\) 723.277 0.360752
\(160\) −2175.05 + 297.134i −1.07471 + 0.146815i
\(161\) 2060.13i 1.00845i
\(162\) 64.8547 219.731i 0.0314535 0.106566i
\(163\) −2138.86 −1.02778 −0.513891 0.857856i \(-0.671796\pi\)
−0.513891 + 0.857856i \(0.671796\pi\)
\(164\) 487.616 754.075i 0.232173 0.359045i
\(165\) 582.355i 0.274765i
\(166\) 658.703 2231.72i 0.307983 1.04347i
\(167\) 2341.22i 1.08484i 0.840106 + 0.542422i \(0.182493\pi\)
−0.840106 + 0.542422i \(0.817507\pi\)
\(168\) −1089.09 + 935.687i −0.500149 + 0.429701i
\(169\) 511.653 2136.59i 0.232887 0.972504i
\(170\) −444.759 + 1506.87i −0.200656 + 0.679832i
\(171\) −1053.06 −0.470934
\(172\) −1017.98 + 1574.25i −0.451278 + 0.697880i
\(173\) 1655.20i 0.727413i −0.931514 0.363706i \(-0.881511\pi\)
0.931514 0.363706i \(-0.118489\pi\)
\(174\) 216.272 732.743i 0.0942274 0.319248i
\(175\) 466.790i 0.201634i
\(176\) −420.320 934.243i −0.180016 0.400120i
\(177\) 939.019i 0.398763i
\(178\) −2179.75 643.362i −0.917860 0.270910i
\(179\) 2005.28i 0.837326i 0.908142 + 0.418663i \(0.137501\pi\)
−0.908142 + 0.418663i \(0.862499\pi\)
\(180\) −733.216 474.128i −0.303615 0.196330i
\(181\) 1629.54i 0.669184i 0.942363 + 0.334592i \(0.108599\pi\)
−0.942363 + 0.334592i \(0.891401\pi\)
\(182\) 2603.25 1042.40i 1.06025 0.424548i
\(183\) 1002.34 0.404892
\(184\) 1671.63 1436.17i 0.669751 0.575414i
\(185\) −804.496 −0.319717
\(186\) 363.546 1231.71i 0.143314 0.485558i
\(187\) −733.188 −0.286717
\(188\) 2521.42 3899.26i 0.978158 1.51267i
\(189\) −571.100 −0.219796
\(190\) −1136.13 + 3849.27i −0.433808 + 1.46977i
\(191\) 4723.88 1.78957 0.894786 0.446495i \(-0.147328\pi\)
0.894786 + 0.446495i \(0.147328\pi\)
\(192\) −1518.47 231.414i −0.570760 0.0869837i
\(193\) 10.6845i 0.00398491i −0.999998 0.00199245i \(-0.999366\pi\)
0.999998 0.00199245i \(-0.000634218\pi\)
\(194\) 2035.83 + 600.886i 0.753425 + 0.222377i
\(195\) 1056.11 + 1338.88i 0.387846 + 0.491689i
\(196\) 701.348 + 453.521i 0.255593 + 0.165277i
\(197\) −2024.67 −0.732244 −0.366122 0.930567i \(-0.619315\pi\)
−0.366122 + 0.930567i \(0.619315\pi\)
\(198\) 115.347 390.802i 0.0414007 0.140268i
\(199\) 1829.71 0.651782 0.325891 0.945407i \(-0.394336\pi\)
0.325891 + 0.945407i \(0.394336\pi\)
\(200\) −378.762 + 325.412i −0.133913 + 0.115051i
\(201\) 945.773i 0.331889i
\(202\) −1248.92 368.623i −0.435017 0.128397i
\(203\) −1904.46 −0.658458
\(204\) −596.929 + 923.122i −0.204870 + 0.316821i
\(205\) 1361.27i 0.463782i
\(206\) 997.079 3378.16i 0.337232 1.14256i
\(207\) 876.575 0.294329
\(208\) 2660.62 + 1385.64i 0.886927 + 0.461909i
\(209\) −1872.92 −0.619868
\(210\) −616.149 + 2087.55i −0.202468 + 0.685974i
\(211\) 2849.73i 0.929780i −0.885368 0.464890i \(-0.846094\pi\)
0.885368 0.464890i \(-0.153906\pi\)
\(212\) 1047.31 1619.62i 0.339291 0.524698i
\(213\) 1509.92 0.485718
\(214\) 1325.28 + 391.162i 0.423338 + 0.124950i
\(215\) 2841.87i 0.901459i
\(216\) −398.130 463.401i −0.125413 0.145974i
\(217\) −3201.33 −1.00148
\(218\) −563.637 + 1909.64i −0.175112 + 0.593288i
\(219\) 2272.81 0.701288
\(220\) −1304.06 843.257i −0.399634 0.258420i
\(221\) 1685.66 1329.65i 0.513076 0.404715i
\(222\) −539.874 159.346i −0.163216 0.0481739i
\(223\) 1372.76i 0.412228i 0.978528 + 0.206114i \(0.0660817\pi\)
−0.978528 + 0.206114i \(0.933918\pi\)
\(224\) 518.251 + 3793.66i 0.154585 + 1.13158i
\(225\) −198.617 −0.0588494
\(226\) −1812.33 + 6140.27i −0.533426 + 1.80728i
\(227\) −3957.76 −1.15720 −0.578602 0.815610i \(-0.696402\pi\)
−0.578602 + 0.815610i \(0.696402\pi\)
\(228\) −1524.85 + 2358.10i −0.442919 + 0.684952i
\(229\) −1499.02 −0.432569 −0.216284 0.976330i \(-0.569394\pi\)
−0.216284 + 0.976330i \(0.569394\pi\)
\(230\) 945.720 3204.15i 0.271126 0.918590i
\(231\) −1015.73 −0.289307
\(232\) −1327.65 1545.32i −0.375710 0.437306i
\(233\) 3777.11 1.06200 0.531001 0.847371i \(-0.321816\pi\)
0.531001 + 0.847371i \(0.321816\pi\)
\(234\) 443.535 + 1107.67i 0.123909 + 0.309447i
\(235\) 7039.02i 1.95394i
\(236\) 2102.73 + 1359.71i 0.579982 + 0.375041i
\(237\) 3402.91i 0.932671i
\(238\) 2628.23 + 775.734i 0.715811 + 0.211275i
\(239\) 4920.95i 1.33184i −0.746023 0.665920i \(-0.768039\pi\)
0.746023 0.665920i \(-0.231961\pi\)
\(240\) −2123.41 + 955.333i −0.571107 + 0.256944i
\(241\) 1467.06i 0.392123i −0.980592 0.196061i \(-0.937185\pi\)
0.980592 0.196061i \(-0.0628152\pi\)
\(242\) −860.549 + 2915.59i −0.228588 + 0.774468i
\(243\) 243.000i 0.0641500i
\(244\) 1451.40 2244.52i 0.380805 0.588897i
\(245\) 1266.09 0.330152
\(246\) 269.626 913.509i 0.0698811 0.236761i
\(247\) 4305.99 3396.57i 1.10925 0.874975i
\(248\) −2231.74 2597.62i −0.571433 0.665117i
\(249\) 2468.05i 0.628138i
\(250\) 999.458 3386.22i 0.252845 0.856653i
\(251\) 4882.12i 1.22772i −0.789416 0.613858i \(-0.789617\pi\)
0.789416 0.613858i \(-0.210383\pi\)
\(252\) −826.959 + 1278.85i −0.206720 + 0.319683i
\(253\) 1559.03 0.387411
\(254\) −1232.85 + 4176.98i −0.304552 + 1.03184i
\(255\) 1666.44i 0.409241i
\(256\) −2716.96 + 3065.18i −0.663320 + 0.748336i
\(257\) −1903.23 −0.461946 −0.230973 0.972960i \(-0.574191\pi\)
−0.230973 + 0.972960i \(0.574191\pi\)
\(258\) −562.887 + 1907.09i −0.135829 + 0.460196i
\(259\) 1403.18i 0.336638i
\(260\) 4527.40 426.215i 1.07991 0.101664i
\(261\) 810.338i 0.192179i
\(262\) −2261.27 667.423i −0.533212 0.157380i
\(263\) 5914.88 1.38680 0.693398 0.720555i \(-0.256113\pi\)
0.693398 + 0.720555i \(0.256113\pi\)
\(264\) −708.090 824.179i −0.165076 0.192139i
\(265\) 2923.77i 0.677757i
\(266\) 6713.78 + 1981.60i 1.54755 + 0.456766i
\(267\) −2410.57 −0.552527
\(268\) −2117.85 1369.49i −0.482717 0.312145i
\(269\) 4203.72i 0.952808i −0.879226 0.476404i \(-0.841940\pi\)
0.879226 0.476404i \(-0.158060\pi\)
\(270\) −888.241 262.168i −0.200210 0.0590928i
\(271\) 2759.47i 0.618545i −0.950974 0.309272i \(-0.899915\pi\)
0.950974 0.309272i \(-0.100085\pi\)
\(272\) 1202.77 + 2673.38i 0.268120 + 0.595947i
\(273\) 2335.24 1842.04i 0.517711 0.408371i
\(274\) −2746.49 810.638i −0.605553 0.178732i
\(275\) −353.248 −0.0774606
\(276\) 1269.29 1962.90i 0.276820 0.428089i
\(277\) 8888.17i 1.92794i 0.266019 + 0.963968i \(0.414292\pi\)
−0.266019 + 0.963968i \(0.585708\pi\)
\(278\) 6681.67 + 1972.12i 1.44151 + 0.425468i
\(279\) 1362.15i 0.292293i
\(280\) 3782.41 + 4402.52i 0.807294 + 0.939647i
\(281\) 4050.83i 0.859972i 0.902835 + 0.429986i \(0.141482\pi\)
−0.902835 + 0.429986i \(0.858518\pi\)
\(282\) 1394.22 4723.68i 0.294412 0.997486i
\(283\) 4078.29i 0.856640i −0.903627 0.428320i \(-0.859106\pi\)
0.903627 0.428320i \(-0.140894\pi\)
\(284\) 2186.38 3381.13i 0.456823 0.706455i
\(285\) 4256.89i 0.884760i
\(286\) 788.846 + 1970.04i 0.163096 + 0.407310i
\(287\) −2374.29 −0.488326
\(288\) −1614.18 + 220.513i −0.330266 + 0.0451176i
\(289\) −2814.95 −0.572959
\(290\) −2962.04 874.258i −0.599782 0.177028i
\(291\) 2251.42 0.453542
\(292\) 3291.05 5089.45i 0.659569 1.01999i
\(293\) −1590.21 −0.317069 −0.158535 0.987353i \(-0.550677\pi\)
−0.158535 + 0.987353i \(0.550677\pi\)
\(294\) 849.634 + 250.773i 0.168543 + 0.0497463i
\(295\) 3795.88 0.749169
\(296\) −1138.56 + 978.193i −0.223573 + 0.192082i
\(297\) 432.186i 0.0844376i
\(298\) −2394.82 + 8113.79i −0.465531 + 1.57725i
\(299\) −3584.33 + 2827.33i −0.693268 + 0.546851i
\(300\) −287.599 + 444.758i −0.0553485 + 0.0855937i
\(301\) 4956.70 0.949167
\(302\) 6260.41 + 1847.79i 1.19287 + 0.352080i
\(303\) −1381.17 −0.261869
\(304\) 3072.45 + 6829.12i 0.579662 + 1.28841i
\(305\) 4051.86i 0.760684i
\(306\) −330.071 + 1118.30i −0.0616631 + 0.208918i
\(307\) 6423.44 1.19415 0.597077 0.802184i \(-0.296329\pi\)
0.597077 + 0.802184i \(0.296329\pi\)
\(308\) −1470.78 + 2274.49i −0.272096 + 0.420783i
\(309\) 3735.89i 0.687791i
\(310\) −4979.08 1469.60i −0.912234 0.269250i
\(311\) 3419.21 0.623427 0.311713 0.950176i \(-0.399097\pi\)
0.311713 + 0.950176i \(0.399097\pi\)
\(312\) 3122.63 + 610.719i 0.566615 + 0.110818i
\(313\) 8831.43 1.59483 0.797415 0.603431i \(-0.206200\pi\)
0.797415 + 0.603431i \(0.206200\pi\)
\(314\) 2977.99 + 878.967i 0.535216 + 0.157971i
\(315\) 2308.61i 0.412938i
\(316\) −7620.08 4927.46i −1.35653 0.877188i
\(317\) −6479.78 −1.14808 −0.574039 0.818828i \(-0.694624\pi\)
−0.574039 + 0.818828i \(0.694624\pi\)
\(318\) 579.110 1962.06i 0.102122 0.345996i
\(319\) 1441.22i 0.252956i
\(320\) −935.466 + 6138.24i −0.163419 + 1.07231i
\(321\) 1465.62 0.254838
\(322\) −5588.58 1649.50i −0.967204 0.285474i
\(323\) 5359.45 0.923243
\(324\) −544.145 351.867i −0.0933033 0.0603338i
\(325\) 812.147 640.623i 0.138615 0.109340i
\(326\) −1712.53 + 5802.15i −0.290946 + 0.985741i
\(327\) 2111.86i 0.357144i
\(328\) −1655.18 1926.54i −0.278634 0.324315i
\(329\) −12277.2 −2.05734
\(330\) −1579.77 466.277i −0.263526 0.0777809i
\(331\) 8657.99 1.43772 0.718861 0.695154i \(-0.244664\pi\)
0.718861 + 0.695154i \(0.244664\pi\)
\(332\) −5526.66 3573.77i −0.913599 0.590771i
\(333\) −597.044 −0.0982517
\(334\) 6351.11 + 1874.56i 1.04047 + 0.307099i
\(335\) −3823.19 −0.623531
\(336\) 1666.26 + 3703.59i 0.270542 + 0.601331i
\(337\) 8924.60 1.44259 0.721297 0.692626i \(-0.243546\pi\)
0.721297 + 0.692626i \(0.243546\pi\)
\(338\) −5386.33 3098.69i −0.866798 0.498659i
\(339\) 6790.50i 1.08793i
\(340\) 3731.62 + 2413.02i 0.595223 + 0.384896i
\(341\) 2422.64i 0.384731i
\(342\) −843.161 + 2856.68i −0.133313 + 0.451671i
\(343\) 5046.81i 0.794468i
\(344\) 3455.45 + 4021.96i 0.541585 + 0.630376i
\(345\) 3543.46i 0.552966i
\(346\) −4490.11 1325.28i −0.697659 0.205917i
\(347\) 1537.77i 0.237901i −0.992900 0.118951i \(-0.962047\pi\)
0.992900 0.118951i \(-0.0379531\pi\)
\(348\) −1814.57 1173.38i −0.279515 0.180746i
\(349\) −8471.05 −1.29927 −0.649634 0.760247i \(-0.725078\pi\)
−0.649634 + 0.760247i \(0.725078\pi\)
\(350\) 1266.28 + 373.747i 0.193387 + 0.0570789i
\(351\) 783.779 + 993.632i 0.119188 + 0.151100i
\(352\) −2870.89 + 392.192i −0.434713 + 0.0593861i
\(353\) 6922.13i 1.04370i 0.853036 + 0.521852i \(0.174759\pi\)
−0.853036 + 0.521852i \(0.825241\pi\)
\(354\) 2547.31 + 751.849i 0.382452 + 0.112882i
\(355\) 6103.68i 0.912535i
\(356\) −3490.54 + 5397.95i −0.519658 + 0.803626i
\(357\) 2906.55 0.430899
\(358\) 5439.78 + 1605.57i 0.803076 + 0.237031i
\(359\) 4046.73i 0.594925i 0.954733 + 0.297463i \(0.0961404\pi\)
−0.954733 + 0.297463i \(0.903860\pi\)
\(360\) −1873.25 + 1609.40i −0.274247 + 0.235618i
\(361\) 6831.62 0.996008
\(362\) 4420.49 + 1304.73i 0.641812 + 0.189434i
\(363\) 3224.34i 0.466209i
\(364\) −743.391 7896.55i −0.107045 1.13707i
\(365\) 9187.58i 1.31753i
\(366\) 802.549 2719.08i 0.114617 0.388330i
\(367\) −567.928 −0.0807783 −0.0403891 0.999184i \(-0.512860\pi\)
−0.0403891 + 0.999184i \(0.512860\pi\)
\(368\) −2557.53 5684.59i −0.362283 0.805244i
\(369\) 1010.25i 0.142524i
\(370\) −644.140 + 2182.38i −0.0905060 + 0.306640i
\(371\) −5099.55 −0.713626
\(372\) −3050.23 1972.41i −0.425127 0.274905i
\(373\) 4632.74i 0.643094i −0.946894 0.321547i \(-0.895797\pi\)
0.946894 0.321547i \(-0.104203\pi\)
\(374\) −587.045 + 1988.94i −0.0811641 + 0.274989i
\(375\) 3744.81i 0.515683i
\(376\) −8558.80 9961.98i −1.17390 1.36636i
\(377\) 2613.68 + 3313.49i 0.357060 + 0.452661i
\(378\) −457.265 + 1549.24i −0.0622201 + 0.210805i
\(379\) 8005.02 1.08494 0.542468 0.840077i \(-0.317490\pi\)
0.542468 + 0.840077i \(0.317490\pi\)
\(380\) 9532.37 + 6164.03i 1.28684 + 0.832126i
\(381\) 4619.31i 0.621140i
\(382\) 3782.30 12814.6i 0.506595 1.71637i
\(383\) 9120.11i 1.21675i −0.793649 0.608376i \(-0.791821\pi\)
0.793649 0.608376i \(-0.208179\pi\)
\(384\) −1843.56 + 3933.91i −0.244997 + 0.522790i
\(385\) 4105.96i 0.543530i
\(386\) −28.9842 8.55481i −0.00382191 0.00112805i
\(387\) 2109.05i 0.277026i
\(388\) 3260.08 5041.56i 0.426561 0.659656i
\(389\) 13700.5i 1.78571i 0.450339 + 0.892857i \(0.351303\pi\)
−0.450339 + 0.892857i \(0.648697\pi\)
\(390\) 4477.64 1792.94i 0.581369 0.232793i
\(391\) −4461.23 −0.577018
\(392\) 1791.83 1539.45i 0.230870 0.198351i
\(393\) −2500.73 −0.320980
\(394\) −1621.11 + 5492.40i −0.207285 + 0.702292i
\(395\) −13755.9 −1.75224
\(396\) −967.785 625.810i −0.122811 0.0794145i
\(397\) −6204.37 −0.784354 −0.392177 0.919890i \(-0.628278\pi\)
−0.392177 + 0.919890i \(0.628278\pi\)
\(398\) 1465.00 4963.51i 0.184507 0.625122i
\(399\) 7424.74 0.931584
\(400\) 579.491 + 1288.03i 0.0724364 + 0.161004i
\(401\) 3377.04i 0.420552i −0.977642 0.210276i \(-0.932564\pi\)
0.977642 0.210276i \(-0.0674363\pi\)
\(402\) −2565.63 757.257i −0.318313 0.0939516i
\(403\) 4393.51 + 5569.85i 0.543068 + 0.688472i
\(404\) −1999.95 + 3092.83i −0.246291 + 0.380876i
\(405\) −982.302 −0.120521
\(406\) −1524.85 + 5166.29i −0.186397 + 0.631524i
\(407\) −1061.87 −0.129324
\(408\) 2026.24 + 2358.43i 0.245867 + 0.286176i
\(409\) 5434.16i 0.656973i −0.944509 0.328486i \(-0.893461\pi\)
0.944509 0.328486i \(-0.106539\pi\)
\(410\) −3692.76 1089.94i −0.444811 0.131288i
\(411\) −3037.33 −0.364527
\(412\) −8365.71 5409.62i −1.00036 0.646875i
\(413\) 6620.66i 0.788817i
\(414\) 701.851 2377.91i 0.0833191 0.282290i
\(415\) −9976.84 −1.18011
\(416\) 5889.17 6108.11i 0.694087 0.719891i
\(417\) 7389.23 0.867751
\(418\) −1499.60 + 5080.72i −0.175473 + 0.594512i
\(419\) 3615.54i 0.421553i 0.977534 + 0.210776i \(0.0675992\pi\)
−0.977534 + 0.210776i \(0.932401\pi\)
\(420\) 5169.63 + 3342.90i 0.600600 + 0.388373i
\(421\) −9792.46 −1.13362 −0.566811 0.823848i \(-0.691823\pi\)
−0.566811 + 0.823848i \(0.691823\pi\)
\(422\) −7730.56 2281.71i −0.891748 0.263203i
\(423\) 5223.90i 0.600460i
\(424\) −3555.04 4137.87i −0.407188 0.473945i
\(425\) 1010.84 0.115371
\(426\) 1208.95 4096.01i 0.137498 0.465850i
\(427\) −7067.12 −0.800942
\(428\) 2122.24 3281.94i 0.239678 0.370651i
\(429\) 1393.98 + 1767.22i 0.156881 + 0.198886i
\(430\) 7709.23 + 2275.41i 0.864586 + 0.255186i
\(431\) 8176.94i 0.913850i 0.889505 + 0.456925i \(0.151049\pi\)
−0.889505 + 0.456925i \(0.848951\pi\)
\(432\) −1575.86 + 708.985i −0.175506 + 0.0789608i
\(433\) −14447.6 −1.60348 −0.801740 0.597673i \(-0.796092\pi\)
−0.801740 + 0.597673i \(0.796092\pi\)
\(434\) −2563.22 + 8684.35i −0.283499 + 0.960512i
\(435\) −3275.70 −0.361053
\(436\) 4729.04 + 3058.00i 0.519450 + 0.335898i
\(437\) −11396.1 −1.24749
\(438\) 1819.78 6165.52i 0.198521 0.672602i
\(439\) −14823.9 −1.61163 −0.805816 0.592166i \(-0.798273\pi\)
−0.805816 + 0.592166i \(0.798273\pi\)
\(440\) −3331.66 + 2862.38i −0.360978 + 0.310133i
\(441\) 939.607 0.101458
\(442\) −2257.32 5637.37i −0.242919 0.606656i
\(443\) 6678.46i 0.716260i −0.933672 0.358130i \(-0.883414\pi\)
0.933672 0.358130i \(-0.116586\pi\)
\(444\) −864.527 + 1336.95i −0.0924068 + 0.142903i
\(445\) 9744.49i 1.03805i
\(446\) 3723.93 + 1099.13i 0.395366 + 0.116694i
\(447\) 8973.01i 0.949460i
\(448\) 10706.1 + 1631.61i 1.12906 + 0.172068i
\(449\) 13672.9i 1.43712i 0.695467 + 0.718558i \(0.255198\pi\)
−0.695467 + 0.718558i \(0.744802\pi\)
\(450\) −159.027 + 538.794i −0.0166592 + 0.0564422i
\(451\) 1796.77i 0.187597i
\(452\) 15205.8 + 9832.72i 1.58235 + 1.02321i
\(453\) 6923.36 0.718075
\(454\) −3168.88 + 10736.3i −0.327583 + 1.10987i
\(455\) −7446.25 9439.96i −0.767221 0.972642i
\(456\) 5175.99 + 6024.57i 0.531553 + 0.618698i
\(457\) 8454.03i 0.865345i −0.901551 0.432672i \(-0.857571\pi\)
0.901551 0.432672i \(-0.142429\pi\)
\(458\) −1200.23 + 4066.45i −0.122452 + 0.414875i
\(459\) 1236.72i 0.125763i
\(460\) −7934.80 5130.97i −0.804265 0.520071i
\(461\) 12560.1 1.26895 0.634473 0.772945i \(-0.281217\pi\)
0.634473 + 0.772945i \(0.281217\pi\)
\(462\) −813.266 + 2755.39i −0.0818973 + 0.277473i
\(463\) 14540.8i 1.45954i −0.683690 0.729772i \(-0.739626\pi\)
0.683690 0.729772i \(-0.260374\pi\)
\(464\) −5255.05 + 2364.27i −0.525774 + 0.236548i
\(465\) −5506.34 −0.549141
\(466\) 3024.24 10246.3i 0.300633 1.01856i
\(467\) 10533.0i 1.04370i −0.853038 0.521849i \(-0.825242\pi\)
0.853038 0.521849i \(-0.174758\pi\)
\(468\) 3359.94 316.309i 0.331866 0.0312423i
\(469\) 6668.28i 0.656530i
\(470\) −19095.0 5635.97i −1.87401 0.553123i
\(471\) 3293.35 0.322186
\(472\) 5372.13 4615.45i 0.523882 0.450092i
\(473\) 3751.03i 0.364635i
\(474\) −9231.20 2724.63i −0.894521 0.264022i
\(475\) 2582.17 0.249427
\(476\) 4208.72 6508.58i 0.405266 0.626723i
\(477\) 2169.83i 0.208280i
\(478\) −13349.2 3940.08i −1.27736 0.377019i
\(479\) 9522.04i 0.908295i 0.890927 + 0.454147i \(0.150056\pi\)
−0.890927 + 0.454147i \(0.849944\pi\)
\(480\) 891.401 + 6525.16i 0.0847639 + 0.620482i
\(481\) 2441.33 1925.72i 0.231424 0.182548i
\(482\) −3979.74 1174.64i −0.376083 0.111003i
\(483\) −6180.39 −0.582231
\(484\) 7220.20 + 4668.88i 0.678080 + 0.438475i
\(485\) 9101.13i 0.852085i
\(486\) −659.194 194.564i −0.0615260 0.0181597i
\(487\) 15094.0i 1.40446i −0.711950 0.702230i \(-0.752188\pi\)
0.711950 0.702230i \(-0.247812\pi\)
\(488\) −4926.69 5734.40i −0.457010 0.531934i
\(489\) 6416.58i 0.593390i
\(490\) 1013.72 3434.56i 0.0934600 0.316648i
\(491\) 21589.6i 1.98437i 0.124791 + 0.992183i \(0.460174\pi\)
−0.124791 + 0.992183i \(0.539826\pi\)
\(492\) −2262.22 1462.85i −0.207295 0.134045i
\(493\) 4124.13i 0.376757i
\(494\) −5766.30 14400.6i −0.525178 1.31156i
\(495\) −1747.07 −0.158636
\(496\) −8833.54 + 3974.25i −0.799673 + 0.359777i
\(497\) −10645.9 −0.960829
\(498\) −6695.17 1976.11i −0.602445 0.177814i
\(499\) 17274.5 1.54973 0.774863 0.632130i \(-0.217819\pi\)
0.774863 + 0.632130i \(0.217819\pi\)
\(500\) −8385.67 5422.52i −0.750037 0.485005i
\(501\) 7023.66 0.626335
\(502\) −13243.9 3908.99i −1.17750 0.347544i
\(503\) −5755.02 −0.510146 −0.255073 0.966922i \(-0.582100\pi\)
−0.255073 + 0.966922i \(0.582100\pi\)
\(504\) 2807.06 + 3267.27i 0.248088 + 0.288761i
\(505\) 5583.24i 0.491982i
\(506\) 1248.27 4229.22i 0.109669 0.371565i
\(507\) −6409.77 1534.96i −0.561475 0.134458i
\(508\) 10343.9 + 6688.81i 0.903420 + 0.584189i
\(509\) 8760.81 0.762900 0.381450 0.924389i \(-0.375425\pi\)
0.381450 + 0.924389i \(0.375425\pi\)
\(510\) 4520.60 + 1334.28i 0.392501 + 0.115849i
\(511\) −16024.7 −1.38726
\(512\) 6139.62 + 9824.60i 0.529952 + 0.848028i
\(513\) 3159.19i 0.271894i
\(514\) −1523.87 + 5162.95i −0.130768 + 0.443050i
\(515\) −15101.9 −1.29218
\(516\) 4722.75 + 3053.93i 0.402921 + 0.260546i
\(517\) 9290.93i 0.790357i
\(518\) 3806.44 + 1123.49i 0.322868 + 0.0952958i
\(519\) −4965.60 −0.419972
\(520\) 2468.77 12622.9i 0.208197 1.06452i
\(521\) 16422.2 1.38094 0.690468 0.723363i \(-0.257405\pi\)
0.690468 + 0.723363i \(0.257405\pi\)
\(522\) −2198.23 648.817i −0.184318 0.0544022i
\(523\) 15056.8i 1.25887i −0.777054 0.629434i \(-0.783287\pi\)
0.777054 0.629434i \(-0.216713\pi\)
\(524\) −3621.08 + 5599.83i −0.301885 + 0.466850i
\(525\) 1400.37 0.116414
\(526\) 4735.90 16045.5i 0.392576 1.33007i
\(527\) 6932.51i 0.573026i
\(528\) −2802.73 + 1260.96i −0.231010 + 0.103932i
\(529\) −2680.79 −0.220333
\(530\) −7931.41 2340.99i −0.650034 0.191861i
\(531\) 2817.06 0.230226
\(532\) 10751.1 16626.1i 0.876165 1.35495i
\(533\) 3258.47 + 4130.92i 0.264803 + 0.335703i
\(534\) −1930.09 + 6539.24i −0.156410 + 0.529926i
\(535\) 5924.62i 0.478773i
\(536\) −5410.77 + 4648.64i −0.436026 + 0.374610i
\(537\) 6015.83 0.483430
\(538\) −11403.6 3365.81i −0.913835 0.269722i
\(539\) 1671.13 0.133545
\(540\) −1422.38 + 2199.65i −0.113351 + 0.175292i
\(541\) −2634.99 −0.209403 −0.104702 0.994504i \(-0.533389\pi\)
−0.104702 + 0.994504i \(0.533389\pi\)
\(542\) −7485.69 2209.43i −0.593244 0.175098i
\(543\) 4888.61 0.386354
\(544\) 8215.20 1122.28i 0.647470 0.0884508i
\(545\) 8536.96 0.670978
\(546\) −3127.20 7809.76i −0.245113 0.612137i
\(547\) 2007.56i 0.156923i 0.996917 + 0.0784616i \(0.0250008\pi\)
−0.996917 + 0.0784616i \(0.974999\pi\)
\(548\) −4398.09 + 6801.43i −0.342841 + 0.530187i
\(549\) 3007.02i 0.233764i
\(550\) −282.837 + 958.268i −0.0219276 + 0.0742921i
\(551\) 10535.0i 0.814531i
\(552\) −4308.52 5014.89i −0.332215 0.386681i
\(553\) 23992.6i 1.84497i
\(554\) 24111.2 + 7116.53i 1.84907 + 0.545763i
\(555\) 2413.49i 0.184589i
\(556\) 10699.7 16546.6i 0.816130 1.26211i
\(557\) 15077.3 1.14694 0.573468 0.819228i \(-0.305598\pi\)
0.573468 + 0.819228i \(0.305598\pi\)
\(558\) −3695.14 1090.64i −0.280337 0.0827427i
\(559\) −6802.58 8623.94i −0.514702 0.652511i
\(560\) 14971.4 6735.69i 1.12974 0.508276i
\(561\) 2199.56i 0.165536i
\(562\) 10988.8 + 3243.40i 0.824796 + 0.243442i
\(563\) 14038.8i 1.05091i 0.850821 + 0.525455i \(0.176105\pi\)
−0.850821 + 0.525455i \(0.823895\pi\)
\(564\) −11697.8 7564.27i −0.873342 0.564740i
\(565\) 27449.9 2.04394
\(566\) −11063.3 3265.39i −0.821600 0.242499i
\(567\) 1713.30i 0.126899i
\(568\) −7421.52 8638.25i −0.548240 0.638121i
\(569\) 5607.45 0.413140 0.206570 0.978432i \(-0.433770\pi\)
0.206570 + 0.978432i \(0.433770\pi\)
\(570\) 11547.8 + 3408.39i 0.848569 + 0.250459i
\(571\) 6820.92i 0.499906i 0.968258 + 0.249953i \(0.0804152\pi\)
−0.968258 + 0.249953i \(0.919585\pi\)
\(572\) 5975.80 562.569i 0.436819 0.0411227i
\(573\) 14171.7i 1.03321i
\(574\) −1901.03 + 6440.80i −0.138236 + 0.468352i
\(575\) −2149.41 −0.155890
\(576\) −694.242 + 4555.40i −0.0502200 + 0.329529i
\(577\) 23328.9i 1.68318i 0.540117 + 0.841590i \(0.318380\pi\)
−0.540117 + 0.841590i \(0.681620\pi\)
\(578\) −2253.86 + 7636.19i −0.162194 + 0.549522i
\(579\) −32.0535 −0.00230069
\(580\) −4743.26 + 7335.22i −0.339574 + 0.525135i
\(581\) 17401.3i 1.24256i
\(582\) 1802.66 6107.50i 0.128389 0.434990i
\(583\) 3859.14i 0.274149i
\(584\) −11171.3 13002.7i −0.791558 0.921330i
\(585\) 4016.65 3168.34i 0.283877 0.223923i
\(586\) −1273.24 + 4313.82i −0.0897564 + 0.304100i
\(587\) −11535.3 −0.811093 −0.405547 0.914074i \(-0.632919\pi\)
−0.405547 + 0.914074i \(0.632919\pi\)
\(588\) 1360.56 2104.04i 0.0954228 0.147567i
\(589\) 17709.0i 1.23886i
\(590\) 3039.27 10297.2i 0.212076 0.718525i
\(591\) 6074.02i 0.422761i
\(592\) 1741.96 + 3871.83i 0.120936 + 0.268803i
\(593\) 17605.5i 1.21917i 0.792720 + 0.609586i \(0.208664\pi\)
−0.792720 + 0.609586i \(0.791336\pi\)
\(594\) −1172.40 346.040i −0.0809837 0.0239027i
\(595\) 11749.4i 0.809545i
\(596\) 20093.1 + 12993.0i 1.38095 + 0.892978i
\(597\) 5489.13i 0.376307i
\(598\) 4799.90 + 11987.1i 0.328231 + 0.819714i
\(599\) −23660.0 −1.61389 −0.806945 0.590627i \(-0.798881\pi\)
−0.806945 + 0.590627i \(0.798881\pi\)
\(600\) 976.237 + 1136.29i 0.0664245 + 0.0773145i
\(601\) −408.208 −0.0277057 −0.0138529 0.999904i \(-0.504410\pi\)
−0.0138529 + 0.999904i \(0.504410\pi\)
\(602\) 3968.70 13446.2i 0.268691 0.910342i
\(603\) −2837.32 −0.191616
\(604\) 10025.1 15503.3i 0.675357 1.04441i
\(605\) 13034.0 0.875883
\(606\) −1105.87 + 3746.75i −0.0741302 + 0.251157i
\(607\) 19900.9 1.33073 0.665363 0.746520i \(-0.268277\pi\)
0.665363 + 0.746520i \(0.268277\pi\)
\(608\) 20985.6 2866.84i 1.39980 0.191226i
\(609\) 5713.38i 0.380161i
\(610\) −10991.6 3244.22i −0.729569 0.215336i
\(611\) 16849.3 + 21360.6i 1.11563 + 1.41433i
\(612\) 2769.37 + 1790.79i 0.182917 + 0.118282i
\(613\) −710.858 −0.0468373 −0.0234187 0.999726i \(-0.507455\pi\)
−0.0234187 + 0.999726i \(0.507455\pi\)
\(614\) 5143.09 17425.1i 0.338043 1.14531i
\(615\) −4083.81 −0.267765
\(616\) 4992.47 + 5810.97i 0.326546 + 0.380082i
\(617\) 16609.5i 1.08375i −0.840459 0.541875i \(-0.817714\pi\)
0.840459 0.541875i \(-0.182286\pi\)
\(618\) −10134.5 2991.24i −0.659658 0.194701i
\(619\) −19446.3 −1.26270 −0.631351 0.775497i \(-0.717499\pi\)
−0.631351 + 0.775497i \(0.717499\pi\)
\(620\) −7973.24 + 12330.2i −0.516473 + 0.798700i
\(621\) 2629.72i 0.169931i
\(622\) 2737.68 9275.41i 0.176481 0.597926i
\(623\) 16996.0 1.09299
\(624\) 4156.93 7981.86i 0.266683 0.512068i
\(625\) −17896.5 −1.14538
\(626\) 7071.10 23957.3i 0.451467 1.52960i
\(627\) 5618.75i 0.357881i
\(628\) 4768.81 7374.73i 0.303019 0.468605i
\(629\) 3038.59 0.192618
\(630\) 6262.64 + 1848.45i 0.396047 + 0.116895i
\(631\) 25295.7i 1.59589i 0.602733 + 0.797943i \(0.294078\pi\)
−0.602733 + 0.797943i \(0.705922\pi\)
\(632\) −19468.1 + 16725.9i −1.22531 + 1.05272i
\(633\) −8549.20 −0.536809
\(634\) −5188.20 + 17577.9i −0.325000 + 1.10112i
\(635\) 18673.1 1.16696
\(636\) −4858.86 3141.94i −0.302934 0.195890i
\(637\) −3842.07 + 3030.63i −0.238977 + 0.188506i
\(638\) −3909.65 1153.95i −0.242609 0.0716070i
\(639\) 4529.76i 0.280429i
\(640\) 15902.4 + 7452.41i 0.982184 + 0.460285i
\(641\) 25718.1 1.58471 0.792357 0.610057i \(-0.208854\pi\)
0.792357 + 0.610057i \(0.208854\pi\)
\(642\) 1173.49 3975.84i 0.0721399 0.244414i
\(643\) 12820.0 0.786268 0.393134 0.919481i \(-0.371391\pi\)
0.393134 + 0.919481i \(0.371391\pi\)
\(644\) −8949.28 + 13839.6i −0.547595 + 0.846829i
\(645\) 8525.60 0.520458
\(646\) 4291.18 14538.7i 0.261353 0.885479i
\(647\) −5429.39 −0.329910 −0.164955 0.986301i \(-0.552748\pi\)
−0.164955 + 0.986301i \(0.552748\pi\)
\(648\) −1390.20 + 1194.39i −0.0842783 + 0.0724074i
\(649\) 5010.25 0.303035
\(650\) −1087.57 2716.07i −0.0656279 0.163897i
\(651\) 9603.99i 0.578203i
\(652\) 14368.5 + 9291.28i 0.863058 + 0.558090i
\(653\) 23782.4i 1.42523i −0.701553 0.712617i \(-0.747510\pi\)
0.701553 0.712617i \(-0.252490\pi\)
\(654\) 5728.91 + 1690.91i 0.342535 + 0.101101i
\(655\) 10108.9i 0.603036i
\(656\) −6551.45 + 2947.53i −0.389926 + 0.175429i
\(657\) 6818.42i 0.404889i
\(658\) −9830.08 + 33304.9i −0.582396 + 1.97319i
\(659\) 27296.5i 1.61354i 0.590868 + 0.806768i \(0.298785\pi\)
−0.590868 + 0.806768i \(0.701215\pi\)
\(660\) −2529.77 + 3912.17i −0.149199 + 0.230729i
\(661\) −27338.9 −1.60871 −0.804357 0.594147i \(-0.797490\pi\)
−0.804357 + 0.594147i \(0.797490\pi\)
\(662\) 6932.24 23486.8i 0.406992 1.37891i
\(663\) −3988.96 5056.98i −0.233662 0.296225i
\(664\) −14119.7 + 12130.9i −0.825229 + 0.708993i
\(665\) 30013.7i 1.75020i
\(666\) −478.038 + 1619.62i −0.0278132 + 0.0942328i
\(667\) 8769.40i 0.509074i
\(668\) 10170.3 15727.9i 0.589076 0.910977i
\(669\) 4118.28 0.238000
\(670\) −3061.13 + 10371.3i −0.176510 + 0.598026i
\(671\) 5348.12i 0.307693i
\(672\) 11381.0 1554.75i 0.653319 0.0892499i
\(673\) 26689.5 1.52868 0.764342 0.644811i \(-0.223064\pi\)
0.764342 + 0.644811i \(0.223064\pi\)
\(674\) 7145.70 24210.1i 0.408371 1.38359i
\(675\) 595.850i 0.0339767i
\(676\) −12718.6 + 12130.6i −0.723636 + 0.690182i
\(677\) 12731.9i 0.722787i −0.932413 0.361393i \(-0.882301\pi\)
0.932413 0.361393i \(-0.117699\pi\)
\(678\) 18420.8 + 5436.98i 1.04343 + 0.307973i
\(679\) −15873.9 −0.897179
\(680\) 9533.71 8190.85i 0.537648 0.461919i
\(681\) 11873.3i 0.668112i
\(682\) −6571.97 1939.75i −0.368994 0.108910i
\(683\) 10423.4 0.583955 0.291977 0.956425i \(-0.405687\pi\)
0.291977 + 0.956425i \(0.405687\pi\)
\(684\) 7074.30 + 4574.54i 0.395457 + 0.255719i
\(685\) 12278.1i 0.684849i
\(686\) 13690.7 + 4040.86i 0.761971 + 0.224899i
\(687\) 4497.07i 0.249744i
\(688\) 13677.2 6153.43i 0.757904 0.340985i
\(689\) 6998.63 + 8872.48i 0.386976 + 0.490587i
\(690\) −9612.46 2837.16i −0.530348 0.156535i
\(691\) 12008.8 0.661124 0.330562 0.943784i \(-0.392762\pi\)
0.330562 + 0.943784i \(0.392762\pi\)
\(692\) −7190.24 + 11119.4i −0.394988 + 0.610830i
\(693\) 3047.18i 0.167031i
\(694\) −4171.56 1231.25i −0.228170 0.0673455i
\(695\) 29870.2i 1.63027i
\(696\) −4635.95 + 3982.96i −0.252479 + 0.216916i
\(697\) 5141.54i 0.279411i
\(698\) −6782.56 + 22979.7i −0.367799 + 1.24612i
\(699\) 11331.3i 0.613147i
\(700\) 2027.75 3135.82i 0.109488 0.169318i
\(701\) 10284.3i 0.554114i −0.960853 0.277057i \(-0.910641\pi\)
0.960853 0.277057i \(-0.0893591\pi\)
\(702\) 3323.01 1330.61i 0.178659 0.0715391i
\(703\) 7762.03 0.416430
\(704\) −1234.74 + 8101.98i −0.0661022 + 0.433743i
\(705\) −21117.1 −1.12811
\(706\) 18777.9 + 5542.38i 1.00101 + 0.295453i
\(707\) 9738.12 0.518019
\(708\) 4079.13 6308.18i 0.216530 0.334853i
\(709\) −16944.0 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(710\) −16557.7 4887.07i −0.875209 0.258322i
\(711\) −10208.7 −0.538478
\(712\) 11848.4 + 13790.9i 0.623649 + 0.725893i
\(713\) 14741.0i 0.774273i
\(714\) 2327.20 7884.70i 0.121980 0.413274i
\(715\) 7143.78 5635.03i 0.373654 0.294739i
\(716\) 8710.99 13471.1i 0.454672 0.703128i
\(717\) −14762.9 −0.768939
\(718\) 10977.7 + 3240.12i 0.570590 + 0.168412i
\(719\) 14267.6 0.740041 0.370021 0.929023i \(-0.379351\pi\)
0.370021 + 0.929023i \(0.379351\pi\)
\(720\) 2866.00 + 6370.23i 0.148346 + 0.329729i
\(721\) 26340.3i 1.36056i
\(722\) 5469.91 18532.4i 0.281951 0.955267i
\(723\) −4401.18 −0.226392
\(724\) 7078.76 10947.0i 0.363370 0.561934i
\(725\) 1986.99i 0.101786i
\(726\) 8746.77 + 2581.65i 0.447139 + 0.131975i
\(727\) 7899.54 0.402996 0.201498 0.979489i \(-0.435419\pi\)
0.201498 + 0.979489i \(0.435419\pi\)
\(728\) −22016.4 4305.95i −1.12086 0.219216i
\(729\) −729.000 −0.0370370
\(730\) −24923.4 7356.26i −1.26364 0.372969i
\(731\) 10733.8i 0.543095i
\(732\) −6733.57 4354.20i −0.340000 0.219858i
\(733\) −18.8350 −0.000949093 −0.000474547 1.00000i \(-0.500151\pi\)
−0.000474547 1.00000i \(0.500151\pi\)
\(734\) −454.726 + 1540.64i −0.0228668 + 0.0774741i
\(735\) 3798.26i 0.190614i
\(736\) −17468.5 + 2386.37i −0.874862 + 0.119515i
\(737\) −5046.29 −0.252215
\(738\) −2740.53 808.879i −0.136694 0.0403459i
\(739\) −13711.5 −0.682525 −0.341262 0.939968i \(-0.610854\pi\)
−0.341262 + 0.939968i \(0.610854\pi\)
\(740\) 5404.47 + 3494.76i 0.268476 + 0.173608i
\(741\) −10189.7 12918.0i −0.505167 0.640423i
\(742\) −4083.08 + 13833.7i −0.202014 + 0.684436i
\(743\) 11169.5i 0.551506i 0.961229 + 0.275753i \(0.0889271\pi\)
−0.961229 + 0.275753i \(0.911073\pi\)
\(744\) −7792.86 + 6695.21i −0.384005 + 0.329917i
\(745\) 36272.4 1.78378
\(746\) −12567.4 3709.32i −0.616789 0.182048i
\(747\) −7404.16 −0.362656
\(748\) 4925.44 + 3184.99i 0.240764 + 0.155688i
\(749\) −10333.5 −0.504111
\(750\) −10158.7 2998.37i −0.494589 0.145980i
\(751\) −31229.1 −1.51740 −0.758698 0.651443i \(-0.774164\pi\)
−0.758698 + 0.651443i \(0.774164\pi\)
\(752\) −33877.0 + 15241.4i −1.64278 + 0.739093i
\(753\) −14646.4 −0.708822
\(754\) 11081.3 4437.20i 0.535223 0.214315i
\(755\) 27987.0i 1.34907i
\(756\) 3836.56 + 2480.88i 0.184569 + 0.119350i
\(757\) 29792.5i 1.43042i −0.698911 0.715209i \(-0.746332\pi\)
0.698911 0.715209i \(-0.253668\pi\)
\(758\) 6409.42 21715.5i 0.307125 1.04056i
\(759\) 4677.08i 0.223672i
\(760\) 24353.7 20923.4i 1.16237 0.998646i
\(761\) 3531.27i 0.168211i −0.996457 0.0841054i \(-0.973197\pi\)
0.996457 0.0841054i \(-0.0268033\pi\)
\(762\) 12530.9 + 3698.56i 0.595733 + 0.175833i
\(763\) 14889.9i 0.706488i
\(764\) −31734.3 20520.7i −1.50276 0.971746i
\(765\) 4999.32 0.236275
\(766\) −24740.4 7302.25i −1.16698 0.344440i
\(767\) −11519.0 + 9086.21i −0.542278 + 0.427750i
\(768\) 9195.55 + 8150.88i 0.432052 + 0.382968i
\(769\) 10014.1i 0.469596i −0.972044 0.234798i \(-0.924557\pi\)
0.972044 0.234798i \(-0.0754428\pi\)
\(770\) 11138.4 + 3287.54i 0.521298 + 0.153863i
\(771\) 5709.68i 0.266705i
\(772\) −46.4138 + 71.7767i −0.00216382 + 0.00334624i
\(773\) 18303.4 0.851652