Properties

Label 312.4.m.a.181.5
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.5
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.80130 - 0.390824i) q^{2} -3.00000i q^{3} +(7.69451 + 2.18963i) q^{4} +14.7907 q^{5} +(-1.17247 + 8.40389i) q^{6} -0.217747i q^{7} +(-20.6988 - 9.14099i) q^{8} -9.00000 q^{9} +(-41.4331 - 5.78056i) q^{10} +43.4416 q^{11} +(6.56888 - 23.0835i) q^{12} +(23.9363 - 40.2995i) q^{13} +(-0.0851006 + 0.609973i) q^{14} -44.3721i q^{15} +(54.4111 + 33.6962i) q^{16} -16.1502 q^{17} +(25.2117 + 3.51742i) q^{18} +72.7567 q^{19} +(113.807 + 32.3861i) q^{20} -0.653240 q^{21} +(-121.693 - 16.9780i) q^{22} -83.4483 q^{23} +(-27.4230 + 62.0965i) q^{24} +93.7650 q^{25} +(-82.8028 + 103.536i) q^{26} +27.0000i q^{27} +(0.476784 - 1.67545i) q^{28} +128.661i q^{29} +(-17.3417 + 124.299i) q^{30} +306.050i q^{31} +(-139.252 - 115.658i) q^{32} -130.325i q^{33} +(45.2414 + 6.31187i) q^{34} -3.22063i q^{35} +(-69.2506 - 19.7066i) q^{36} +340.290 q^{37} +(-203.813 - 28.4351i) q^{38} +(-120.899 - 71.8090i) q^{39} +(-306.151 - 135.202i) q^{40} -401.502i q^{41} +(1.82992 + 0.255302i) q^{42} -32.3051i q^{43} +(334.262 + 95.1210i) q^{44} -133.116 q^{45} +(233.763 + 32.6136i) q^{46} -118.996i q^{47} +(101.089 - 163.233i) q^{48} +342.953 q^{49} +(-262.664 - 36.6456i) q^{50} +48.4505i q^{51} +(272.419 - 257.674i) q^{52} -486.003i q^{53} +(10.5522 - 75.6350i) q^{54} +642.533 q^{55} +(-1.99042 + 4.50711i) q^{56} -218.270i q^{57} +(50.2839 - 360.418i) q^{58} -241.321 q^{59} +(97.1584 - 341.422i) q^{60} -457.486i q^{61} +(119.612 - 857.338i) q^{62} +1.95972i q^{63} +(344.885 + 378.416i) q^{64} +(354.036 - 596.058i) q^{65} +(-50.9341 + 365.079i) q^{66} -121.806 q^{67} +(-124.268 - 35.3628i) q^{68} +250.345i q^{69} +(-1.25870 + 9.02193i) q^{70} -251.950i q^{71} +(186.290 + 82.2689i) q^{72} -66.4276i q^{73} +(-953.252 - 132.993i) q^{74} -281.295i q^{75} +(559.828 + 159.310i) q^{76} -9.45927i q^{77} +(310.608 + 248.408i) q^{78} -164.272 q^{79} +(804.778 + 498.391i) q^{80} +81.0000 q^{81} +(-156.917 + 1124.73i) q^{82} -311.484 q^{83} +(-5.02636 - 1.43035i) q^{84} -238.872 q^{85} +(-12.6256 + 90.4962i) q^{86} +385.984 q^{87} +(-899.192 - 397.100i) q^{88} +1009.04i q^{89} +(372.898 + 52.0251i) q^{90} +(-8.77509 - 5.21206i) q^{91} +(-642.094 - 182.721i) q^{92} +918.151 q^{93} +(-46.5064 + 333.342i) q^{94} +1076.12 q^{95} +(-346.975 + 417.757i) q^{96} -433.098i q^{97} +(-960.712 - 134.034i) q^{98} -390.975 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80130 0.390824i −0.990408 0.138177i
\(3\) 3.00000i 0.577350i
\(4\) 7.69451 + 2.18963i 0.961814 + 0.273703i
\(5\) 14.7907 1.32292 0.661461 0.749980i \(-0.269937\pi\)
0.661461 + 0.749980i \(0.269937\pi\)
\(6\) −1.17247 + 8.40389i −0.0797766 + 0.571812i
\(7\) 0.217747i 0.0117572i −0.999983 0.00587861i \(-0.998129\pi\)
0.999983 0.00587861i \(-0.00187123\pi\)
\(8\) −20.6988 9.14099i −0.914768 0.403979i
\(9\) −9.00000 −0.333333
\(10\) −41.4331 5.78056i −1.31023 0.182797i
\(11\) 43.4416 1.19074 0.595370 0.803451i \(-0.297005\pi\)
0.595370 + 0.803451i \(0.297005\pi\)
\(12\) 6.56888 23.0835i 0.158023 0.555304i
\(13\) 23.9363 40.2995i 0.510673 0.859775i
\(14\) −0.0851006 + 0.609973i −0.00162458 + 0.0116444i
\(15\) 44.3721i 0.763789i
\(16\) 54.4111 + 33.6962i 0.850173 + 0.526504i
\(17\) −16.1502 −0.230411 −0.115206 0.993342i \(-0.536753\pi\)
−0.115206 + 0.993342i \(0.536753\pi\)
\(18\) 25.2117 + 3.51742i 0.330136 + 0.0460590i
\(19\) 72.7567 0.878502 0.439251 0.898364i \(-0.355244\pi\)
0.439251 + 0.898364i \(0.355244\pi\)
\(20\) 113.807 + 32.3861i 1.27240 + 0.362088i
\(21\) −0.653240 −0.00678803
\(22\) −121.693 16.9780i −1.17932 0.164533i
\(23\) −83.4483 −0.756529 −0.378265 0.925698i \(-0.623479\pi\)
−0.378265 + 0.925698i \(0.623479\pi\)
\(24\) −27.4230 + 62.0965i −0.233237 + 0.528142i
\(25\) 93.7650 0.750120
\(26\) −82.8028 + 103.536i −0.624576 + 0.780964i
\(27\) 27.0000i 0.192450i
\(28\) 0.476784 1.67545i 0.00321799 0.0113083i
\(29\) 128.661i 0.823855i 0.911217 + 0.411928i \(0.135144\pi\)
−0.911217 + 0.411928i \(0.864856\pi\)
\(30\) −17.3417 + 124.299i −0.105538 + 0.756462i
\(31\) 306.050i 1.77317i 0.462566 + 0.886585i \(0.346929\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(32\) −139.252 115.658i −0.769267 0.638928i
\(33\) 130.325i 0.687474i
\(34\) 45.2414 + 6.31187i 0.228201 + 0.0318376i
\(35\) 3.22063i 0.0155539i
\(36\) −69.2506 19.7066i −0.320605 0.0912345i
\(37\) 340.290 1.51198 0.755990 0.654583i \(-0.227156\pi\)
0.755990 + 0.654583i \(0.227156\pi\)
\(38\) −203.813 28.4351i −0.870075 0.121389i
\(39\) −120.899 71.8090i −0.496391 0.294837i
\(40\) −306.151 135.202i −1.21017 0.534432i
\(41\) 401.502i 1.52937i −0.644405 0.764685i \(-0.722895\pi\)
0.644405 0.764685i \(-0.277105\pi\)
\(42\) 1.82992 + 0.255302i 0.00672292 + 0.000937951i
\(43\) 32.3051i 0.114569i −0.998358 0.0572847i \(-0.981756\pi\)
0.998358 0.0572847i \(-0.0182443\pi\)
\(44\) 334.262 + 95.1210i 1.14527 + 0.325910i
\(45\) −133.116 −0.440974
\(46\) 233.763 + 32.6136i 0.749272 + 0.104535i
\(47\) 118.996i 0.369305i −0.982804 0.184652i \(-0.940884\pi\)
0.982804 0.184652i \(-0.0591159\pi\)
\(48\) 101.089 163.233i 0.303977 0.490848i
\(49\) 342.953 0.999862
\(50\) −262.664 36.6456i −0.742925 0.103649i
\(51\) 48.4505i 0.133028i
\(52\) 272.419 257.674i 0.726496 0.687171i
\(53\) 486.003i 1.25958i −0.776766 0.629789i \(-0.783141\pi\)
0.776766 0.629789i \(-0.216859\pi\)
\(54\) 10.5522 75.6350i 0.0265922 0.190604i
\(55\) 642.533 1.57526
\(56\) −1.99042 + 4.50711i −0.00474966 + 0.0107551i
\(57\) 218.270i 0.507203i
\(58\) 50.2839 360.418i 0.113838 0.815952i
\(59\) −241.321 −0.532498 −0.266249 0.963904i \(-0.585784\pi\)
−0.266249 + 0.963904i \(0.585784\pi\)
\(60\) 97.1584 341.422i 0.209052 0.734623i
\(61\) 457.486i 0.960247i −0.877201 0.480124i \(-0.840592\pi\)
0.877201 0.480124i \(-0.159408\pi\)
\(62\) 119.612 857.338i 0.245012 1.75616i
\(63\) 1.95972i 0.00391907i
\(64\) 344.885 + 378.416i 0.673603 + 0.739094i
\(65\) 354.036 596.058i 0.675580 1.13741i
\(66\) −50.9341 + 365.079i −0.0949932 + 0.680880i
\(67\) −121.806 −0.222104 −0.111052 0.993815i \(-0.535422\pi\)
−0.111052 + 0.993815i \(0.535422\pi\)
\(68\) −124.268 35.3628i −0.221613 0.0630643i
\(69\) 250.345i 0.436782i
\(70\) −1.25870 + 9.02193i −0.00214919 + 0.0154047i
\(71\) 251.950i 0.421140i −0.977579 0.210570i \(-0.932468\pi\)
0.977579 0.210570i \(-0.0675319\pi\)
\(72\) 186.290 + 82.2689i 0.304923 + 0.134660i
\(73\) 66.4276i 0.106504i −0.998581 0.0532518i \(-0.983041\pi\)
0.998581 0.0532518i \(-0.0169586\pi\)
\(74\) −953.252 132.993i −1.49748 0.208921i
\(75\) 281.295i 0.433082i
\(76\) 559.828 + 159.310i 0.844956 + 0.240449i
\(77\) 9.45927i 0.0139998i
\(78\) 310.608 + 248.408i 0.450890 + 0.360599i
\(79\) −164.272 −0.233950 −0.116975 0.993135i \(-0.537320\pi\)
−0.116975 + 0.993135i \(0.537320\pi\)
\(80\) 804.778 + 498.391i 1.12471 + 0.696523i
\(81\) 81.0000 0.111111
\(82\) −156.917 + 1124.73i −0.211324 + 1.51470i
\(83\) −311.484 −0.411925 −0.205962 0.978560i \(-0.566032\pi\)
−0.205962 + 0.978560i \(0.566032\pi\)
\(84\) −5.02636 1.43035i −0.00652883 0.00185791i
\(85\) −238.872 −0.304816
\(86\) −12.6256 + 90.4962i −0.0158309 + 0.113470i
\(87\) 385.984 0.475653
\(88\) −899.192 397.100i −1.08925 0.481034i
\(89\) 1009.04i 1.20178i 0.799333 + 0.600889i \(0.205187\pi\)
−0.799333 + 0.600889i \(0.794813\pi\)
\(90\) 372.898 + 52.0251i 0.436744 + 0.0609325i
\(91\) −8.77509 5.21206i −0.0101086 0.00600409i
\(92\) −642.094 182.721i −0.727640 0.207065i
\(93\) 918.151 1.02374
\(94\) −46.5064 + 333.342i −0.0510295 + 0.365762i
\(95\) 1076.12 1.16219
\(96\) −346.975 + 417.757i −0.368885 + 0.444136i
\(97\) 433.098i 0.453345i −0.973971 0.226673i \(-0.927215\pi\)
0.973971 0.226673i \(-0.0727847\pi\)
\(98\) −960.712 134.034i −0.990271 0.138158i
\(99\) −390.975 −0.396913
\(100\) 721.476 + 205.310i 0.721476 + 0.205310i
\(101\) 1615.63i 1.59169i −0.605499 0.795846i \(-0.707026\pi\)
0.605499 0.795846i \(-0.292974\pi\)
\(102\) 18.9356 135.724i 0.0183814 0.131752i
\(103\) 1484.34 1.41996 0.709981 0.704221i \(-0.248703\pi\)
0.709981 + 0.704221i \(0.248703\pi\)
\(104\) −863.832 + 615.352i −0.814478 + 0.580194i
\(105\) −9.66188 −0.00898003
\(106\) −189.942 + 1361.44i −0.174045 + 1.24750i
\(107\) 88.6747i 0.0801169i −0.999197 0.0400585i \(-0.987246\pi\)
0.999197 0.0400585i \(-0.0127544\pi\)
\(108\) −59.1199 + 207.752i −0.0526742 + 0.185101i
\(109\) 1348.39 1.18489 0.592444 0.805612i \(-0.298163\pi\)
0.592444 + 0.805612i \(0.298163\pi\)
\(110\) −1799.92 251.117i −1.56015 0.217664i
\(111\) 1020.87i 0.872942i
\(112\) 7.33724 11.8478i 0.00619022 0.00999567i
\(113\) −1348.96 −1.12300 −0.561501 0.827476i \(-0.689776\pi\)
−0.561501 + 0.827476i \(0.689776\pi\)
\(114\) −85.3052 + 611.439i −0.0700839 + 0.502338i
\(115\) −1234.26 −1.00083
\(116\) −281.720 + 989.986i −0.225492 + 0.792396i
\(117\) −215.427 + 362.696i −0.170224 + 0.286592i
\(118\) 676.012 + 94.3142i 0.527390 + 0.0735790i
\(119\) 3.51665i 0.00270900i
\(120\) −405.605 + 918.452i −0.308554 + 0.698690i
\(121\) 556.175 0.417863
\(122\) −178.797 + 1281.55i −0.132684 + 0.951036i
\(123\) −1204.51 −0.882982
\(124\) −670.136 + 2354.91i −0.485323 + 1.70546i
\(125\) −461.987 −0.330571
\(126\) 0.765906 5.48976i 0.000541526 0.00388148i
\(127\) 221.289 0.154616 0.0773080 0.997007i \(-0.475368\pi\)
0.0773080 + 0.997007i \(0.475368\pi\)
\(128\) −818.229 1194.84i −0.565015 0.825080i
\(129\) −96.9153 −0.0661467
\(130\) −1224.71 + 1531.37i −0.826264 + 1.03315i
\(131\) 2109.42i 1.40688i 0.710756 + 0.703439i \(0.248353\pi\)
−0.710756 + 0.703439i \(0.751647\pi\)
\(132\) 285.363 1002.79i 0.188164 0.661223i
\(133\) 15.8425i 0.0103287i
\(134\) 341.215 + 47.6047i 0.219974 + 0.0306897i
\(135\) 399.349i 0.254596i
\(136\) 334.290 + 147.629i 0.210773 + 0.0930812i
\(137\) 795.708i 0.496219i −0.968732 0.248109i \(-0.920191\pi\)
0.968732 0.248109i \(-0.0798092\pi\)
\(138\) 97.8408 701.290i 0.0603533 0.432592i
\(139\) 2231.81i 1.36187i −0.732344 0.680935i \(-0.761574\pi\)
0.732344 0.680935i \(-0.238426\pi\)
\(140\) 7.05197 24.7812i 0.00425715 0.0149599i
\(141\) −356.987 −0.213218
\(142\) −98.4679 + 705.785i −0.0581919 + 0.417100i
\(143\) 1039.83 1750.68i 0.608079 1.02377i
\(144\) −489.700 303.266i −0.283391 0.175501i
\(145\) 1902.99i 1.08990i
\(146\) −25.9615 + 186.083i −0.0147164 + 0.105482i
\(147\) 1028.86i 0.577270i
\(148\) 2618.36 + 745.107i 1.45424 + 0.413834i
\(149\) 1185.70 0.651924 0.325962 0.945383i \(-0.394312\pi\)
0.325962 + 0.945383i \(0.394312\pi\)
\(150\) −109.937 + 787.991i −0.0598421 + 0.428928i
\(151\) 2242.51i 1.20856i 0.796772 + 0.604280i \(0.206539\pi\)
−0.796772 + 0.604280i \(0.793461\pi\)
\(152\) −1505.98 665.069i −0.803626 0.354896i
\(153\) 145.352 0.0768038
\(154\) −3.69691 + 26.4982i −0.00193445 + 0.0138655i
\(155\) 4526.70i 2.34576i
\(156\) −773.021 817.258i −0.396738 0.419443i
\(157\) 2516.38i 1.27917i 0.768721 + 0.639584i \(0.220893\pi\)
−0.768721 + 0.639584i \(0.779107\pi\)
\(158\) 460.175 + 64.2015i 0.231706 + 0.0323265i
\(159\) −1458.01 −0.727218
\(160\) −2059.64 1710.67i −1.01768 0.845251i
\(161\) 18.1706i 0.00889468i
\(162\) −226.905 31.6567i −0.110045 0.0153530i
\(163\) −3173.77 −1.52509 −0.762543 0.646937i \(-0.776049\pi\)
−0.762543 + 0.646937i \(0.776049\pi\)
\(164\) 879.141 3089.37i 0.418594 1.47097i
\(165\) 1927.60i 0.909474i
\(166\) 872.558 + 121.735i 0.407974 + 0.0569186i
\(167\) 353.974i 0.164020i 0.996632 + 0.0820101i \(0.0261340\pi\)
−0.996632 + 0.0820101i \(0.973866\pi\)
\(168\) 13.5213 + 5.97126i 0.00620948 + 0.00274222i
\(169\) −1051.10 1929.25i −0.478426 0.878128i
\(170\) 669.152 + 93.3571i 0.301892 + 0.0421186i
\(171\) −654.811 −0.292834
\(172\) 70.7361 248.572i 0.0313580 0.110194i
\(173\) 1515.74i 0.666126i 0.942905 + 0.333063i \(0.108082\pi\)
−0.942905 + 0.333063i \(0.891918\pi\)
\(174\) −1081.25 150.852i −0.471090 0.0657244i
\(175\) 20.4170i 0.00881933i
\(176\) 2363.71 + 1463.82i 1.01234 + 0.626929i
\(177\) 723.964i 0.307438i
\(178\) 394.358 2826.62i 0.166058 1.19025i
\(179\) 4704.22i 1.96430i 0.188094 + 0.982151i \(0.439769\pi\)
−0.188094 + 0.982151i \(0.560231\pi\)
\(180\) −1024.27 291.475i −0.424135 0.120696i
\(181\) 1503.98i 0.617623i −0.951123 0.308812i \(-0.900069\pi\)
0.951123 0.308812i \(-0.0999313\pi\)
\(182\) 22.5446 + 18.0300i 0.00918197 + 0.00734327i
\(183\) −1372.46 −0.554399
\(184\) 1727.28 + 762.800i 0.692049 + 0.305622i
\(185\) 5033.12 2.00023
\(186\) −2572.01 358.835i −1.01392 0.141457i
\(187\) −701.590 −0.274360
\(188\) 260.556 915.615i 0.101080 0.355202i
\(189\) 5.87916 0.00226268
\(190\) −3014.54 420.575i −1.15104 0.160588i
\(191\) −1874.17 −0.710002 −0.355001 0.934866i \(-0.615519\pi\)
−0.355001 + 0.934866i \(0.615519\pi\)
\(192\) 1135.25 1034.65i 0.426716 0.388905i
\(193\) 533.681i 0.199043i 0.995035 + 0.0995213i \(0.0317311\pi\)
−0.995035 + 0.0995213i \(0.968269\pi\)
\(194\) −169.265 + 1213.24i −0.0626419 + 0.448997i
\(195\) −1788.18 1062.11i −0.656687 0.390046i
\(196\) 2638.85 + 750.938i 0.961681 + 0.273666i
\(197\) 3695.72 1.33659 0.668297 0.743894i \(-0.267023\pi\)
0.668297 + 0.743894i \(0.267023\pi\)
\(198\) 1095.24 + 152.802i 0.393106 + 0.0548444i
\(199\) −2806.99 −0.999909 −0.499955 0.866052i \(-0.666650\pi\)
−0.499955 + 0.866052i \(0.666650\pi\)
\(200\) −1940.83 857.106i −0.686186 0.303033i
\(201\) 365.418i 0.128232i
\(202\) −631.426 + 4525.85i −0.219935 + 1.57642i
\(203\) 28.0156 0.00968624
\(204\) −106.089 + 372.803i −0.0364102 + 0.127948i
\(205\) 5938.51i 2.02324i
\(206\) −4158.07 580.115i −1.40634 0.196206i
\(207\) 751.035 0.252176
\(208\) 2660.34 1386.18i 0.886835 0.462086i
\(209\) 3160.67 1.04607
\(210\) 27.0658 + 3.77610i 0.00889389 + 0.00124084i
\(211\) 2762.68i 0.901377i 0.892681 + 0.450688i \(0.148821\pi\)
−0.892681 + 0.450688i \(0.851179\pi\)
\(212\) 1064.17 3739.56i 0.344751 1.21148i
\(213\) −755.849 −0.243145
\(214\) −34.6562 + 248.404i −0.0110703 + 0.0793484i
\(215\) 477.816i 0.151566i
\(216\) 246.807 558.869i 0.0777457 0.176047i
\(217\) 66.6415 0.0208475
\(218\) −3777.25 526.985i −1.17352 0.163724i
\(219\) −199.283 −0.0614899
\(220\) 4943.97 + 1406.91i 1.51510 + 0.431153i
\(221\) −386.576 + 650.844i −0.117665 + 0.198102i
\(222\) −398.980 + 2859.76i −0.120621 + 0.864569i
\(223\) 3098.36i 0.930409i 0.885203 + 0.465205i \(0.154019\pi\)
−0.885203 + 0.465205i \(0.845981\pi\)
\(224\) −25.1842 + 30.3217i −0.00751201 + 0.00904444i
\(225\) −843.885 −0.250040
\(226\) 3778.83 + 527.205i 1.11223 + 0.155173i
\(227\) −1946.86 −0.569241 −0.284621 0.958640i \(-0.591868\pi\)
−0.284621 + 0.958640i \(0.591868\pi\)
\(228\) 477.930 1679.48i 0.138823 0.487835i
\(229\) 6878.01 1.98477 0.992384 0.123180i \(-0.0393094\pi\)
0.992384 + 0.123180i \(0.0393094\pi\)
\(230\) 3457.52 + 482.378i 0.991228 + 0.138292i
\(231\) −28.3778 −0.00808278
\(232\) 1176.09 2663.14i 0.332820 0.753637i
\(233\) −1655.20 −0.465388 −0.232694 0.972550i \(-0.574754\pi\)
−0.232694 + 0.972550i \(0.574754\pi\)
\(234\) 745.225 931.824i 0.208192 0.260321i
\(235\) 1760.03i 0.488561i
\(236\) −1856.85 528.404i −0.512164 0.145746i
\(237\) 492.816i 0.135071i
\(238\) 1.37439 9.85117i 0.000374321 0.00268301i
\(239\) 1933.18i 0.523208i −0.965175 0.261604i \(-0.915748\pi\)
0.965175 0.261604i \(-0.0842515\pi\)
\(240\) 1495.17 2414.33i 0.402138 0.649353i
\(241\) 1476.23i 0.394575i 0.980346 + 0.197288i \(0.0632133\pi\)
−0.980346 + 0.197288i \(0.936787\pi\)
\(242\) −1558.01 217.367i −0.413855 0.0577391i
\(243\) 243.000i 0.0641500i
\(244\) 1001.72 3520.13i 0.262823 0.923580i
\(245\) 5072.51 1.32274
\(246\) 3374.18 + 470.750i 0.874512 + 0.122008i
\(247\) 1741.53 2932.06i 0.448627 0.755314i
\(248\) 2797.60 6334.89i 0.716323 1.62204i
\(249\) 934.451i 0.237825i
\(250\) 1294.16 + 180.556i 0.327400 + 0.0456774i
\(251\) 6677.27i 1.67915i −0.543247 0.839573i \(-0.682805\pi\)
0.543247 0.839573i \(-0.317195\pi\)
\(252\) −4.29106 + 15.0791i −0.00107266 + 0.00376942i
\(253\) −3625.13 −0.900830
\(254\) −619.896 86.4850i −0.153133 0.0213644i
\(255\) 716.617i 0.175986i
\(256\) 1825.13 + 3666.90i 0.445588 + 0.895238i
\(257\) −6716.94 −1.63032 −0.815158 0.579238i \(-0.803350\pi\)
−0.815158 + 0.579238i \(0.803350\pi\)
\(258\) 271.489 + 37.8768i 0.0655122 + 0.00913996i
\(259\) 74.0969i 0.0177767i
\(260\) 4029.28 3811.17i 0.961097 0.909073i
\(261\) 1157.95i 0.274618i
\(262\) 824.412 5909.11i 0.194398 1.39338i
\(263\) −1746.72 −0.409534 −0.204767 0.978811i \(-0.565644\pi\)
−0.204767 + 0.978811i \(0.565644\pi\)
\(264\) −1191.30 + 2697.58i −0.277725 + 0.628880i
\(265\) 7188.33i 1.66632i
\(266\) −6.19164 + 44.3796i −0.00142720 + 0.0102297i
\(267\) 3027.12 0.693846
\(268\) −937.238 266.710i −0.213623 0.0607906i
\(269\) 6634.71i 1.50381i 0.659270 + 0.751906i \(0.270865\pi\)
−0.659270 + 0.751906i \(0.729135\pi\)
\(270\) 156.075 1118.69i 0.0351794 0.252154i
\(271\) 7302.89i 1.63697i 0.574527 + 0.818486i \(0.305186\pi\)
−0.574527 + 0.818486i \(0.694814\pi\)
\(272\) −878.748 544.200i −0.195889 0.121312i
\(273\) −15.6362 + 26.3253i −0.00346646 + 0.00583618i
\(274\) −310.982 + 2229.01i −0.0685661 + 0.491459i
\(275\) 4073.31 0.893199
\(276\) −548.162 + 1926.28i −0.119549 + 0.420103i
\(277\) 6130.45i 1.32976i −0.746951 0.664879i \(-0.768483\pi\)
0.746951 0.664879i \(-0.231517\pi\)
\(278\) −872.246 + 6251.97i −0.188179 + 1.34881i
\(279\) 2754.45i 0.591057i
\(280\) −29.4397 + 66.6633i −0.00628343 + 0.0142282i
\(281\) 6601.16i 1.40140i 0.713458 + 0.700698i \(0.247128\pi\)
−0.713458 + 0.700698i \(0.752872\pi\)
\(282\) 1000.03 + 139.519i 0.211173 + 0.0294619i
\(283\) 4058.19i 0.852417i 0.904625 + 0.426209i \(0.140151\pi\)
−0.904625 + 0.426209i \(0.859849\pi\)
\(284\) 551.675 1938.63i 0.115267 0.405058i
\(285\) 3228.37i 0.670990i
\(286\) −3597.09 + 4497.77i −0.743707 + 0.929926i
\(287\) −87.4258 −0.0179811
\(288\) 1253.27 + 1040.92i 0.256422 + 0.212976i
\(289\) −4652.17 −0.946911
\(290\) 743.735 5330.84i 0.150599 1.07944i
\(291\) −1299.30 −0.261739
\(292\) 145.452 511.128i 0.0291504 0.102437i
\(293\) 5382.33 1.07317 0.536585 0.843846i \(-0.319714\pi\)
0.536585 + 0.843846i \(0.319714\pi\)
\(294\) −402.102 + 2882.13i −0.0797656 + 0.571733i
\(295\) −3569.31 −0.704452
\(296\) −7043.60 3110.58i −1.38311 0.610808i
\(297\) 1172.92i 0.229158i
\(298\) −3321.51 463.402i −0.645670 0.0900810i
\(299\) −1997.45 + 3362.93i −0.386339 + 0.650445i
\(300\) 615.931 2164.43i 0.118536 0.416545i
\(301\) −7.03433 −0.00134702
\(302\) 876.426 6281.93i 0.166995 1.19697i
\(303\) −4846.88 −0.918964
\(304\) 3958.77 + 2451.63i 0.746879 + 0.462534i
\(305\) 6766.54i 1.27033i
\(306\) −407.173 56.8069i −0.0760670 0.0106125i
\(307\) 6340.17 1.17867 0.589336 0.807888i \(-0.299389\pi\)
0.589336 + 0.807888i \(0.299389\pi\)
\(308\) 20.7123 72.7845i 0.00383179 0.0134652i
\(309\) 4453.01i 0.819816i
\(310\) 1769.14 12680.6i 0.324131 2.32326i
\(311\) −5140.97 −0.937356 −0.468678 0.883369i \(-0.655270\pi\)
−0.468678 + 0.883369i \(0.655270\pi\)
\(312\) 1846.05 + 2591.50i 0.334975 + 0.470239i
\(313\) −10059.6 −1.81662 −0.908309 0.418300i \(-0.862626\pi\)
−0.908309 + 0.418300i \(0.862626\pi\)
\(314\) 983.463 7049.14i 0.176752 1.26690i
\(315\) 28.9857i 0.00518462i
\(316\) −1263.99 359.695i −0.225016 0.0640329i
\(317\) 3866.52 0.685064 0.342532 0.939506i \(-0.388716\pi\)
0.342532 + 0.939506i \(0.388716\pi\)
\(318\) 4084.31 + 569.825i 0.720242 + 0.100485i
\(319\) 5589.26i 0.980998i
\(320\) 5101.09 + 5597.04i 0.891123 + 0.977763i
\(321\) −266.024 −0.0462555
\(322\) 7.10150 50.9012i 0.00122904 0.00880936i
\(323\) −1175.03 −0.202417
\(324\) 623.256 + 177.360i 0.106868 + 0.0304115i
\(325\) 2244.39 3778.69i 0.383066 0.644935i
\(326\) 8890.67 + 1240.39i 1.51046 + 0.210732i
\(327\) 4045.18i 0.684095i
\(328\) −3670.13 + 8310.64i −0.617833 + 1.39902i
\(329\) −25.9109 −0.00434199
\(330\) −753.351 + 5399.77i −0.125669 + 0.900750i
\(331\) −2632.41 −0.437132 −0.218566 0.975822i \(-0.570138\pi\)
−0.218566 + 0.975822i \(0.570138\pi\)
\(332\) −2396.71 682.033i −0.396195 0.112745i
\(333\) −3062.61 −0.503993
\(334\) 138.342 991.587i 0.0226638 0.162447i
\(335\) −1801.60 −0.293826
\(336\) −35.5435 22.0117i −0.00577100 0.00357392i
\(337\) −2056.36 −0.332394 −0.166197 0.986093i \(-0.553149\pi\)
−0.166197 + 0.986093i \(0.553149\pi\)
\(338\) 2190.45 + 5815.19i 0.352500 + 0.935812i
\(339\) 4046.87i 0.648365i
\(340\) −1838.01 523.042i −0.293176 0.0834291i
\(341\) 13295.3i 2.11139i
\(342\) 1834.32 + 255.916i 0.290025 + 0.0404630i
\(343\) 149.364i 0.0235128i
\(344\) −295.301 + 668.679i −0.0462836 + 0.104804i
\(345\) 3702.78i 0.577829i
\(346\) 592.389 4246.04i 0.0920434 0.659736i
\(347\) 3256.42i 0.503787i −0.967755 0.251893i \(-0.918947\pi\)
0.967755 0.251893i \(-0.0810532\pi\)
\(348\) 2969.96 + 845.161i 0.457490 + 0.130188i
\(349\) −9918.73 −1.52131 −0.760655 0.649156i \(-0.775122\pi\)
−0.760655 + 0.649156i \(0.775122\pi\)
\(350\) −7.97946 + 57.1941i −0.00121863 + 0.00873473i
\(351\) 1088.09 + 646.281i 0.165464 + 0.0982791i
\(352\) −6049.34 5024.38i −0.915997 0.760797i
\(353\) 3799.70i 0.572911i 0.958093 + 0.286456i \(0.0924771\pi\)
−0.958093 + 0.286456i \(0.907523\pi\)
\(354\) 282.943 2028.04i 0.0424809 0.304489i
\(355\) 3726.51i 0.557134i
\(356\) −2209.42 + 7764.08i −0.328930 + 1.15589i
\(357\) 10.5499 0.00156404
\(358\) 1838.52 13177.9i 0.271422 1.94546i
\(359\) 9293.42i 1.36626i 0.730296 + 0.683131i \(0.239382\pi\)
−0.730296 + 0.683131i \(0.760618\pi\)
\(360\) 2755.36 + 1216.82i 0.403389 + 0.178144i
\(361\) −1565.46 −0.228234
\(362\) −587.791 + 4213.09i −0.0853414 + 0.611699i
\(363\) 1668.53i 0.241253i
\(364\) −56.1076 59.3184i −0.00807922 0.00854157i
\(365\) 982.511i 0.140896i
\(366\) 3844.66 + 536.390i 0.549081 + 0.0766053i
\(367\) 13669.3 1.94423 0.972116 0.234502i \(-0.0753461\pi\)
0.972116 + 0.234502i \(0.0753461\pi\)
\(368\) −4540.51 2811.89i −0.643181 0.398315i
\(369\) 3613.52i 0.509790i
\(370\) −14099.3 1967.07i −1.98104 0.276386i
\(371\) −105.826 −0.0148091
\(372\) 7064.73 + 2010.41i 0.984648 + 0.280201i
\(373\) 9533.65i 1.32341i 0.749762 + 0.661707i \(0.230168\pi\)
−0.749762 + 0.661707i \(0.769832\pi\)
\(374\) 1965.36 + 274.198i 0.271728 + 0.0379103i
\(375\) 1385.96i 0.190855i
\(376\) −1087.74 + 2463.08i −0.149191 + 0.337828i
\(377\) 5184.99 + 3079.68i 0.708330 + 0.420721i
\(378\) −16.4693 2.29772i −0.00224097 0.000312650i
\(379\) −12047.2 −1.63278 −0.816390 0.577501i \(-0.804028\pi\)
−0.816390 + 0.577501i \(0.804028\pi\)
\(380\) 8280.25 + 2356.31i 1.11781 + 0.318095i
\(381\) 663.867i 0.0892675i
\(382\) 5250.11 + 732.471i 0.703191 + 0.0981060i
\(383\) 6788.79i 0.905721i −0.891581 0.452860i \(-0.850404\pi\)
0.891581 0.452860i \(-0.149596\pi\)
\(384\) −3584.53 + 2454.69i −0.476360 + 0.326212i
\(385\) 139.909i 0.0185206i
\(386\) 208.575 1495.00i 0.0275031 0.197133i
\(387\) 290.746i 0.0381898i
\(388\) 948.324 3332.48i 0.124082 0.436034i
\(389\) 626.526i 0.0816610i −0.999166 0.0408305i \(-0.987000\pi\)
0.999166 0.0408305i \(-0.0130004\pi\)
\(390\) 4594.11 + 3674.14i 0.596492 + 0.477044i
\(391\) 1347.70 0.174313
\(392\) −7098.72 3134.93i −0.914642 0.403923i
\(393\) 6328.26 0.812261
\(394\) −10352.8 1444.38i −1.32377 0.184687i
\(395\) −2429.70 −0.309497
\(396\) −3008.36 856.089i −0.381757 0.108637i
\(397\) −6987.59 −0.883368 −0.441684 0.897171i \(-0.645619\pi\)
−0.441684 + 0.897171i \(0.645619\pi\)
\(398\) 7863.20 + 1097.04i 0.990318 + 0.138165i
\(399\) −47.5276 −0.00596330
\(400\) 5101.86 + 3159.53i 0.637732 + 0.394941i
\(401\) 1330.10i 0.165641i −0.996564 0.0828204i \(-0.973607\pi\)
0.996564 0.0828204i \(-0.0263928\pi\)
\(402\) 142.814 1023.64i 0.0177187 0.127002i
\(403\) 12333.7 + 7325.73i 1.52453 + 0.905510i
\(404\) 3537.62 12431.5i 0.435652 1.53091i
\(405\) 1198.05 0.146991
\(406\) −78.4799 10.9492i −0.00959333 0.00133842i
\(407\) 14782.7 1.80038
\(408\) 442.886 1002.87i 0.0537405 0.121690i
\(409\) 4071.81i 0.492270i −0.969236 0.246135i \(-0.920839\pi\)
0.969236 0.246135i \(-0.0791606\pi\)
\(410\) −2320.91 + 16635.5i −0.279565 + 2.00383i
\(411\) −2387.12 −0.286492
\(412\) 11421.3 + 3250.14i 1.36574 + 0.388648i
\(413\) 52.5469i 0.00626069i
\(414\) −2103.87 293.522i −0.249757 0.0348450i
\(415\) −4607.06 −0.544944
\(416\) −7994.16 + 2843.36i −0.942178 + 0.335113i
\(417\) −6695.44 −0.786276
\(418\) −8853.98 1235.27i −1.03603 0.144543i
\(419\) 6626.33i 0.772596i 0.922374 + 0.386298i \(0.126246\pi\)
−0.922374 + 0.386298i \(0.873754\pi\)
\(420\) −74.3435 21.1559i −0.00863712 0.00245786i
\(421\) −3778.98 −0.437474 −0.218737 0.975784i \(-0.570194\pi\)
−0.218737 + 0.975784i \(0.570194\pi\)
\(422\) 1079.72 7739.07i 0.124550 0.892730i
\(423\) 1070.96i 0.123102i
\(424\) −4442.55 + 10059.7i −0.508843 + 1.15222i
\(425\) −1514.32 −0.172836
\(426\) 2117.36 + 295.404i 0.240813 + 0.0335971i
\(427\) −99.6161 −0.0112898
\(428\) 194.165 682.309i 0.0219283 0.0770576i
\(429\) −5252.03 3119.50i −0.591073 0.351075i
\(430\) −186.742 + 1338.50i −0.0209430 + 0.150112i
\(431\) 5521.55i 0.617085i −0.951211 0.308543i \(-0.900159\pi\)
0.951211 0.308543i \(-0.0998412\pi\)
\(432\) −909.798 + 1469.10i −0.101326 + 0.163616i
\(433\) −2290.27 −0.254188 −0.127094 0.991891i \(-0.540565\pi\)
−0.127094 + 0.991891i \(0.540565\pi\)
\(434\) −186.682 26.0451i −0.0206476 0.00288065i
\(435\) 5708.97 0.629251
\(436\) 10375.2 + 2952.48i 1.13964 + 0.324308i
\(437\) −6071.42 −0.664612
\(438\) 558.250 + 77.8845i 0.0609000 + 0.00849649i
\(439\) 3708.61 0.403194 0.201597 0.979469i \(-0.435387\pi\)
0.201597 + 0.979469i \(0.435387\pi\)
\(440\) −13299.7 5873.38i −1.44099 0.636370i
\(441\) −3086.57 −0.333287
\(442\) 1337.28 1672.12i 0.143909 0.179943i
\(443\) 1552.41i 0.166495i 0.996529 + 0.0832476i \(0.0265292\pi\)
−0.996529 + 0.0832476i \(0.973471\pi\)
\(444\) 2235.32 7855.09i 0.238927 0.839608i
\(445\) 14924.4i 1.58986i
\(446\) 1210.91 8679.41i 0.128561 0.921484i
\(447\) 3557.11i 0.376388i
\(448\) 82.3988 75.0975i 0.00868969 0.00791969i
\(449\) 13095.1i 1.37638i 0.725531 + 0.688190i \(0.241594\pi\)
−0.725531 + 0.688190i \(0.758406\pi\)
\(450\) 2363.97 + 329.811i 0.247642 + 0.0345498i
\(451\) 17441.9i 1.82108i
\(452\) −10379.6 2953.71i −1.08012 0.307369i
\(453\) 6727.52 0.697763
\(454\) 5453.73 + 760.880i 0.563781 + 0.0786561i
\(455\) −129.790 77.0901i −0.0133728 0.00794294i
\(456\) −1995.21 + 4517.94i −0.204899 + 0.463974i
\(457\) 11281.8i 1.15480i −0.816462 0.577399i \(-0.804068\pi\)
0.816462 0.577399i \(-0.195932\pi\)
\(458\) −19267.4 2688.09i −1.96573 0.274250i
\(459\) 436.055i 0.0443427i
\(460\) −9497.02 2702.57i −0.962611 0.273930i
\(461\) −1825.45 −0.184425 −0.0922123 0.995739i \(-0.529394\pi\)
−0.0922123 + 0.995739i \(0.529394\pi\)
\(462\) 79.4947 + 11.0907i 0.00800525 + 0.00111686i
\(463\) 8151.83i 0.818246i 0.912479 + 0.409123i \(0.134165\pi\)
−0.912479 + 0.409123i \(0.865835\pi\)
\(464\) −4335.40 + 7000.60i −0.433763 + 0.700419i
\(465\) 13580.1 1.35433
\(466\) 4636.69 + 646.890i 0.460924 + 0.0643060i
\(467\) 12778.0i 1.26616i −0.774088 0.633078i \(-0.781791\pi\)
0.774088 0.633078i \(-0.218209\pi\)
\(468\) −2451.78 + 2319.06i −0.242165 + 0.229057i
\(469\) 26.5229i 0.00261133i
\(470\) −687.863 + 4930.37i −0.0675079 + 0.483874i
\(471\) 7549.15 0.738528
\(472\) 4995.07 + 2205.92i 0.487112 + 0.215118i
\(473\) 1403.39i 0.136422i
\(474\) 192.604 1380.52i 0.0186637 0.133775i
\(475\) 6822.04 0.658982
\(476\) −7.70014 + 27.0589i −0.000741461 + 0.00260555i
\(477\) 4374.03i 0.419859i
\(478\) −755.532 + 5415.40i −0.0722954 + 0.518190i
\(479\) 8119.97i 0.774553i −0.921964 0.387277i \(-0.873416\pi\)
0.921964 0.387277i \(-0.126584\pi\)
\(480\) −5132.00 + 6178.92i −0.488006 + 0.587558i
\(481\) 8145.29 13713.5i 0.772127 1.29996i
\(482\) 576.948 4135.37i 0.0545213 0.390790i
\(483\) 54.5118 0.00513534
\(484\) 4279.50 + 1217.82i 0.401906 + 0.114370i
\(485\) 6405.83i 0.599740i
\(486\) −94.9702 + 680.715i −0.00886407 + 0.0635347i
\(487\) 929.534i 0.0864912i −0.999064 0.0432456i \(-0.986230\pi\)
0.999064 0.0432456i \(-0.0137698\pi\)
\(488\) −4181.88 + 9469.43i −0.387919 + 0.878404i
\(489\) 9521.32i 0.880509i
\(490\) −14209.6 1982.46i −1.31005 0.182772i
\(491\) 5954.02i 0.547253i 0.961836 + 0.273627i \(0.0882232\pi\)
−0.961836 + 0.273627i \(0.911777\pi\)
\(492\) −9268.10 2637.42i −0.849264 0.241675i
\(493\) 2077.90i 0.189825i
\(494\) −6024.46 + 7532.94i −0.548691 + 0.686079i
\(495\) −5782.79 −0.525085
\(496\) −10312.7 + 16652.5i −0.933580 + 1.50750i
\(497\) −54.8612 −0.00495143
\(498\) 365.206 2617.67i 0.0328620 0.235544i
\(499\) −997.844 −0.0895183 −0.0447591 0.998998i \(-0.514252\pi\)
−0.0447591 + 0.998998i \(0.514252\pi\)
\(500\) −3554.77 1011.58i −0.317948 0.0904784i
\(501\) 1061.92 0.0946971
\(502\) −2609.64 + 18705.0i −0.232020 + 1.66304i
\(503\) −10659.5 −0.944893 −0.472447 0.881359i \(-0.656629\pi\)
−0.472447 + 0.881359i \(0.656629\pi\)
\(504\) 17.9138 40.5640i 0.00158322 0.00358504i
\(505\) 23896.3i 2.10568i
\(506\) 10155.1 + 1416.79i 0.892189 + 0.124474i
\(507\) −5787.74 + 3153.31i −0.506987 + 0.276220i
\(508\) 1702.71 + 484.540i 0.148712 + 0.0423189i
\(509\) −9446.08 −0.822574 −0.411287 0.911506i \(-0.634921\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(510\) 280.071 2007.46i 0.0243172 0.174297i
\(511\) −14.4644 −0.00125219
\(512\) −3679.61 10985.4i −0.317612 0.948221i
\(513\) 1964.43i 0.169068i
\(514\) 18816.1 + 2625.14i 1.61468 + 0.225272i
\(515\) 21954.4 1.87850
\(516\) −745.716 212.208i −0.0636208 0.0181046i
\(517\) 5169.37i 0.439746i
\(518\) −28.9589 + 207.567i −0.00245633 + 0.0176062i
\(519\) 4547.23 0.384588
\(520\) −12776.7 + 9101.49i −1.07749 + 0.767551i
\(521\) 22602.3 1.90063 0.950313 0.311296i \(-0.100763\pi\)
0.950313 + 0.311296i \(0.100763\pi\)
\(522\) −452.555 + 3243.76i −0.0379460 + 0.271984i
\(523\) 15055.5i 1.25876i −0.777099 0.629379i \(-0.783309\pi\)
0.777099 0.629379i \(-0.216691\pi\)
\(524\) −4618.84 + 16231.0i −0.385067 + 1.35315i
\(525\) −61.2511 −0.00509184
\(526\) 4893.09 + 682.661i 0.405606 + 0.0565883i
\(527\) 4942.77i 0.408558i
\(528\) 4391.46 7091.12i 0.361958 0.584472i
\(529\) −5203.38 −0.427664
\(530\) −2809.37 + 20136.6i −0.230248 + 1.65034i
\(531\) 2171.89 0.177499
\(532\) 34.6893 121.901i 0.00282701 0.00993433i
\(533\) −16180.4 9610.50i −1.31491 0.781008i
\(534\) −8479.87 1183.07i −0.687191 0.0958737i
\(535\) 1311.56i 0.105988i
\(536\) 2521.24 + 1113.43i 0.203174 + 0.0897253i
\(537\) 14112.7 1.13409
\(538\) 2593.00 18585.8i 0.207792 1.48939i
\(539\) 14898.4 1.19058
\(540\) −874.426 + 3072.80i −0.0696839 + 0.244874i
\(541\) −7560.93 −0.600869 −0.300434 0.953802i \(-0.597132\pi\)
−0.300434 + 0.953802i \(0.597132\pi\)
\(542\) 2854.15 20457.6i 0.226192 1.62127i
\(543\) −4511.93 −0.356585
\(544\) 2248.95 + 1867.90i 0.177248 + 0.147216i
\(545\) 19943.7 1.56751
\(546\) 54.0901 67.6338i 0.00423964 0.00530121i
\(547\) 23434.6i 1.83179i 0.401415 + 0.915896i \(0.368519\pi\)
−0.401415 + 0.915896i \(0.631481\pi\)
\(548\) 1742.30 6122.59i 0.135817 0.477270i
\(549\) 4117.37i 0.320082i
\(550\) −11410.5 1591.95i −0.884631 0.123420i
\(551\) 9360.97i 0.723759i
\(552\) 2288.40 5181.85i 0.176451 0.399555i
\(553\) 35.7697i 0.00275060i
\(554\) −2395.93 + 17173.2i −0.183742 + 1.31700i
\(555\) 15099.4i 1.15483i
\(556\) 4886.84 17172.7i 0.372748 1.30987i
\(557\) −5076.81 −0.386196 −0.193098 0.981179i \(-0.561854\pi\)
−0.193098 + 0.981179i \(0.561854\pi\)
\(558\) −1076.51 + 7716.04i −0.0816705 + 0.585387i
\(559\) −1301.88 773.266i −0.0985039 0.0585075i
\(560\) 108.523 175.238i 0.00818917 0.0132235i
\(561\) 2104.77i 0.158402i
\(562\) 2579.89 18491.8i 0.193641 1.38795i
\(563\) 3458.50i 0.258896i −0.991586 0.129448i \(-0.958679\pi\)
0.991586 0.129448i \(-0.0413206\pi\)
\(564\) −2746.84 781.669i −0.205076 0.0583585i
\(565\) −19952.0 −1.48564
\(566\) 1586.04 11368.2i 0.117785 0.844241i
\(567\) 17.6375i 0.00130636i
\(568\) −2303.07 + 5215.06i −0.170131 + 0.385245i
\(569\) 262.599 0.0193475 0.00967376 0.999953i \(-0.496921\pi\)
0.00967376 + 0.999953i \(0.496921\pi\)
\(570\) −1261.72 + 9043.62i −0.0927155 + 0.664554i
\(571\) 6517.21i 0.477647i −0.971063 0.238824i \(-0.923238\pi\)
0.971063 0.238824i \(-0.0767618\pi\)
\(572\) 11834.3 11193.8i 0.865068 0.818242i
\(573\) 5622.52i 0.409920i
\(574\) 244.906 + 34.1681i 0.0178086 + 0.00248458i
\(575\) −7824.53 −0.567488
\(576\) −3103.96 3405.74i −0.224534 0.246365i
\(577\) 468.070i 0.0337712i 0.999857 + 0.0168856i \(0.00537512\pi\)
−0.999857 + 0.0168856i \(0.994625\pi\)
\(578\) 13032.1 + 1818.18i 0.937827 + 0.130841i
\(579\) 1601.04 0.114917
\(580\) −4166.84 + 14642.6i −0.298308 + 1.04828i
\(581\) 67.8245i 0.00484309i
\(582\) 3639.71 + 507.796i 0.259228 + 0.0361663i
\(583\) 21112.8i 1.49983i
\(584\) −607.214 + 1374.97i −0.0430252 + 0.0974261i
\(585\) −3186.32 + 5364.53i −0.225193 + 0.379138i
\(586\) −15077.5 2103.54i −1.06288 0.148288i
\(587\) −18079.3 −1.27123 −0.635614 0.772007i \(-0.719253\pi\)
−0.635614 + 0.772007i \(0.719253\pi\)
\(588\) 2252.81 7916.56i 0.158001 0.555227i
\(589\) 22267.2i 1.55773i
\(590\) 9998.70 + 1394.97i 0.697695 + 0.0973392i
\(591\) 11087.2i 0.771683i
\(592\) 18515.5 + 11466.5i 1.28544 + 0.796063i
\(593\) 12109.1i 0.838552i 0.907859 + 0.419276i \(0.137716\pi\)
−0.907859 + 0.419276i \(0.862284\pi\)
\(594\) 458.407 3285.71i 0.0316644 0.226960i
\(595\) 52.0137i 0.00358379i
\(596\) 9123.41 + 2596.25i 0.627030 + 0.178434i
\(597\) 8420.96i 0.577298i
\(598\) 6909.75 8639.90i 0.472510 0.590822i
\(599\) −3624.13 −0.247209 −0.123604 0.992332i \(-0.539445\pi\)
−0.123604 + 0.992332i \(0.539445\pi\)
\(600\) −2571.32 + 5822.49i −0.174956 + 0.396170i
\(601\) 15755.1 1.06933 0.534664 0.845065i \(-0.320438\pi\)
0.534664 + 0.845065i \(0.320438\pi\)
\(602\) 19.7052 + 2.74919i 0.00133410 + 0.000186127i
\(603\) 1096.25 0.0740347
\(604\) −4910.26 + 17255.0i −0.330787 + 1.16241i
\(605\) 8226.23 0.552800
\(606\) 13577.5 + 1894.28i 0.910149 + 0.126980i
\(607\) 9240.47 0.617890 0.308945 0.951080i \(-0.400024\pi\)
0.308945 + 0.951080i \(0.400024\pi\)
\(608\) −10131.5 8414.92i −0.675803 0.561299i
\(609\) 84.0467i 0.00559236i
\(610\) −2644.53 + 18955.1i −0.175531 + 1.25815i
\(611\) −4795.47 2848.32i −0.317519 0.188594i
\(612\) 1118.41 + 318.266i 0.0738709 + 0.0210214i
\(613\) 8042.08 0.529880 0.264940 0.964265i \(-0.414648\pi\)
0.264940 + 0.964265i \(0.414648\pi\)
\(614\) −17760.7 2477.89i −1.16737 0.162866i
\(615\) −17815.5 −1.16812
\(616\) −86.4671 + 195.796i −0.00565562 + 0.0128066i
\(617\) 14180.1i 0.925236i 0.886558 + 0.462618i \(0.153090\pi\)
−0.886558 + 0.462618i \(0.846910\pi\)
\(618\) −1740.34 + 12474.2i −0.113280 + 0.811951i
\(619\) 8596.09 0.558168 0.279084 0.960267i \(-0.409969\pi\)
0.279084 + 0.960267i \(0.409969\pi\)
\(620\) −9911.79 + 34830.8i −0.642044 + 2.25619i
\(621\) 2253.10i 0.145594i
\(622\) 14401.4 + 2009.22i 0.928365 + 0.129521i
\(623\) 219.715 0.0141296
\(624\) −4158.53 7981.03i −0.266786 0.512014i
\(625\) −18553.7 −1.18744
\(626\) 28179.9 + 3931.53i 1.79919 + 0.251015i
\(627\) 9482.01i 0.603948i
\(628\) −5509.94 + 19362.4i −0.350113 + 1.23032i
\(629\) −5495.73 −0.348377
\(630\) 11.3283 81.1974i 0.000716396 0.00513489i
\(631\) 12694.0i 0.800858i 0.916328 + 0.400429i \(0.131139\pi\)
−0.916328 + 0.400429i \(0.868861\pi\)
\(632\) 3400.24 + 1501.61i 0.214010 + 0.0945108i
\(633\) 8288.03 0.520410
\(634\) −10831.3 1511.13i −0.678492 0.0946602i
\(635\) 3273.02 0.204545
\(636\) −11218.7 3192.50i −0.699448 0.199042i
\(637\) 8209.03 13820.8i 0.510602 0.859656i
\(638\) 2184.42 15657.2i 0.135551 0.971587i
\(639\) 2267.55i 0.140380i
\(640\) −12102.2 17672.6i −0.747471 1.09152i
\(641\) −9877.43 −0.608635 −0.304318 0.952571i \(-0.598428\pi\)
−0.304318 + 0.952571i \(0.598428\pi\)
\(642\) 745.212 + 103.969i 0.0458118 + 0.00639146i
\(643\) −1673.36 −0.102630 −0.0513148 0.998683i \(-0.516341\pi\)
−0.0513148 + 0.998683i \(0.516341\pi\)
\(644\) −39.7868 + 139.814i −0.00243450 + 0.00855503i
\(645\) −1433.45 −0.0875068
\(646\) 3291.62 + 459.231i 0.200475 + 0.0279694i
\(647\) 9339.92 0.567527 0.283764 0.958894i \(-0.408417\pi\)
0.283764 + 0.958894i \(0.408417\pi\)
\(648\) −1676.61 740.420i −0.101641 0.0448865i
\(649\) −10483.4 −0.634067
\(650\) −7764.01 + 9708.05i −0.468507 + 0.585817i
\(651\) 199.924i 0.0120363i
\(652\) −24420.6 6949.38i −1.46685 0.417421i
\(653\) 7410.32i 0.444086i 0.975037 + 0.222043i \(0.0712725\pi\)
−0.975037 + 0.222043i \(0.928727\pi\)
\(654\) −1580.95 + 11331.8i −0.0945263 + 0.677533i
\(655\) 31199.8i 1.86119i
\(656\) 13529.1 21846.2i 0.805218 1.30023i
\(657\) 597.848i 0.0355012i
\(658\) 72.5842 + 10.1266i 0.00430034 + 0.000599964i
\(659\) 13144.9i 0.777013i −0.921446 0.388507i \(-0.872991\pi\)
0.921446 0.388507i \(-0.127009\pi\)
\(660\) 4220.72 14831.9i 0.248926 0.874745i
\(661\) −8190.36 −0.481949 −0.240974 0.970531i \(-0.577467\pi\)
−0.240974 + 0.970531i \(0.577467\pi\)
\(662\) 7374.17 + 1028.81i 0.432938 + 0.0604016i
\(663\) 1952.53 + 1159.73i 0.114374 + 0.0679338i
\(664\) 6447.35 + 2847.27i 0.376816 + 0.166409i
\(665\) 234.322i 0.0136641i
\(666\) 8579.27 + 1196.94i 0.499159 + 0.0696404i
\(667\) 10736.6i 0.623270i
\(668\) −775.072 + 2723.66i −0.0448929 + 0.157757i
\(669\) 9295.07 0.537172
\(670\) 5046.81 + 704.107i 0.291008 + 0.0406001i
\(671\) 19873.9i 1.14341i
\(672\) 90.9651 + 75.5526i 0.00522181 + 0.00433706i
\(673\) −4991.19 −0.285879 −0.142939 0.989731i \(-0.545655\pi\)
−0.142939 + 0.989731i \(0.545655\pi\)
\(674\) 5760.46 + 803.673i 0.329206 + 0.0459293i
\(675\) 2531.66i 0.144361i
\(676\) −3863.39 17146.1i −0.219811 0.975543i
\(677\) 2640.52i 0.149902i −0.997187 0.0749508i \(-0.976120\pi\)
0.997187 0.0749508i \(-0.0238800\pi\)
\(678\) 1581.61 11336.5i 0.0895893 0.642146i
\(679\) −94.3058 −0.00533008
\(680\) 4944.38 + 2183.53i 0.278836 + 0.123139i
\(681\) 5840.58i 0.328651i
\(682\) 5196.13 37244.1i 0.291745 2.09113i
\(683\) 32008.8 1.79324 0.896621 0.442799i \(-0.146015\pi\)
0.896621 + 0.442799i \(0.146015\pi\)
\(684\) −5038.45 1433.79i −0.281652 0.0801497i
\(685\) 11769.1i 0.656458i
\(686\) −58.3750 + 418.412i −0.00324893 + 0.0232873i
\(687\) 20634.0i 1.14591i
\(688\) 1088.56 1757.76i 0.0603212 0.0974038i
\(689\) −19585.7 11633.1i −1.08295 0.643232i
\(690\) 1447.13 10372.6i 0.0798427 0.572286i
\(691\) 28514.4 1.56981 0.784904 0.619618i \(-0.212712\pi\)
0.784904 + 0.619618i \(0.212712\pi\)
\(692\) −3318.91 + 11662.9i −0.182321 + 0.640690i
\(693\) 85.1335i 0.00466660i
\(694\) −1272.69 + 9122.21i −0.0696118 + 0.498954i
\(695\) 33010.1i 1.80165i
\(696\) −7989.42 3528.27i −0.435112 0.192154i
\(697\) 6484.33i 0.352384i
\(698\) 27785.3 + 3876.48i 1.50672 + 0.210210i
\(699\) 4965.59i 0.268692i
\(700\) 44.7057 157.099i 0.00241388 0.00848255i
\(701\) 25877.8i 1.39428i −0.716935 0.697140i \(-0.754455\pi\)
0.716935 0.697140i \(-0.245545\pi\)
\(702\) −2795.47 2235.68i −0.150297 0.120200i
\(703\) 24758.4 1.32828
\(704\) 14982.3 + 16439.0i 0.802086 + 0.880069i
\(705\) −5280.10 −0.282071
\(706\) 1485.01 10644.1i 0.0791632 0.567416i
\(707\) −351.798 −0.0187139
\(708\) −1585.21 + 5570.55i −0.0841467 + 0.295698i
\(709\) −9601.34 −0.508584 −0.254292 0.967127i \(-0.581842\pi\)
−0.254292 + 0.967127i \(0.581842\pi\)
\(710\) −1456.41 + 10439.1i −0.0769832 + 0.551790i
\(711\) 1478.45 0.0779833
\(712\) 9223.64 20886.0i 0.485492 1.09935i
\(713\) 25539.4i 1.34145i
\(714\) −29.5535 4.12317i −0.00154904 0.000216114i
\(715\) 15379.9 25893.8i 0.804441 1.35437i
\(716\) −10300.5 + 36196.7i −0.537636 + 1.88929i
\(717\) −5799.53 −0.302074
\(718\) 3632.09 26033.6i 0.188786 1.35316i
\(719\) 24296.8 1.26025 0.630124 0.776494i \(-0.283004\pi\)
0.630124 + 0.776494i \(0.283004\pi\)
\(720\) −7243.00 4485.52i −0.374904 0.232174i
\(721\) 323.210i 0.0166948i
\(722\) 4385.31 + 611.818i 0.226045 + 0.0315367i
\(723\) 4428.70 0.227808
\(724\) 3293.15 11572.4i 0.169046 0.594039i
\(725\) 12063.9i 0.617991i
\(726\) −652.100 + 4674.04i −0.0333357 + 0.238939i
\(727\) −2605.14 −0.132901 −0.0664507 0.997790i \(-0.521168\pi\)
−0.0664507 + 0.997790i \(0.521168\pi\)
\(728\) 133.991 + 188.097i 0.00682147 + 0.00957600i
\(729\) −729.000 −0.0370370
\(730\) −383.989 + 2752.30i −0.0194686 + 0.139544i
\(731\) 521.733i 0.0263981i
\(732\) −10560.4 3005.17i −0.533229 0.151741i
\(733\) 38944.7 1.96242 0.981210 0.192943i \(-0.0618032\pi\)
0.981210 + 0.192943i \(0.0618032\pi\)
\(734\) −38291.8 5342.30i −1.92558 0.268648i
\(735\) 15217.5i 0.763683i
\(736\) 11620.4 + 9651.48i 0.581973 + 0.483367i
\(737\) −5291.45 −0.264468
\(738\) 1412.25 10122.5i 0.0704413 0.504900i
\(739\) −31475.0 −1.56675 −0.783373 0.621551i \(-0.786503\pi\)
−0.783373 + 0.621551i \(0.786503\pi\)
\(740\) 38727.4 + 11020.7i 1.92385 + 0.547470i
\(741\) −8796.18 5224.59i −0.436081 0.259015i
\(742\) 296.449 + 41.3592i 0.0146671 + 0.00204628i
\(743\) 23967.1i 1.18340i −0.806157 0.591701i \(-0.798457\pi\)
0.806157 0.591701i \(-0.201543\pi\)
\(744\) −19004.7 8392.81i −0.936485 0.413569i
\(745\) 17537.4 0.862444
\(746\) 3725.98 26706.6i 0.182866 1.31072i
\(747\) 2803.35 0.137308
\(748\) −5398.39 1536.22i −0.263883 0.0750933i
\(749\) −19.3086 −0.000941952
\(750\) 541.667 3882.49i 0.0263718 0.189024i
\(751\) 21751.2 1.05687 0.528436 0.848973i \(-0.322779\pi\)
0.528436 + 0.848973i \(0.322779\pi\)
\(752\) 4009.71 6474.69i 0.194440 0.313973i
\(753\) −20031.8 −0.969456
\(754\) −13321.1 10653.5i −0.643401 0.514560i
\(755\) 33168.3i 1.59883i
\(756\) 45.2373 + 12.8732i 0.00217628 + 0.000619302i
\(757\) 34563.4i 1.65948i 0.558150 + 0.829740i \(0.311511\pi\)
−0.558150 + 0.829740i \(0.688489\pi\)
\(758\) 33747.8 + 4708.34i 1.61712 + 0.225613i
\(759\) 10875.4i 0.520094i
\(760\) −22274.5 9836.84i −1.06313 0.469500i
\(761\) 1383.22i 0.0658893i 0.999457 + 0.0329446i \(0.0104885\pi\)
−0.999457 + 0.0329446i \(0.989511\pi\)
\(762\) −259.455 + 1859.69i −0.0123347 + 0.0884112i
\(763\) 293.608i 0.0139310i
\(764\) −14420.8 4103.74i −0.682890 0.194330i
\(765\) 2149.85 0.101605
\(766\) −2653.22 + 19017.4i −0.125150 + 0.897032i
\(767\) −5776.35 + 9725.13i −0.271932 + 0.457828i
\(768\) 11000.7 5475.39i 0.516866 0.257260i
\(769\) 7417.38i 0.347825i 0.984761 + 0.173913i \(0.0556411\pi\)
−0.984761 + 0.173913i \(0.944359\pi\)
\(770\) −54.6799 + 391.927i −0.00255913 + 0.0183430i
\(771\) 20150.8i 0.941264i
\(772\) −1168.56 + 4106.42i −0.0544786 + 0.191442i
\(773\) −15282.4 −0.711085 −0.355542 0.934660i \(-0.615704\pi\)
−0.355542 + 0.934660i \(0.615704\pi\)
\(774\) 113.631