Properties

Label 312.4.m.a.181.46
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.46
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.45

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.457367 + 2.79120i) q^{2} -3.00000i q^{3} +(-7.58163 + 2.55321i) q^{4} -4.56929 q^{5} +(8.37361 - 1.37210i) q^{6} +23.0002i q^{7} +(-10.5941 - 19.9941i) q^{8} -9.00000 q^{9} +(-2.08984 - 12.7538i) q^{10} +9.02801 q^{11} +(7.65962 + 22.7449i) q^{12} +(-3.63901 - 46.7307i) q^{13} +(-64.1982 + 10.5195i) q^{14} +13.7079i q^{15} +(50.9623 - 38.7150i) q^{16} -59.4245 q^{17} +(-4.11630 - 25.1208i) q^{18} +27.0061 q^{19} +(34.6427 - 11.6664i) q^{20} +69.0006 q^{21} +(4.12911 + 25.1990i) q^{22} +35.7672 q^{23} +(-59.9824 + 31.7823i) q^{24} -104.122 q^{25} +(128.770 - 31.5303i) q^{26} +27.0000i q^{27} +(-58.7243 - 174.379i) q^{28} -142.184i q^{29} +(-38.2615 + 6.26953i) q^{30} -303.839i q^{31} +(131.370 + 124.539i) q^{32} -27.0840i q^{33} +(-27.1788 - 165.866i) q^{34} -105.095i q^{35} +(68.2347 - 22.9789i) q^{36} +241.300 q^{37} +(12.3517 + 75.3795i) q^{38} +(-140.192 + 10.9170i) q^{39} +(48.4076 + 91.3590i) q^{40} -280.464i q^{41} +(31.5586 + 192.595i) q^{42} -198.269i q^{43} +(-68.4470 + 23.0504i) q^{44} +41.1236 q^{45} +(16.3587 + 99.8335i) q^{46} -319.409i q^{47} +(-116.145 - 152.887i) q^{48} -186.009 q^{49} +(-47.6217 - 290.624i) q^{50} +178.273i q^{51} +(146.903 + 345.004i) q^{52} -531.123i q^{53} +(-75.3625 + 12.3489i) q^{54} -41.2516 q^{55} +(459.869 - 243.666i) q^{56} -81.0182i q^{57} +(396.863 - 65.0301i) q^{58} -378.115 q^{59} +(-34.9991 - 103.928i) q^{60} +878.946i q^{61} +(848.076 - 138.966i) q^{62} -207.002i q^{63} +(-287.530 + 423.640i) q^{64} +(16.6277 + 213.526i) q^{65} +(75.5970 - 12.3873i) q^{66} -247.600 q^{67} +(450.534 - 151.723i) q^{68} -107.302i q^{69} +(293.340 - 48.0668i) q^{70} -182.156i q^{71} +(95.3470 + 179.947i) q^{72} +815.886i q^{73} +(110.363 + 673.517i) q^{74} +312.365i q^{75} +(-204.750 + 68.9521i) q^{76} +207.646i q^{77} +(-94.5909 - 386.311i) q^{78} -817.462 q^{79} +(-232.862 + 176.900i) q^{80} +81.0000 q^{81} +(782.832 - 128.275i) q^{82} +246.607 q^{83} +(-523.137 + 176.173i) q^{84} +271.528 q^{85} +(553.408 - 90.6816i) q^{86} -426.551 q^{87} +(-95.6437 - 180.507i) q^{88} +355.903i q^{89} +(18.8086 + 114.784i) q^{90} +(1074.81 - 83.6980i) q^{91} +(-271.174 + 91.3211i) q^{92} -911.517 q^{93} +(891.534 - 146.087i) q^{94} -123.399 q^{95} +(373.617 - 394.109i) q^{96} +506.709i q^{97} +(-85.0742 - 519.188i) q^{98} -81.2521 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.457367 + 2.79120i 0.161704 + 0.986839i
\(3\) 3.00000i 0.577350i
\(4\) −7.58163 + 2.55321i −0.947704 + 0.319151i
\(5\) −4.56929 −0.408690 −0.204345 0.978899i \(-0.565506\pi\)
−0.204345 + 0.978899i \(0.565506\pi\)
\(6\) 8.37361 1.37210i 0.569752 0.0933596i
\(7\) 23.0002i 1.24189i 0.783853 + 0.620947i \(0.213252\pi\)
−0.783853 + 0.620947i \(0.786748\pi\)
\(8\) −10.5941 19.9941i −0.468198 0.883624i
\(9\) −9.00000 −0.333333
\(10\) −2.08984 12.7538i −0.0660866 0.403311i
\(11\) 9.02801 0.247459 0.123729 0.992316i \(-0.460515\pi\)
0.123729 + 0.992316i \(0.460515\pi\)
\(12\) 7.65962 + 22.7449i 0.184262 + 0.547157i
\(13\) −3.63901 46.7307i −0.0776370 0.996982i
\(14\) −64.1982 + 10.5195i −1.22555 + 0.200819i
\(15\) 13.7079i 0.235957i
\(16\) 50.9623 38.7150i 0.796285 0.604921i
\(17\) −59.4245 −0.847797 −0.423899 0.905710i \(-0.639339\pi\)
−0.423899 + 0.905710i \(0.639339\pi\)
\(18\) −4.11630 25.1208i −0.0539012 0.328946i
\(19\) 27.0061 0.326085 0.163043 0.986619i \(-0.447869\pi\)
0.163043 + 0.986619i \(0.447869\pi\)
\(20\) 34.6427 11.6664i 0.387317 0.130434i
\(21\) 69.0006 0.717008
\(22\) 4.12911 + 25.1990i 0.0400150 + 0.244202i
\(23\) 35.7672 0.324260 0.162130 0.986769i \(-0.448164\pi\)
0.162130 + 0.986769i \(0.448164\pi\)
\(24\) −59.9824 + 31.7823i −0.510160 + 0.270314i
\(25\) −104.122 −0.832972
\(26\) 128.770 31.5303i 0.971307 0.237831i
\(27\) 27.0000i 0.192450i
\(28\) −58.7243 174.379i −0.396351 1.17695i
\(29\) 142.184i 0.910442i −0.890378 0.455221i \(-0.849560\pi\)
0.890378 0.455221i \(-0.150440\pi\)
\(30\) −38.2615 + 6.26953i −0.232852 + 0.0381551i
\(31\) 303.839i 1.76036i −0.474643 0.880179i \(-0.657423\pi\)
0.474643 0.880179i \(-0.342577\pi\)
\(32\) 131.370 + 124.539i 0.725722 + 0.687988i
\(33\) 27.0840i 0.142870i
\(34\) −27.1788 165.866i −0.137092 0.836640i
\(35\) 105.095i 0.507550i
\(36\) 68.2347 22.9789i 0.315901 0.106384i
\(37\) 241.300 1.07215 0.536074 0.844171i \(-0.319907\pi\)
0.536074 + 0.844171i \(0.319907\pi\)
\(38\) 12.3517 + 75.3795i 0.0527292 + 0.321794i
\(39\) −140.192 + 10.9170i −0.575608 + 0.0448237i
\(40\) 48.4076 + 91.3590i 0.191348 + 0.361128i
\(41\) 280.464i 1.06832i −0.845383 0.534160i \(-0.820628\pi\)
0.845383 0.534160i \(-0.179372\pi\)
\(42\) 31.5586 + 192.595i 0.115943 + 0.707571i
\(43\) 198.269i 0.703156i −0.936159 0.351578i \(-0.885645\pi\)
0.936159 0.351578i \(-0.114355\pi\)
\(44\) −68.4470 + 23.0504i −0.234518 + 0.0789767i
\(45\) 41.1236 0.136230
\(46\) 16.3587 + 99.8335i 0.0524340 + 0.319992i
\(47\) 319.409i 0.991288i −0.868526 0.495644i \(-0.834932\pi\)
0.868526 0.495644i \(-0.165068\pi\)
\(48\) −116.145 152.887i −0.349251 0.459736i
\(49\) −186.009 −0.542300
\(50\) −47.6217 290.624i −0.134695 0.822010i
\(51\) 178.273i 0.489476i
\(52\) 146.903 + 345.004i 0.391764 + 0.920066i
\(53\) 531.123i 1.37652i −0.725466 0.688258i \(-0.758376\pi\)
0.725466 0.688258i \(-0.241624\pi\)
\(54\) −75.3625 + 12.3489i −0.189917 + 0.0311199i
\(55\) −41.2516 −0.101134
\(56\) 459.869 243.666i 1.09737 0.581452i
\(57\) 81.0182i 0.188265i
\(58\) 396.863 65.0301i 0.898460 0.147222i
\(59\) −378.115 −0.834345 −0.417172 0.908827i \(-0.636979\pi\)
−0.417172 + 0.908827i \(0.636979\pi\)
\(60\) −34.9991 103.928i −0.0753060 0.223618i
\(61\) 878.946i 1.84488i 0.386145 + 0.922438i \(0.373807\pi\)
−0.386145 + 0.922438i \(0.626193\pi\)
\(62\) 848.076 138.966i 1.73719 0.284656i
\(63\) 207.002i 0.413965i
\(64\) −287.530 + 423.640i −0.561582 + 0.827421i
\(65\) 16.6277 + 213.526i 0.0317295 + 0.407457i
\(66\) 75.5970 12.3873i 0.140990 0.0231027i
\(67\) −247.600 −0.451480 −0.225740 0.974188i \(-0.572480\pi\)
−0.225740 + 0.974188i \(0.572480\pi\)
\(68\) 450.534 151.723i 0.803461 0.270575i
\(69\) 107.302i 0.187211i
\(70\) 293.340 48.0668i 0.500870 0.0820726i
\(71\) 182.156i 0.304478i −0.988344 0.152239i \(-0.951352\pi\)
0.988344 0.152239i \(-0.0486483\pi\)
\(72\) 95.3470 + 179.947i 0.156066 + 0.294541i
\(73\) 815.886i 1.30811i 0.756446 + 0.654057i \(0.226934\pi\)
−0.756446 + 0.654057i \(0.773066\pi\)
\(74\) 110.363 + 673.517i 0.173370 + 1.05804i
\(75\) 312.365i 0.480917i
\(76\) −204.750 + 68.9521i −0.309032 + 0.104070i
\(77\) 207.646i 0.307317i
\(78\) −94.5909 386.311i −0.137312 0.560784i
\(79\) −817.462 −1.16420 −0.582099 0.813118i \(-0.697769\pi\)
−0.582099 + 0.813118i \(0.697769\pi\)
\(80\) −232.862 + 176.900i −0.325434 + 0.247225i
\(81\) 81.0000 0.111111
\(82\) 782.832 128.275i 1.05426 0.172751i
\(83\) 246.607 0.326128 0.163064 0.986616i \(-0.447862\pi\)
0.163064 + 0.986616i \(0.447862\pi\)
\(84\) −523.137 + 176.173i −0.679511 + 0.228834i
\(85\) 271.528 0.346486
\(86\) 553.408 90.6816i 0.693902 0.113703i
\(87\) −426.551 −0.525644
\(88\) −95.6437 180.507i −0.115860 0.218660i
\(89\) 355.903i 0.423883i 0.977282 + 0.211942i \(0.0679787\pi\)
−0.977282 + 0.211942i \(0.932021\pi\)
\(90\) 18.8086 + 114.784i 0.0220289 + 0.134437i
\(91\) 1074.81 83.6980i 1.23815 0.0964168i
\(92\) −271.174 + 91.3211i −0.307302 + 0.103488i
\(93\) −911.517 −1.01634
\(94\) 891.534 146.087i 0.978242 0.160295i
\(95\) −123.399 −0.133268
\(96\) 373.617 394.109i 0.397210 0.418996i
\(97\) 506.709i 0.530397i 0.964194 + 0.265199i \(0.0854375\pi\)
−0.964194 + 0.265199i \(0.914563\pi\)
\(98\) −85.0742 519.188i −0.0876918 0.535163i
\(99\) −81.2521 −0.0824863
\(100\) 789.411 265.844i 0.789411 0.265844i
\(101\) 877.066i 0.864073i −0.901856 0.432036i \(-0.857795\pi\)
0.901856 0.432036i \(-0.142205\pi\)
\(102\) −497.597 + 81.5363i −0.483034 + 0.0791500i
\(103\) −1177.42 −1.12636 −0.563179 0.826335i \(-0.690422\pi\)
−0.563179 + 0.826335i \(0.690422\pi\)
\(104\) −895.787 + 567.829i −0.844607 + 0.535387i
\(105\) −315.284 −0.293034
\(106\) 1482.47 242.918i 1.35840 0.222587i
\(107\) 1125.19i 1.01660i −0.861179 0.508301i \(-0.830274\pi\)
0.861179 0.508301i \(-0.169726\pi\)
\(108\) −68.9366 204.704i −0.0614206 0.182386i
\(109\) 788.108 0.692542 0.346271 0.938135i \(-0.387448\pi\)
0.346271 + 0.938135i \(0.387448\pi\)
\(110\) −18.8671 115.142i −0.0163537 0.0998029i
\(111\) 723.900i 0.619005i
\(112\) 890.451 + 1172.14i 0.751248 + 0.988902i
\(113\) −1182.33 −0.984284 −0.492142 0.870515i \(-0.663786\pi\)
−0.492142 + 0.870515i \(0.663786\pi\)
\(114\) 226.138 37.0551i 0.185788 0.0304432i
\(115\) −163.431 −0.132522
\(116\) 363.024 + 1077.98i 0.290569 + 0.862830i
\(117\) 32.7511 + 420.576i 0.0258790 + 0.332327i
\(118\) −172.937 1055.39i −0.134917 0.823364i
\(119\) 1366.77i 1.05287i
\(120\) 274.077 145.223i 0.208497 0.110475i
\(121\) −1249.50 −0.938764
\(122\) −2453.32 + 402.001i −1.82060 + 0.298323i
\(123\) −841.392 −0.616795
\(124\) 775.764 + 2303.59i 0.561820 + 1.66830i
\(125\) 1046.92 0.749118
\(126\) 577.784 94.6757i 0.408516 0.0669395i
\(127\) 1038.87 0.725864 0.362932 0.931816i \(-0.381776\pi\)
0.362932 + 0.931816i \(0.381776\pi\)
\(128\) −1313.97 608.795i −0.907342 0.420394i
\(129\) −594.806 −0.405967
\(130\) −588.390 + 144.071i −0.396963 + 0.0971991i
\(131\) 142.564i 0.0950833i −0.998869 0.0475417i \(-0.984861\pi\)
0.998869 0.0475417i \(-0.0151387\pi\)
\(132\) 69.1511 + 205.341i 0.0455972 + 0.135399i
\(133\) 621.145i 0.404963i
\(134\) −113.244 691.102i −0.0730059 0.445538i
\(135\) 123.371i 0.0786524i
\(136\) 629.549 + 1188.14i 0.396937 + 0.749134i
\(137\) 2413.02i 1.50481i 0.658703 + 0.752403i \(0.271105\pi\)
−0.658703 + 0.752403i \(0.728895\pi\)
\(138\) 299.500 49.0762i 0.184748 0.0302728i
\(139\) 827.007i 0.504646i −0.967643 0.252323i \(-0.918805\pi\)
0.967643 0.252323i \(-0.0811946\pi\)
\(140\) 268.328 + 796.789i 0.161985 + 0.481007i
\(141\) −958.226 −0.572320
\(142\) 508.434 83.3120i 0.300471 0.0492351i
\(143\) −32.8530 421.885i −0.0192119 0.246712i
\(144\) −458.660 + 348.435i −0.265428 + 0.201640i
\(145\) 649.679i 0.372089i
\(146\) −2277.30 + 373.159i −1.29090 + 0.211527i
\(147\) 558.026i 0.313097i
\(148\) −1829.45 + 616.089i −1.01608 + 0.342177i
\(149\) −3151.97 −1.73302 −0.866509 0.499162i \(-0.833641\pi\)
−0.866509 + 0.499162i \(0.833641\pi\)
\(150\) −871.873 + 142.865i −0.474588 + 0.0777660i
\(151\) 934.341i 0.503547i 0.967786 + 0.251774i \(0.0810138\pi\)
−0.967786 + 0.251774i \(0.918986\pi\)
\(152\) −286.105 539.963i −0.152672 0.288137i
\(153\) 534.820 0.282599
\(154\) −579.582 + 94.9703i −0.303273 + 0.0496943i
\(155\) 1388.33i 0.719441i
\(156\) 1035.01 440.708i 0.531200 0.226185i
\(157\) 307.214i 0.156168i −0.996947 0.0780840i \(-0.975120\pi\)
0.996947 0.0780840i \(-0.0248802\pi\)
\(158\) −373.880 2281.70i −0.188255 1.14888i
\(159\) −1593.37 −0.794732
\(160\) −600.267 569.056i −0.296595 0.281174i
\(161\) 822.652i 0.402696i
\(162\) 37.0467 + 226.087i 0.0179671 + 0.109649i
\(163\) 368.699 0.177170 0.0885851 0.996069i \(-0.471765\pi\)
0.0885851 + 0.996069i \(0.471765\pi\)
\(164\) 716.083 + 2126.37i 0.340955 + 1.01245i
\(165\) 123.755i 0.0583897i
\(166\) 112.790 + 688.329i 0.0527360 + 0.321836i
\(167\) 402.412i 0.186464i 0.995644 + 0.0932322i \(0.0297199\pi\)
−0.995644 + 0.0932322i \(0.970280\pi\)
\(168\) −730.999 1379.61i −0.335701 0.633565i
\(169\) −2170.52 + 340.107i −0.987945 + 0.154805i
\(170\) 124.188 + 757.890i 0.0560281 + 0.341926i
\(171\) −243.055 −0.108695
\(172\) 506.221 + 1503.20i 0.224413 + 0.666384i
\(173\) 3541.26i 1.55629i −0.628088 0.778143i \(-0.716162\pi\)
0.628088 0.778143i \(-0.283838\pi\)
\(174\) −195.090 1190.59i −0.0849986 0.518726i
\(175\) 2394.82i 1.03446i
\(176\) 460.088 349.519i 0.197048 0.149693i
\(177\) 1134.34i 0.481709i
\(178\) −993.397 + 162.778i −0.418305 + 0.0685434i
\(179\) 3755.60i 1.56819i −0.620640 0.784096i \(-0.713127\pi\)
0.620640 0.784096i \(-0.286873\pi\)
\(180\) −311.784 + 104.997i −0.129106 + 0.0434779i
\(181\) 1146.21i 0.470701i −0.971911 0.235350i \(-0.924376\pi\)
0.971911 0.235350i \(-0.0756238\pi\)
\(182\) 725.203 + 2961.75i 0.295360 + 1.20626i
\(183\) 2636.84 1.06514
\(184\) −378.921 715.134i −0.151818 0.286524i
\(185\) −1102.57 −0.438176
\(186\) −416.897 2544.23i −0.164346 1.00297i
\(187\) −536.485 −0.209795
\(188\) 815.517 + 2421.64i 0.316371 + 0.939448i
\(189\) −621.005 −0.239003
\(190\) −56.4385 344.431i −0.0215499 0.131514i
\(191\) 2181.45 0.826410 0.413205 0.910638i \(-0.364409\pi\)
0.413205 + 0.910638i \(0.364409\pi\)
\(192\) 1270.92 + 862.589i 0.477712 + 0.324229i
\(193\) 4438.58i 1.65542i 0.561158 + 0.827709i \(0.310356\pi\)
−0.561158 + 0.827709i \(0.689644\pi\)
\(194\) −1414.33 + 231.752i −0.523417 + 0.0857671i
\(195\) 640.579 49.8831i 0.235245 0.0183190i
\(196\) 1410.25 474.919i 0.513939 0.173075i
\(197\) −3788.49 −1.37014 −0.685072 0.728475i \(-0.740229\pi\)
−0.685072 + 0.728475i \(0.740229\pi\)
\(198\) −37.1620 226.791i −0.0133383 0.0814007i
\(199\) 1535.85 0.547102 0.273551 0.961858i \(-0.411802\pi\)
0.273551 + 0.961858i \(0.411802\pi\)
\(200\) 1103.07 + 2081.82i 0.389996 + 0.736034i
\(201\) 742.800i 0.260662i
\(202\) 2448.07 401.141i 0.852701 0.139724i
\(203\) 3270.25 1.13067
\(204\) −455.169 1351.60i −0.156217 0.463878i
\(205\) 1281.52i 0.436612i
\(206\) −538.514 3286.42i −0.182136 1.11153i
\(207\) −321.905 −0.108087
\(208\) −1994.63 2240.62i −0.664916 0.746918i
\(209\) 243.811 0.0806927
\(210\) −144.200 880.021i −0.0473846 0.289177i
\(211\) 5166.95i 1.68582i 0.538055 + 0.842909i \(0.319159\pi\)
−0.538055 + 0.842909i \(0.680841\pi\)
\(212\) 1356.07 + 4026.78i 0.439316 + 1.30453i
\(213\) −546.467 −0.175790
\(214\) 3140.64 514.626i 1.00322 0.164388i
\(215\) 905.948i 0.287373i
\(216\) 539.841 286.041i 0.170053 0.0901047i
\(217\) 6988.35 2.18618
\(218\) 360.454 + 2199.77i 0.111986 + 0.683428i
\(219\) 2447.66 0.755240
\(220\) 312.755 105.324i 0.0958450 0.0322770i
\(221\) 216.246 + 2776.95i 0.0658204 + 0.845238i
\(222\) 2020.55 331.088i 0.610858 0.100095i
\(223\) 4812.46i 1.44514i −0.691297 0.722570i \(-0.742961\pi\)
0.691297 0.722570i \(-0.257039\pi\)
\(224\) −2864.42 + 3021.53i −0.854408 + 0.901270i
\(225\) 937.094 0.277657
\(226\) −540.758 3300.12i −0.159162 0.971330i
\(227\) 584.946 0.171032 0.0855159 0.996337i \(-0.472746\pi\)
0.0855159 + 0.996337i \(0.472746\pi\)
\(228\) 206.856 + 614.250i 0.0600851 + 0.178420i
\(229\) 4584.28 1.32287 0.661436 0.750001i \(-0.269947\pi\)
0.661436 + 0.750001i \(0.269947\pi\)
\(230\) −74.7478 456.169i −0.0214292 0.130778i
\(231\) 622.938 0.177430
\(232\) −2842.84 + 1506.31i −0.804489 + 0.426267i
\(233\) 4302.16 1.20963 0.604815 0.796366i \(-0.293247\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(234\) −1158.93 + 283.773i −0.323769 + 0.0792769i
\(235\) 1459.47i 0.405130i
\(236\) 2866.73 965.405i 0.790712 0.266282i
\(237\) 2452.39i 0.672150i
\(238\) 3814.94 625.117i 1.03902 0.170253i
\(239\) 7132.42i 1.93037i −0.261573 0.965184i \(-0.584241\pi\)
0.261573 0.965184i \(-0.415759\pi\)
\(240\) 530.700 + 698.585i 0.142736 + 0.187889i
\(241\) 813.188i 0.217353i −0.994077 0.108676i \(-0.965339\pi\)
0.994077 0.108676i \(-0.0346612\pi\)
\(242\) −571.478 3487.59i −0.151802 0.926409i
\(243\) 243.000i 0.0641500i
\(244\) −2244.13 6663.84i −0.588794 1.74840i
\(245\) 849.929 0.221632
\(246\) −384.825 2348.50i −0.0997379 0.608677i
\(247\) −98.2755 1262.01i −0.0253163 0.325101i
\(248\) −6074.99 + 3218.90i −1.55549 + 0.824195i
\(249\) 739.820i 0.188290i
\(250\) 478.828 + 2922.18i 0.121135 + 0.739259i
\(251\) 98.3380i 0.0247292i −0.999924 0.0123646i \(-0.996064\pi\)
0.999924 0.0123646i \(-0.00393588\pi\)
\(252\) 528.518 + 1569.41i 0.132117 + 0.392316i
\(253\) 322.906 0.0802409
\(254\) 475.144 + 2899.69i 0.117375 + 0.716311i
\(255\) 814.584i 0.200044i
\(256\) 1098.30 3946.00i 0.268141 0.963380i
\(257\) 2348.27 0.569966 0.284983 0.958533i \(-0.408012\pi\)
0.284983 + 0.958533i \(0.408012\pi\)
\(258\) −272.045 1660.23i −0.0656464 0.400624i
\(259\) 5549.94i 1.33149i
\(260\) −671.242 1576.42i −0.160110 0.376022i
\(261\) 1279.65i 0.303481i
\(262\) 397.926 65.2043i 0.0938320 0.0153753i
\(263\) −3653.13 −0.856507 −0.428254 0.903659i \(-0.640871\pi\)
−0.428254 + 0.903659i \(0.640871\pi\)
\(264\) −541.521 + 286.931i −0.126244 + 0.0668916i
\(265\) 2426.86i 0.562568i
\(266\) −1733.74 + 284.091i −0.399634 + 0.0654840i
\(267\) 1067.71 0.244729
\(268\) 1877.21 632.174i 0.427869 0.144090i
\(269\) 496.183i 0.112464i −0.998418 0.0562320i \(-0.982091\pi\)
0.998418 0.0562320i \(-0.0179086\pi\)
\(270\) 344.353 56.4258i 0.0776173 0.0127184i
\(271\) 1164.70i 0.261072i −0.991444 0.130536i \(-0.958330\pi\)
0.991444 0.130536i \(-0.0416698\pi\)
\(272\) −3028.41 + 2300.62i −0.675089 + 0.512850i
\(273\) −251.094 3224.44i −0.0556663 0.714843i
\(274\) −6735.23 + 1103.64i −1.48500 + 0.243332i
\(275\) −940.010 −0.206126
\(276\) 273.963 + 813.521i 0.0597487 + 0.177421i
\(277\) 3541.96i 0.768289i −0.923273 0.384144i \(-0.874496\pi\)
0.923273 0.384144i \(-0.125504\pi\)
\(278\) 2308.35 378.246i 0.498005 0.0816031i
\(279\) 2734.55i 0.586786i
\(280\) −2101.27 + 1113.38i −0.448483 + 0.237634i
\(281\) 1001.92i 0.212703i 0.994329 + 0.106352i \(0.0339169\pi\)
−0.994329 + 0.106352i \(0.966083\pi\)
\(282\) −438.261 2674.60i −0.0925463 0.564788i
\(283\) 4471.46i 0.939226i −0.882872 0.469613i \(-0.844393\pi\)
0.882872 0.469613i \(-0.155607\pi\)
\(284\) 465.081 + 1381.04i 0.0971743 + 0.288555i
\(285\) 370.196i 0.0769422i
\(286\) 1162.54 284.656i 0.240358 0.0588533i
\(287\) 6450.73 1.32674
\(288\) −1182.33 1120.85i −0.241907 0.229329i
\(289\) −1381.73 −0.281240
\(290\) −1813.39 + 297.141i −0.367192 + 0.0601681i
\(291\) 1520.13 0.306225
\(292\) −2083.13 6185.75i −0.417486 1.23970i
\(293\) −3292.99 −0.656582 −0.328291 0.944577i \(-0.606473\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(294\) −1557.56 + 255.223i −0.308976 + 0.0506289i
\(295\) 1727.72 0.340988
\(296\) −2556.36 4824.58i −0.501977 0.947375i
\(297\) 243.756i 0.0476235i
\(298\) −1441.61 8797.79i −0.280235 1.71021i
\(299\) −130.157 1671.43i −0.0251745 0.323281i
\(300\) −797.532 2368.23i −0.153485 0.455767i
\(301\) 4560.22 0.873245
\(302\) −2607.94 + 427.337i −0.496920 + 0.0814254i
\(303\) −2631.20 −0.498873
\(304\) 1376.29 1045.54i 0.259657 0.197256i
\(305\) 4016.16i 0.753983i
\(306\) 244.609 + 1492.79i 0.0456973 + 0.278880i
\(307\) −3274.18 −0.608688 −0.304344 0.952562i \(-0.598437\pi\)
−0.304344 + 0.952562i \(0.598437\pi\)
\(308\) −530.163 1574.29i −0.0980806 0.291246i
\(309\) 3532.27i 0.650303i
\(310\) −3875.11 + 634.976i −0.709972 + 0.116336i
\(311\) 3191.33 0.581876 0.290938 0.956742i \(-0.406033\pi\)
0.290938 + 0.956742i \(0.406033\pi\)
\(312\) 1703.49 + 2687.36i 0.309106 + 0.487634i
\(313\) 5529.90 0.998621 0.499311 0.866423i \(-0.333587\pi\)
0.499311 + 0.866423i \(0.333587\pi\)
\(314\) 857.498 140.510i 0.154113 0.0252529i
\(315\) 945.852i 0.169183i
\(316\) 6197.70 2087.15i 1.10332 0.371555i
\(317\) 6475.59 1.14734 0.573668 0.819088i \(-0.305520\pi\)
0.573668 + 0.819088i \(0.305520\pi\)
\(318\) −728.754 4447.41i −0.128511 0.784272i
\(319\) 1283.63i 0.225297i
\(320\) 1313.81 1935.73i 0.229513 0.338159i
\(321\) −3375.58 −0.586936
\(322\) −2296.19 + 376.254i −0.397396 + 0.0651174i
\(323\) −1604.82 −0.276454
\(324\) −614.112 + 206.810i −0.105300 + 0.0354612i
\(325\) 378.900 + 4865.67i 0.0646694 + 0.830458i
\(326\) 168.631 + 1029.11i 0.0286491 + 0.174839i
\(327\) 2364.32i 0.399839i
\(328\) −5607.63 + 2971.27i −0.943993 + 0.500185i
\(329\) 7346.46 1.23107
\(330\) −345.425 + 56.6014i −0.0576213 + 0.00944182i
\(331\) −10016.3 −1.66327 −0.831637 0.555319i \(-0.812596\pi\)
−0.831637 + 0.555319i \(0.812596\pi\)
\(332\) −1869.68 + 629.638i −0.309072 + 0.104084i
\(333\) −2171.70 −0.357382
\(334\) −1123.21 + 184.050i −0.184010 + 0.0301519i
\(335\) 1131.36 0.184515
\(336\) 3516.43 2671.35i 0.570943 0.433733i
\(337\) −6602.82 −1.06730 −0.533648 0.845707i \(-0.679179\pi\)
−0.533648 + 0.845707i \(0.679179\pi\)
\(338\) −1942.03 5902.80i −0.312522 0.949910i
\(339\) 3546.99i 0.568277i
\(340\) −2058.62 + 693.267i −0.328366 + 0.110581i
\(341\) 2743.06i 0.435616i
\(342\) −111.165 678.415i −0.0175764 0.107265i
\(343\) 3610.83i 0.568415i
\(344\) −3964.21 + 2100.48i −0.621325 + 0.329216i
\(345\) 490.292i 0.0765115i
\(346\) 9884.39 1619.66i 1.53580 0.251657i
\(347\) 8226.15i 1.27263i −0.771429 0.636315i \(-0.780458\pi\)
0.771429 0.636315i \(-0.219542\pi\)
\(348\) 3233.95 1089.07i 0.498155 0.167760i
\(349\) −5987.66 −0.918373 −0.459187 0.888340i \(-0.651859\pi\)
−0.459187 + 0.888340i \(0.651859\pi\)
\(350\) 6684.42 1095.31i 1.02085 0.167276i
\(351\) 1261.73 98.2533i 0.191869 0.0149412i
\(352\) 1186.01 + 1124.34i 0.179586 + 0.170249i
\(353\) 8372.28i 1.26236i 0.775638 + 0.631178i \(0.217428\pi\)
−0.775638 + 0.631178i \(0.782572\pi\)
\(354\) −3166.18 + 518.811i −0.475369 + 0.0778941i
\(355\) 832.323i 0.124437i
\(356\) −908.693 2698.32i −0.135283 0.401716i
\(357\) −4100.32 −0.607877
\(358\) 10482.6 1717.68i 1.54755 0.253582i
\(359\) 5365.50i 0.788803i 0.918938 + 0.394401i \(0.129048\pi\)
−0.918938 + 0.394401i \(0.870952\pi\)
\(360\) −435.668 822.231i −0.0637826 0.120376i
\(361\) −6129.67 −0.893668
\(362\) 3199.29 524.237i 0.464506 0.0761140i
\(363\) 3748.49i 0.541996i
\(364\) −7935.15 + 3378.79i −1.14262 + 0.486530i
\(365\) 3728.02i 0.534613i
\(366\) 1206.00 + 7359.95i 0.172237 + 1.05112i
\(367\) 2032.50 0.289089 0.144545 0.989498i \(-0.453828\pi\)
0.144545 + 0.989498i \(0.453828\pi\)
\(368\) 1822.78 1384.73i 0.258203 0.196152i
\(369\) 2524.18i 0.356107i
\(370\) −504.279 3077.50i −0.0708546 0.432409i
\(371\) 12215.9 1.70949
\(372\) 6910.78 2327.29i 0.963192 0.324367i
\(373\) 13867.4i 1.92500i 0.271282 + 0.962500i \(0.412552\pi\)
−0.271282 + 0.962500i \(0.587448\pi\)
\(374\) −245.370 1497.44i −0.0339246 0.207034i
\(375\) 3140.77i 0.432503i
\(376\) −6386.30 + 3383.85i −0.875926 + 0.464119i
\(377\) −6644.34 + 517.408i −0.907694 + 0.0706840i
\(378\) −284.027 1733.35i −0.0386476 0.235857i
\(379\) 4445.76 0.602542 0.301271 0.953539i \(-0.402589\pi\)
0.301271 + 0.953539i \(0.402589\pi\)
\(380\) 935.564 315.063i 0.126298 0.0425325i
\(381\) 3116.61i 0.419078i
\(382\) 997.724 + 6088.87i 0.133633 + 0.815534i
\(383\) 1882.41i 0.251141i −0.992085 0.125570i \(-0.959924\pi\)
0.992085 0.125570i \(-0.0400761\pi\)
\(384\) −1826.39 + 3941.91i −0.242714 + 0.523854i
\(385\) 948.795i 0.125598i
\(386\) −12389.0 + 2030.06i −1.63363 + 0.267687i
\(387\) 1784.42i 0.234385i
\(388\) −1293.73 3841.68i −0.169277 0.502659i
\(389\) 4490.10i 0.585237i −0.956229 0.292619i \(-0.905473\pi\)
0.956229 0.292619i \(-0.0945266\pi\)
\(390\) 432.213 + 1765.17i 0.0561179 + 0.229187i
\(391\) −2125.45 −0.274907
\(392\) 1970.60 + 3719.08i 0.253903 + 0.479189i
\(393\) −427.693 −0.0548964
\(394\) −1732.73 10574.4i −0.221557 1.35211i
\(395\) 3735.23 0.475796
\(396\) 616.023 207.453i 0.0781725 0.0263256i
\(397\) 9505.67 1.20170 0.600852 0.799361i \(-0.294828\pi\)
0.600852 + 0.799361i \(0.294828\pi\)
\(398\) 702.445 + 4286.86i 0.0884683 + 0.539902i
\(399\) 1863.44 0.233806
\(400\) −5306.27 + 4031.06i −0.663284 + 0.503883i
\(401\) 9181.79i 1.14343i −0.820451 0.571716i \(-0.806278\pi\)
0.820451 0.571716i \(-0.193722\pi\)
\(402\) −2073.31 + 339.732i −0.257232 + 0.0421500i
\(403\) −14198.6 + 1105.67i −1.75504 + 0.136669i
\(404\) 2239.33 + 6649.59i 0.275770 + 0.818885i
\(405\) −370.113 −0.0454100
\(406\) 1495.70 + 9127.93i 0.182834 + 1.11579i
\(407\) 2178.46 0.265312
\(408\) 3564.42 1888.65i 0.432513 0.229172i
\(409\) 3469.65i 0.419470i −0.977758 0.209735i \(-0.932740\pi\)
0.977758 0.209735i \(-0.0672601\pi\)
\(410\) −3576.99 + 586.126i −0.430866 + 0.0706017i
\(411\) 7239.07 0.868800
\(412\) 8926.78 3006.20i 1.06745 0.359478i
\(413\) 8696.71i 1.03617i
\(414\) −147.229 898.501i −0.0174780 0.106664i
\(415\) −1126.82 −0.133285
\(416\) 5341.74 6592.20i 0.629568 0.776945i
\(417\) −2481.02 −0.291358
\(418\) 111.511 + 680.526i 0.0130483 + 0.0796307i
\(419\) 12868.1i 1.50035i −0.661241 0.750174i \(-0.729970\pi\)
0.661241 0.750174i \(-0.270030\pi\)
\(420\) 2390.37 804.985i 0.277709 0.0935220i
\(421\) 4414.39 0.511031 0.255516 0.966805i \(-0.417755\pi\)
0.255516 + 0.966805i \(0.417755\pi\)
\(422\) −14422.0 + 2363.19i −1.66363 + 0.272603i
\(423\) 2874.68i 0.330429i
\(424\) −10619.3 + 5626.77i −1.21632 + 0.644482i
\(425\) 6187.37 0.706192
\(426\) −249.936 1525.30i −0.0284259 0.173477i
\(427\) −20215.9 −2.29114
\(428\) 2872.85 + 8530.79i 0.324450 + 0.963438i
\(429\) −1265.65 + 98.5591i −0.142439 + 0.0110920i
\(430\) −2528.69 + 414.351i −0.283591 + 0.0464692i
\(431\) 11981.4i 1.33903i 0.742797 + 0.669517i \(0.233499\pi\)
−0.742797 + 0.669517i \(0.766501\pi\)
\(432\) 1045.30 + 1375.98i 0.116417 + 0.153245i
\(433\) 4268.40 0.473733 0.236866 0.971542i \(-0.423880\pi\)
0.236866 + 0.971542i \(0.423880\pi\)
\(434\) 3196.24 + 19505.9i 0.353513 + 2.15740i
\(435\) 1949.04 0.214826
\(436\) −5975.14 + 2012.20i −0.656325 + 0.221025i
\(437\) 965.932 0.105736
\(438\) 1119.48 + 6831.91i 0.122125 + 0.745300i
\(439\) 7424.25 0.807152 0.403576 0.914946i \(-0.367767\pi\)
0.403576 + 0.914946i \(0.367767\pi\)
\(440\) 437.024 + 824.790i 0.0473507 + 0.0893643i
\(441\) 1674.08 0.180767
\(442\) −7652.12 + 1873.67i −0.823471 + 0.201632i
\(443\) 3110.29i 0.333576i 0.985993 + 0.166788i \(0.0533395\pi\)
−0.985993 + 0.166788i \(0.946660\pi\)
\(444\) 1848.27 + 5488.34i 0.197556 + 0.586633i
\(445\) 1626.22i 0.173237i
\(446\) 13432.6 2201.06i 1.42612 0.233684i
\(447\) 9455.91i 1.00056i
\(448\) −9743.79 6613.24i −1.02757 0.697425i
\(449\) 5412.37i 0.568876i 0.958694 + 0.284438i \(0.0918071\pi\)
−0.958694 + 0.284438i \(0.908193\pi\)
\(450\) 428.596 + 2615.62i 0.0448982 + 0.274003i
\(451\) 2532.03i 0.264365i
\(452\) 8963.98 3018.73i 0.932810 0.314135i
\(453\) 2803.02 0.290723
\(454\) 267.535 + 1632.70i 0.0276565 + 0.168781i
\(455\) −4911.14 + 382.441i −0.506018 + 0.0394046i
\(456\) −1619.89 + 858.316i −0.166356 + 0.0881455i
\(457\) 3771.11i 0.386007i −0.981198 0.193003i \(-0.938177\pi\)
0.981198 0.193003i \(-0.0618228\pi\)
\(458\) 2096.70 + 12795.7i 0.213913 + 1.30546i
\(459\) 1604.46i 0.163159i
\(460\) 1239.07 417.273i 0.125591 0.0422944i
\(461\) −1276.30 −0.128944 −0.0644722 0.997920i \(-0.520536\pi\)
−0.0644722 + 0.997920i \(0.520536\pi\)
\(462\) 284.911 + 1738.75i 0.0286910 + 0.175095i
\(463\) 10359.5i 1.03984i 0.854216 + 0.519919i \(0.174038\pi\)
−0.854216 + 0.519919i \(0.825962\pi\)
\(464\) −5504.63 7246.00i −0.550746 0.724972i
\(465\) 4164.99 0.415369
\(466\) 1967.66 + 12008.2i 0.195602 + 1.19371i
\(467\) 18643.9i 1.84740i 0.383112 + 0.923702i \(0.374852\pi\)
−0.383112 + 0.923702i \(0.625148\pi\)
\(468\) −1322.13 3105.03i −0.130588 0.306689i
\(469\) 5694.85i 0.560690i
\(470\) −4073.68 + 667.514i −0.399798 + 0.0655109i
\(471\) −921.643 −0.0901636
\(472\) 4005.79 + 7560.07i 0.390638 + 0.737247i
\(473\) 1789.97i 0.174002i
\(474\) −6845.11 + 1121.64i −0.663304 + 0.108689i
\(475\) −2811.92 −0.271620
\(476\) 3489.66 + 10362.4i 0.336026 + 0.997813i
\(477\) 4780.10i 0.458838i
\(478\) 19908.0 3262.13i 1.90496 0.312147i
\(479\) 4124.15i 0.393397i 0.980464 + 0.196699i \(0.0630221\pi\)
−0.980464 + 0.196699i \(0.936978\pi\)
\(480\) −1707.17 + 1800.80i −0.162336 + 0.171239i
\(481\) −878.093 11276.1i −0.0832383 1.06891i
\(482\) 2269.77 371.925i 0.214492 0.0351467i
\(483\) 2467.96 0.232497
\(484\) 9473.21 3190.22i 0.889670 0.299607i
\(485\) 2315.30i 0.216768i
\(486\) 678.262 111.140i 0.0633058 0.0103733i
\(487\) 3948.63i 0.367412i −0.982981 0.183706i \(-0.941191\pi\)
0.982981 0.183706i \(-0.0588095\pi\)
\(488\) 17573.7 9311.65i 1.63018 0.863767i
\(489\) 1106.10i 0.102289i
\(490\) 388.729 + 2372.32i 0.0358388 + 0.218716i
\(491\) 9699.68i 0.891528i −0.895150 0.445764i \(-0.852932\pi\)
0.895150 0.445764i \(-0.147068\pi\)
\(492\) 6379.12 2148.25i 0.584539 0.196851i
\(493\) 8449.19i 0.771871i
\(494\) 3477.59 851.510i 0.316729 0.0775531i
\(495\) 371.265 0.0337113
\(496\) −11763.1 15484.3i −1.06488 1.40175i
\(497\) 4189.62 0.378129
\(498\) 2064.99 338.369i 0.185812 0.0304472i
\(499\) −10351.2 −0.928620 −0.464310 0.885673i \(-0.653698\pi\)
−0.464310 + 0.885673i \(0.653698\pi\)
\(500\) −7937.39 + 2673.01i −0.709942 + 0.239082i
\(501\) 1207.23 0.107655
\(502\) 274.481 44.9765i 0.0244038 0.00399881i
\(503\) −14291.2 −1.26682 −0.633412 0.773815i \(-0.718346\pi\)
−0.633412 + 0.773815i \(0.718346\pi\)
\(504\) −4138.82 + 2193.00i −0.365789 + 0.193817i
\(505\) 4007.57i 0.353138i
\(506\) 147.687 + 901.297i 0.0129752 + 0.0791849i
\(507\) 1020.32 + 6511.55i 0.0893769 + 0.570390i
\(508\) −7876.32 + 2652.45i −0.687904 + 0.231660i
\(509\) −6030.07 −0.525104 −0.262552 0.964918i \(-0.584564\pi\)
−0.262552 + 0.964918i \(0.584564\pi\)
\(510\) 2273.67 372.564i 0.197411 0.0323478i
\(511\) −18765.5 −1.62454
\(512\) 11516.4 + 1260.82i 0.994060 + 0.108830i
\(513\) 729.164i 0.0627551i
\(514\) 1074.02 + 6554.51i 0.0921655 + 0.562465i
\(515\) 5379.99 0.460331
\(516\) 4509.60 1518.66i 0.384737 0.129565i
\(517\) 2883.62i 0.245303i
\(518\) −15491.0 + 2538.36i −1.31397 + 0.215307i
\(519\) −10623.8 −0.898522
\(520\) 4093.11 2594.58i 0.345183 0.218807i
\(521\) −2617.24 −0.220083 −0.110042 0.993927i \(-0.535098\pi\)
−0.110042 + 0.993927i \(0.535098\pi\)
\(522\) −3571.77 + 585.271i −0.299487 + 0.0490739i
\(523\) 21188.4i 1.77152i −0.464144 0.885760i \(-0.653638\pi\)
0.464144 0.885760i \(-0.346362\pi\)
\(524\) 363.997 + 1080.87i 0.0303459 + 0.0901108i
\(525\) −7184.45 −0.597248
\(526\) −1670.82 10196.6i −0.138500 0.845235i
\(527\) 18055.5i 1.49243i
\(528\) −1048.56 1380.26i −0.0864253 0.113766i
\(529\) −10887.7 −0.894856
\(530\) −6773.85 + 1109.96i −0.555164 + 0.0909693i
\(531\) 3403.03 0.278115
\(532\) −1585.91 4709.29i −0.129244 0.383785i
\(533\) −13106.3 + 1020.61i −1.06510 + 0.0829411i
\(534\) 488.334 + 2980.19i 0.0395736 + 0.241508i
\(535\) 5141.33i 0.415475i
\(536\) 2623.10 + 4950.54i 0.211382 + 0.398938i
\(537\) −11266.8 −0.905396
\(538\) 1384.95 226.938i 0.110984 0.0181858i
\(539\) −1679.29 −0.134197
\(540\) 314.992 + 935.353i 0.0251020 + 0.0745392i
\(541\) 5104.29 0.405639 0.202819 0.979216i \(-0.434990\pi\)
0.202819 + 0.979216i \(0.434990\pi\)
\(542\) 3250.92 532.695i 0.257636 0.0422163i
\(543\) −3438.62 −0.271759
\(544\) −7806.58 7400.67i −0.615265 0.583274i
\(545\) −3601.10 −0.283035
\(546\) 8885.24 2175.61i 0.696434 0.170526i
\(547\) 10142.1i 0.792770i −0.918084 0.396385i \(-0.870265\pi\)
0.918084 0.396385i \(-0.129735\pi\)
\(548\) −6160.95 18294.6i −0.480260 1.42611i
\(549\) 7910.51i 0.614959i
\(550\) −429.929 2623.76i −0.0333314 0.203414i
\(551\) 3839.82i 0.296882i
\(552\) −2145.40 + 1136.76i −0.165424 + 0.0876520i
\(553\) 18801.8i 1.44581i
\(554\) 9886.34 1619.98i 0.758178 0.124235i
\(555\) 3307.71i 0.252981i
\(556\) 2111.52 + 6270.07i 0.161058 + 0.478255i
\(557\) −1339.31 −0.101882 −0.0509409 0.998702i \(-0.516222\pi\)
−0.0509409 + 0.998702i \(0.516222\pi\)
\(558\) −7632.68 + 1250.69i −0.579063 + 0.0948854i
\(559\) −9265.24 + 721.503i −0.701034 + 0.0545909i
\(560\) −4068.73 5355.86i −0.307027 0.404154i
\(561\) 1609.45i 0.121125i
\(562\) −2796.57 + 458.245i −0.209904 + 0.0343949i
\(563\) 7894.26i 0.590947i 0.955351 + 0.295474i \(0.0954775\pi\)
−0.955351 + 0.295474i \(0.904523\pi\)
\(564\) 7264.92 2446.55i 0.542390 0.182657i
\(565\) 5402.41 0.402267
\(566\) 12480.8 2045.10i 0.926865 0.151876i
\(567\) 1863.02i 0.137988i
\(568\) −3642.04 + 1929.78i −0.269044 + 0.142556i
\(569\) −5150.43 −0.379468 −0.189734 0.981836i \(-0.560763\pi\)
−0.189734 + 0.981836i \(0.560763\pi\)
\(570\) −1033.29 + 169.315i −0.0759296 + 0.0124418i
\(571\) 9653.04i 0.707473i 0.935345 + 0.353737i \(0.115089\pi\)
−0.935345 + 0.353737i \(0.884911\pi\)
\(572\) 1326.24 + 3114.70i 0.0969456 + 0.227678i
\(573\) 6544.35i 0.477128i
\(574\) 2950.35 + 18005.3i 0.214539 + 1.30928i
\(575\) −3724.14 −0.270099
\(576\) 2587.77 3812.76i 0.187194 0.275807i
\(577\) 6097.68i 0.439948i 0.975506 + 0.219974i \(0.0705972\pi\)
−0.975506 + 0.219974i \(0.929403\pi\)
\(578\) −631.958 3856.69i −0.0454775 0.277539i
\(579\) 13315.7 0.955756
\(580\) −1658.76 4925.62i −0.118752 0.352630i
\(581\) 5672.00i 0.405016i
\(582\) 695.256 + 4242.98i 0.0495177 + 0.302195i
\(583\) 4794.98i 0.340631i
\(584\) 16312.9 8643.59i 1.15588 0.612456i
\(585\) −149.649 1921.74i −0.0105765 0.135819i
\(586\) −1506.10 9191.41i −0.106172 0.647941i
\(587\) 18721.5 1.31639 0.658195 0.752847i \(-0.271320\pi\)
0.658195 + 0.752847i \(0.271320\pi\)
\(588\) −1424.76 4230.75i −0.0999251 0.296723i
\(589\) 8205.50i 0.574027i
\(590\) 790.200 + 4822.41i 0.0551390 + 0.336501i
\(591\) 11365.5i 0.791053i
\(592\) 12297.2 9341.91i 0.853735 0.648565i
\(593\) 27503.7i 1.90462i −0.305127 0.952312i \(-0.598699\pi\)
0.305127 0.952312i \(-0.401301\pi\)
\(594\) −680.373 + 111.486i −0.0469967 + 0.00770088i
\(595\) 6245.19i 0.430299i
\(596\) 23897.1 8047.64i 1.64239 0.553094i
\(597\) 4607.54i 0.315869i
\(598\) 4605.76 1127.75i 0.314956 0.0771189i
\(599\) 6924.86 0.472357 0.236179 0.971710i \(-0.424105\pi\)
0.236179 + 0.971710i \(0.424105\pi\)
\(600\) 6245.46 3309.22i 0.424950 0.225164i
\(601\) −438.105 −0.0297349 −0.0148674 0.999889i \(-0.504733\pi\)
−0.0148674 + 0.999889i \(0.504733\pi\)
\(602\) 2085.69 + 12728.5i 0.141207 + 0.861752i
\(603\) 2228.40 0.150493
\(604\) −2385.57 7083.83i −0.160708 0.477214i
\(605\) 5709.31 0.383664
\(606\) −1203.42 7344.21i −0.0806695 0.492307i
\(607\) −130.867 −0.00875076 −0.00437538 0.999990i \(-0.501393\pi\)
−0.00437538 + 0.999990i \(0.501393\pi\)
\(608\) 3547.78 + 3363.31i 0.236647 + 0.224343i
\(609\) 9810.75i 0.652794i
\(610\) 11209.9 1836.86i 0.744060 0.121922i
\(611\) −14926.2 + 1162.33i −0.988296 + 0.0769606i
\(612\) −4054.81 + 1365.51i −0.267820 + 0.0901918i
\(613\) 14591.0 0.961382 0.480691 0.876890i \(-0.340386\pi\)
0.480691 + 0.876890i \(0.340386\pi\)
\(614\) −1497.50 9138.89i −0.0984270 0.600677i
\(615\) 3844.57 0.252078
\(616\) 4151.70 2199.82i 0.271553 0.143885i
\(617\) 26154.6i 1.70656i −0.521457 0.853278i \(-0.674611\pi\)
0.521457 0.853278i \(-0.325389\pi\)
\(618\) −9859.27 + 1615.54i −0.641745 + 0.105156i
\(619\) 5541.38 0.359817 0.179909 0.983683i \(-0.442420\pi\)
0.179909 + 0.983683i \(0.442420\pi\)
\(620\) −3544.69 10525.8i −0.229610 0.681817i
\(621\) 965.714i 0.0624038i
\(622\) 1459.61 + 8907.64i 0.0940915 + 0.574218i
\(623\) −8185.83 −0.526418
\(624\) −6721.85 + 5983.89i −0.431233 + 0.383890i
\(625\) 8231.49 0.526815
\(626\) 2529.19 + 15435.1i 0.161481 + 0.985479i
\(627\) 731.433i 0.0465879i
\(628\) 784.382 + 2329.19i 0.0498412 + 0.148001i
\(629\) −14339.1 −0.908963
\(630\) −2640.06 + 432.601i −0.166957 + 0.0273575i
\(631\) 3022.53i 0.190689i −0.995444 0.0953447i \(-0.969605\pi\)
0.995444 0.0953447i \(-0.0303953\pi\)
\(632\) 8660.28 + 16344.4i 0.545075 + 1.02871i
\(633\) 15500.9 0.973308
\(634\) 2961.72 + 18074.7i 0.185528 + 1.13224i
\(635\) −4746.90 −0.296653
\(636\) 12080.3 4068.20i 0.753170 0.253639i
\(637\) 676.888 + 8692.32i 0.0421025 + 0.540663i
\(638\) 3582.88 587.092i 0.222332 0.0364313i
\(639\) 1639.40i 0.101493i
\(640\) 6003.92 + 2781.76i 0.370822 + 0.171811i
\(641\) −24068.8 −1.48309 −0.741545 0.670904i \(-0.765906\pi\)
−0.741545 + 0.670904i \(0.765906\pi\)
\(642\) −1543.88 9421.92i −0.0949096 0.579211i
\(643\) 10923.5 0.669952 0.334976 0.942227i \(-0.391272\pi\)
0.334976 + 0.942227i \(0.391272\pi\)
\(644\) −2100.40 6237.05i −0.128521 0.381637i
\(645\) 2717.84 0.165915
\(646\) −733.992 4479.39i −0.0447036 0.272816i
\(647\) −6403.53 −0.389102 −0.194551 0.980892i \(-0.562325\pi\)
−0.194551 + 0.980892i \(0.562325\pi\)
\(648\) −858.123 1619.52i −0.0520220 0.0981804i
\(649\) −3413.62 −0.206466
\(650\) −13407.8 + 3282.98i −0.809072 + 0.198106i
\(651\) 20965.1i 1.26219i
\(652\) −2795.34 + 941.365i −0.167905 + 0.0565440i
\(653\) 3560.37i 0.213366i 0.994293 + 0.106683i \(0.0340230\pi\)
−0.994293 + 0.106683i \(0.965977\pi\)
\(654\) 6599.31 1081.36i 0.394577 0.0646554i
\(655\) 651.419i 0.0388596i
\(656\) −10858.2 14293.1i −0.646249 0.850688i
\(657\) 7342.98i 0.436038i
\(658\) 3360.03 + 20505.5i 0.199069 + 1.21487i
\(659\) 18983.0i 1.12212i 0.827776 + 0.561058i \(0.189606\pi\)
−0.827776 + 0.561058i \(0.810394\pi\)
\(660\) −315.972 938.264i −0.0186351 0.0553362i
\(661\) 6588.80 0.387707 0.193854 0.981030i \(-0.437901\pi\)
0.193854 + 0.981030i \(0.437901\pi\)
\(662\) −4581.11 27957.4i −0.268957 1.64138i
\(663\) 8330.84 648.739i 0.487999 0.0380014i
\(664\) −2612.58 4930.68i −0.152692 0.288174i
\(665\) 2838.19i 0.165504i
\(666\) −993.263 6061.65i −0.0577900 0.352679i
\(667\) 5085.51i 0.295220i
\(668\) −1027.44 3050.94i −0.0595103 0.176713i
\(669\) −14437.4 −0.834352
\(670\) 517.445 + 3157.85i 0.0298368 + 0.182087i
\(671\) 7935.13i 0.456531i
\(672\) 9064.59 + 8593.27i 0.520348 + 0.493292i
\(673\) −11113.6 −0.636547 −0.318273 0.947999i \(-0.603103\pi\)
−0.318273 + 0.947999i \(0.603103\pi\)
\(674\) −3019.91 18429.8i −0.172586 1.05325i
\(675\) 2811.28i 0.160306i
\(676\) 15587.7 8120.34i 0.886873 0.462013i
\(677\) 7932.48i 0.450325i −0.974321 0.225162i \(-0.927709\pi\)
0.974321 0.225162i \(-0.0722913\pi\)
\(678\) −9900.36 + 1622.27i −0.560798 + 0.0918924i
\(679\) −11654.4 −0.658697
\(680\) −2876.60 5428.96i −0.162224 0.306163i
\(681\) 1754.84i 0.0987453i
\(682\) 7656.44 1254.58i 0.429883 0.0704406i
\(683\) −3650.03 −0.204487 −0.102244 0.994759i \(-0.532602\pi\)
−0.102244 + 0.994759i \(0.532602\pi\)
\(684\) 1842.75 620.569i 0.103011 0.0346901i
\(685\) 11025.8i 0.614999i
\(686\) −10078.6 + 1651.47i −0.560934 + 0.0919148i
\(687\) 13752.8i 0.763761i
\(688\) −7675.97 10104.2i −0.425354 0.559913i
\(689\) −24819.7 + 1932.76i −1.37236 + 0.106868i
\(690\) −1368.51 + 224.243i −0.0755045 + 0.0123722i
\(691\) −7823.65 −0.430717 −0.215359 0.976535i \(-0.569092\pi\)
−0.215359 + 0.976535i \(0.569092\pi\)
\(692\) 9041.58 + 26848.6i 0.496690 + 1.47490i
\(693\) 1868.81i 0.102439i
\(694\) 22960.9 3762.37i 1.25588 0.205789i
\(695\) 3778.84i 0.206244i
\(696\) 4518.93 + 8528.51i 0.246105 + 0.464472i
\(697\) 16666.4i 0.905719i
\(698\) −2738.56 16712.8i −0.148504 0.906287i
\(699\) 12906.5i 0.698380i
\(700\) 6114.46 + 18156.6i 0.330150 + 0.980365i
\(701\) 30382.7i 1.63700i 0.574507 + 0.818500i \(0.305194\pi\)
−0.574507 + 0.818500i \(0.694806\pi\)
\(702\) 851.318 + 3476.80i 0.0457705 + 0.186928i
\(703\) 6516.56 0.349611
\(704\) −2595.82 + 3824.62i −0.138968 + 0.204753i
\(705\) 4378.42 0.233902
\(706\) −23368.7 + 3829.20i −1.24574 + 0.204127i
\(707\) 20172.7 1.07309
\(708\) −2896.21 8600.18i −0.153738 0.456518i
\(709\) 19960.9 1.05733 0.528665 0.848830i \(-0.322693\pi\)
0.528665 + 0.848830i \(0.322693\pi\)
\(710\) −2323.18 + 380.677i −0.122799 + 0.0201219i
\(711\) 7357.16 0.388066
\(712\) 7115.96 3770.47i 0.374553 0.198461i
\(713\) 10867.5i 0.570813i
\(714\) −1875.35 11444.8i −0.0982959 0.599877i
\(715\) 150.115 + 1927.72i 0.00785173 + 0.100829i
\(716\) 9588.81 + 28473.5i 0.500490 + 1.48618i
\(717\) −21397.3 −1.11450
\(718\) −14976.2 + 2454.00i −0.778422 + 0.127552i
\(719\) 10658.4 0.552838 0.276419 0.961037i \(-0.410852\pi\)
0.276419 + 0.961037i \(0.410852\pi\)
\(720\) 2095.75 1592.10i 0.108478 0.0824084i
\(721\) 27080.9i 1.39882i
\(722\) −2803.51 17109.2i −0.144509 0.881907i
\(723\) −2439.56 −0.125489
\(724\) 2926.50 + 8690.11i 0.150225 + 0.446085i
\(725\) 14804.4i 0.758373i
\(726\) −10462.8 + 1714.43i −0.534863 + 0.0876427i
\(727\) 20458.2 1.04368 0.521838 0.853045i \(-0.325247\pi\)
0.521838 + 0.853045i \(0.325247\pi\)
\(728\) −13060.2 20603.3i −0.664893 1.04891i
\(729\) −729.000 −0.0370370
\(730\) 10405.7 1705.07i 0.527577 0.0864488i
\(731\) 11782.0i 0.596134i
\(732\) −19991.5 + 6732.39i −1.00944 + 0.339940i
\(733\) 31681.2 1.59642 0.798208 0.602382i \(-0.205782\pi\)
0.798208 + 0.602382i \(0.205782\pi\)
\(734\) 929.598 + 5673.12i 0.0467467 + 0.285284i
\(735\) 2549.79i 0.127960i
\(736\) 4698.73 + 4454.41i 0.235323 + 0.223087i
\(737\) −2235.33 −0.111723
\(738\) −7045.49 + 1154.47i −0.351420 + 0.0575837i
\(739\) −33577.7 −1.67142 −0.835709 0.549173i \(-0.814943\pi\)
−0.835709 + 0.549173i \(0.814943\pi\)
\(740\) 8359.28 2815.09i 0.415261 0.139844i
\(741\) −3786.04 + 294.826i −0.187697 + 0.0146164i
\(742\) 5587.16 + 34097.1i 0.276430 + 1.68699i
\(743\) 19963.9i 0.985740i −0.870103 0.492870i \(-0.835948\pi\)
0.870103 0.492870i \(-0.164052\pi\)
\(744\) 9656.70 + 18225.0i 0.475849 + 0.898064i
\(745\) 14402.3 0.708267
\(746\) −38706.6 + 6342.47i −1.89967 + 0.311279i
\(747\) −2219.46 −0.108709
\(748\) 4067.43 1369.76i 0.198823 0.0669562i
\(749\) 25879.6 1.26251
\(750\) 8766.53 1436.48i 0.426811 0.0699373i
\(751\) 34167.4 1.66017 0.830083 0.557640i \(-0.188293\pi\)
0.830083 + 0.557640i \(0.188293\pi\)
\(752\) −12365.9 16277.8i −0.599651 0.789348i
\(753\) −295.014 −0.0142774
\(754\) −4483.09 18309.1i −0.216531 0.884319i
\(755\) 4269.28i 0.205795i
\(756\) 4708.23 1585.55i 0.226504 0.0762779i
\(757\) 35511.1i 1.70498i −0.522741 0.852492i \(-0.675090\pi\)
0.522741 0.852492i \(-0.324910\pi\)
\(758\) 2033.34 + 12409.0i 0.0974332 + 0.594612i
\(759\) 968.719i 0.0463271i
\(760\) 1307.30 + 2467.25i 0.0623957 + 0.117759i
\(761\) 29278.7i 1.39468i 0.716741 + 0.697340i \(0.245633\pi\)
−0.716741 + 0.697340i \(0.754367\pi\)
\(762\) 8699.08 1425.43i 0.413562 0.0677663i
\(763\) 18126.6i 0.860063i
\(764\) −16539.0 + 5569.70i −0.783192 + 0.263749i
\(765\) −2443.75 −0.115495
\(766\) 5254.20 860.954i 0.247835 0.0406103i
\(767\) 1375.96 + 17669.6i 0.0647760 + 0.831826i
\(768\) −11838.0 3294.91i −0.556208 0.154811i
\(769\) 26102.0i 1.22401i 0.790855 + 0.612003i \(0.209636\pi\)
−0.790855 + 0.612003i \(0.790364\pi\)
\(770\) 2648.28 433.947i 0.123945 0.0203096i
\(771\) 7044.82i 0.329070i
\(772\) −11332.6 33651.6i −0.528328 1.56885i
\(773\) −29899.4 −1.39121 −0.695605 0.718424i \(-0.744864\pi\)
−0.695605 + 0.718424i \(0.744864\pi\)
\(774\) −4980.68 + 816.134i