Properties

Label 312.4.m.a.181.43
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.43
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.44

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0631346 - 2.82772i) q^{2} +3.00000i q^{3} +(-7.99203 - 0.357054i) q^{4} -11.9790 q^{5} +(8.48317 + 0.189404i) q^{6} +11.1965i q^{7} +(-1.51422 + 22.5767i) q^{8} -9.00000 q^{9} +(-0.756288 + 33.8732i) q^{10} -24.4396 q^{11} +(1.07116 - 23.9761i) q^{12} +(-16.6594 - 43.8117i) q^{13} +(31.6605 + 0.706885i) q^{14} -35.9369i q^{15} +(63.7450 + 5.70717i) q^{16} +68.2781 q^{17} +(-0.568211 + 25.4495i) q^{18} +29.3706 q^{19} +(95.7364 + 4.27714i) q^{20} -33.5894 q^{21} +(-1.54298 + 69.1084i) q^{22} +197.516 q^{23} +(-67.7301 - 4.54267i) q^{24} +18.4960 q^{25} +(-124.939 + 44.3420i) q^{26} -27.0000i q^{27} +(3.99775 - 89.4826i) q^{28} -184.758i q^{29} +(-101.620 - 2.26886i) q^{30} +32.3159i q^{31} +(20.1628 - 179.893i) q^{32} -73.3188i q^{33} +(4.31070 - 193.071i) q^{34} -134.122i q^{35} +(71.9283 + 3.21349i) q^{36} +81.8153 q^{37} +(1.85430 - 83.0519i) q^{38} +(131.435 - 49.9781i) q^{39} +(18.1388 - 270.446i) q^{40} -159.350i q^{41} +(-2.12065 + 94.9816i) q^{42} +400.042i q^{43} +(195.322 + 8.72626i) q^{44} +107.811 q^{45} +(12.4701 - 558.520i) q^{46} -183.327i q^{47} +(-17.1215 + 191.235i) q^{48} +217.639 q^{49} +(1.16774 - 52.3015i) q^{50} +204.834i q^{51} +(117.499 + 356.093i) q^{52} -220.471i q^{53} +(-76.3485 - 1.70463i) q^{54} +292.762 q^{55} +(-252.780 - 16.9540i) q^{56} +88.1118i q^{57} +(-522.443 - 11.6646i) q^{58} +464.646 q^{59} +(-12.8314 + 287.209i) q^{60} -182.988i q^{61} +(91.3805 + 2.04025i) q^{62} -100.768i q^{63} +(-507.414 - 68.3723i) q^{64} +(199.562 + 524.820i) q^{65} +(-207.325 - 4.62895i) q^{66} -292.588 q^{67} +(-545.680 - 24.3790i) q^{68} +592.547i q^{69} +(-379.261 - 8.46776i) q^{70} -913.162i q^{71} +(13.6280 - 203.190i) q^{72} +300.218i q^{73} +(5.16537 - 231.351i) q^{74} +55.4879i q^{75} +(-234.731 - 10.4869i) q^{76} -273.638i q^{77} +(-133.026 - 374.817i) q^{78} -61.6597 q^{79} +(-763.600 - 68.3661i) q^{80} +81.0000 q^{81} +(-450.598 - 10.0605i) q^{82} +381.946 q^{83} +(268.448 + 11.9932i) q^{84} -817.902 q^{85} +(1131.21 + 25.2565i) q^{86} +554.273 q^{87} +(37.0070 - 551.766i) q^{88} +172.439i q^{89} +(6.80659 - 304.859i) q^{90} +(490.537 - 186.526i) q^{91} +(-1578.55 - 70.5238i) q^{92} -96.9478 q^{93} +(-518.397 - 11.5742i) q^{94} -351.830 q^{95} +(539.679 + 60.4884i) q^{96} +933.436i q^{97} +(13.7405 - 615.422i) q^{98} +219.956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0631346 2.82772i 0.0223214 0.999751i
\(3\) 3.00000i 0.577350i
\(4\) −7.99203 0.357054i −0.999004 0.0446317i
\(5\) −11.9790 −1.07143 −0.535716 0.844398i \(-0.679958\pi\)
−0.535716 + 0.844398i \(0.679958\pi\)
\(6\) 8.48317 + 0.189404i 0.577206 + 0.0128873i
\(7\) 11.1965i 0.604553i 0.953220 + 0.302277i \(0.0977466\pi\)
−0.953220 + 0.302277i \(0.902253\pi\)
\(8\) −1.51422 + 22.5767i −0.0669198 + 0.997758i
\(9\) −9.00000 −0.333333
\(10\) −0.756288 + 33.8732i −0.0239159 + 1.07117i
\(11\) −24.4396 −0.669893 −0.334946 0.942237i \(-0.608718\pi\)
−0.334946 + 0.942237i \(0.608718\pi\)
\(12\) 1.07116 23.9761i 0.0257682 0.576775i
\(13\) −16.6594 43.8117i −0.355421 0.934706i
\(14\) 31.6605 + 0.706885i 0.604403 + 0.0134945i
\(15\) 35.9369i 0.618592i
\(16\) 63.7450 + 5.70717i 0.996016 + 0.0891745i
\(17\) 68.2781 0.974109 0.487055 0.873371i \(-0.338071\pi\)
0.487055 + 0.873371i \(0.338071\pi\)
\(18\) −0.568211 + 25.4495i −0.00744048 + 0.333250i
\(19\) 29.3706 0.354636 0.177318 0.984154i \(-0.443258\pi\)
0.177318 + 0.984154i \(0.443258\pi\)
\(20\) 95.7364 + 4.27714i 1.07036 + 0.0478199i
\(21\) −33.5894 −0.349039
\(22\) −1.54298 + 69.1084i −0.0149530 + 0.669726i
\(23\) 197.516 1.79065 0.895323 0.445417i \(-0.146945\pi\)
0.895323 + 0.445417i \(0.146945\pi\)
\(24\) −67.7301 4.54267i −0.576056 0.0386362i
\(25\) 18.4960 0.147968
\(26\) −124.939 + 44.3420i −0.942407 + 0.334469i
\(27\) 27.0000i 0.192450i
\(28\) 3.99775 89.4826i 0.0269823 0.603951i
\(29\) 184.758i 1.18306i −0.806284 0.591528i \(-0.798525\pi\)
0.806284 0.591528i \(-0.201475\pi\)
\(30\) −101.620 2.26886i −0.618438 0.0138079i
\(31\) 32.3159i 0.187229i 0.995608 + 0.0936147i \(0.0298422\pi\)
−0.995608 + 0.0936147i \(0.970158\pi\)
\(32\) 20.1628 179.893i 0.111385 0.993777i
\(33\) 73.3188i 0.386763i
\(34\) 4.31070 193.071i 0.0217435 0.973867i
\(35\) 134.122i 0.647738i
\(36\) 71.9283 + 3.21349i 0.333001 + 0.0148772i
\(37\) 81.8153 0.363523 0.181761 0.983343i \(-0.441820\pi\)
0.181761 + 0.983343i \(0.441820\pi\)
\(38\) 1.85430 83.0519i 0.00791598 0.354547i
\(39\) 131.435 49.9781i 0.539653 0.205202i
\(40\) 18.1388 270.446i 0.0717001 1.06903i
\(41\) 159.350i 0.606983i −0.952834 0.303491i \(-0.901848\pi\)
0.952834 0.303491i \(-0.0981524\pi\)
\(42\) −2.12065 + 94.9816i −0.00779105 + 0.348952i
\(43\) 400.042i 1.41874i 0.704835 + 0.709371i \(0.251021\pi\)
−0.704835 + 0.709371i \(0.748979\pi\)
\(44\) 195.322 + 8.72626i 0.669225 + 0.0298985i
\(45\) 107.811 0.357144
\(46\) 12.4701 558.520i 0.0399698 1.79020i
\(47\) 183.327i 0.568956i −0.958683 0.284478i \(-0.908180\pi\)
0.958683 0.284478i \(-0.0918203\pi\)
\(48\) −17.1215 + 191.235i −0.0514849 + 0.575050i
\(49\) 217.639 0.634515
\(50\) 1.16774 52.3015i 0.00330285 0.147931i
\(51\) 204.834i 0.562402i
\(52\) 117.499 + 356.093i 0.313349 + 0.949638i
\(53\) 220.471i 0.571396i −0.958320 0.285698i \(-0.907775\pi\)
0.958320 0.285698i \(-0.0922254\pi\)
\(54\) −76.3485 1.70463i −0.192402 0.00429576i
\(55\) 292.762 0.717745
\(56\) −252.780 16.9540i −0.603198 0.0404566i
\(57\) 88.1118i 0.204749i
\(58\) −522.443 11.6646i −1.18276 0.0264075i
\(59\) 464.646 1.02528 0.512642 0.858603i \(-0.328667\pi\)
0.512642 + 0.858603i \(0.328667\pi\)
\(60\) −12.8314 + 287.209i −0.0276088 + 0.617975i
\(61\) 182.988i 0.384085i −0.981387 0.192042i \(-0.938489\pi\)
0.981387 0.192042i \(-0.0615111\pi\)
\(62\) 91.3805 + 2.04025i 0.187183 + 0.00417923i
\(63\) 100.768i 0.201518i
\(64\) −507.414 68.3723i −0.991043 0.133540i
\(65\) 199.562 + 524.820i 0.380810 + 1.00147i
\(66\) −207.325 4.62895i −0.386666 0.00863310i
\(67\) −292.588 −0.533512 −0.266756 0.963764i \(-0.585952\pi\)
−0.266756 + 0.963764i \(0.585952\pi\)
\(68\) −545.680 24.3790i −0.973139 0.0434762i
\(69\) 592.547i 1.03383i
\(70\) −379.261 8.46776i −0.647577 0.0144584i
\(71\) 913.162i 1.52637i −0.646179 0.763186i \(-0.723634\pi\)
0.646179 0.763186i \(-0.276366\pi\)
\(72\) 13.6280 203.190i 0.0223066 0.332586i
\(73\) 300.218i 0.481341i 0.970607 + 0.240670i \(0.0773672\pi\)
−0.970607 + 0.240670i \(0.922633\pi\)
\(74\) 5.16537 231.351i 0.00811435 0.363432i
\(75\) 55.4879i 0.0854293i
\(76\) −234.731 10.4869i −0.354282 0.0158280i
\(77\) 273.638i 0.404986i
\(78\) −133.026 374.817i −0.193106 0.544099i
\(79\) −61.6597 −0.0878134 −0.0439067 0.999036i \(-0.513980\pi\)
−0.0439067 + 0.999036i \(0.513980\pi\)
\(80\) −763.600 68.3661i −1.06716 0.0955445i
\(81\) 81.0000 0.111111
\(82\) −450.598 10.0605i −0.606832 0.0135487i
\(83\) 381.946 0.505109 0.252555 0.967583i \(-0.418729\pi\)
0.252555 + 0.967583i \(0.418729\pi\)
\(84\) 268.448 + 11.9932i 0.348691 + 0.0155782i
\(85\) −817.902 −1.04369
\(86\) 1131.21 + 25.2565i 1.41839 + 0.0316683i
\(87\) 554.273 0.683038
\(88\) 37.0070 551.766i 0.0448291 0.668391i
\(89\) 172.439i 0.205376i 0.994714 + 0.102688i \(0.0327443\pi\)
−0.994714 + 0.102688i \(0.967256\pi\)
\(90\) 6.80659 304.859i 0.00797197 0.357055i
\(91\) 490.537 186.526i 0.565080 0.214871i
\(92\) −1578.55 70.5238i −1.78886 0.0799197i
\(93\) −96.9478 −0.108097
\(94\) −518.397 11.5742i −0.568814 0.0126999i
\(95\) −351.830 −0.379968
\(96\) 539.679 + 60.4884i 0.573758 + 0.0643081i
\(97\) 933.436i 0.977073i 0.872543 + 0.488537i \(0.162469\pi\)
−0.872543 + 0.488537i \(0.837531\pi\)
\(98\) 13.7405 615.422i 0.0141633 0.634357i
\(99\) 219.956 0.223298
\(100\) −147.820 6.60406i −0.147820 0.00660406i
\(101\) 899.146i 0.885825i 0.896565 + 0.442913i \(0.146055\pi\)
−0.896565 + 0.442913i \(0.853945\pi\)
\(102\) 579.214 + 12.9321i 0.562262 + 0.0125536i
\(103\) 1003.31 0.959797 0.479898 0.877324i \(-0.340674\pi\)
0.479898 + 0.877324i \(0.340674\pi\)
\(104\) 1014.35 309.773i 0.956396 0.292074i
\(105\) 402.367 0.373972
\(106\) −623.430 13.9193i −0.571253 0.0127544i
\(107\) 1222.69i 1.10469i −0.833616 0.552344i \(-0.813734\pi\)
0.833616 0.552344i \(-0.186266\pi\)
\(108\) −9.64046 + 215.785i −0.00858938 + 0.192258i
\(109\) −2007.74 −1.76428 −0.882142 0.470984i \(-0.843899\pi\)
−0.882142 + 0.470984i \(0.843899\pi\)
\(110\) 18.4834 827.849i 0.0160211 0.717566i
\(111\) 245.446i 0.209880i
\(112\) −63.9002 + 713.720i −0.0539108 + 0.602145i
\(113\) 2054.26 1.71016 0.855080 0.518495i \(-0.173508\pi\)
0.855080 + 0.518495i \(0.173508\pi\)
\(114\) 249.156 + 5.56290i 0.204698 + 0.00457029i
\(115\) −2366.04 −1.91856
\(116\) −65.9685 + 1476.59i −0.0528019 + 1.18188i
\(117\) 149.934 + 394.305i 0.118474 + 0.311569i
\(118\) 29.3352 1313.89i 0.0228858 1.02503i
\(119\) 764.474i 0.588901i
\(120\) 811.337 + 54.4165i 0.617205 + 0.0413961i
\(121\) −733.705 −0.551244
\(122\) −517.438 11.5528i −0.383989 0.00857333i
\(123\) 478.050 0.350442
\(124\) 11.5385 258.270i 0.00835638 0.187043i
\(125\) 1275.81 0.912895
\(126\) −284.945 6.36196i −0.201468 0.00449817i
\(127\) 2138.45 1.49415 0.747074 0.664741i \(-0.231458\pi\)
0.747074 + 0.664741i \(0.231458\pi\)
\(128\) −225.373 + 1430.51i −0.155628 + 0.987816i
\(129\) −1200.13 −0.819111
\(130\) 1496.64 531.172i 1.00973 0.358361i
\(131\) 754.399i 0.503146i −0.967838 0.251573i \(-0.919052\pi\)
0.967838 0.251573i \(-0.0809479\pi\)
\(132\) −26.1788 + 585.966i −0.0172619 + 0.386377i
\(133\) 328.847i 0.214396i
\(134\) −18.4724 + 827.357i −0.0119087 + 0.533379i
\(135\) 323.432i 0.206197i
\(136\) −103.388 + 1541.49i −0.0651872 + 0.971926i
\(137\) 2675.17i 1.66828i 0.551549 + 0.834142i \(0.314037\pi\)
−0.551549 + 0.834142i \(0.685963\pi\)
\(138\) 1675.56 + 37.4102i 1.03357 + 0.0230766i
\(139\) 305.549i 0.186448i 0.995645 + 0.0932242i \(0.0297173\pi\)
−0.995645 + 0.0932242i \(0.970283\pi\)
\(140\) −47.8890 + 1071.91i −0.0289097 + 0.647093i
\(141\) 549.980 0.328487
\(142\) −2582.17 57.6521i −1.52599 0.0340708i
\(143\) 407.148 + 1070.74i 0.238094 + 0.626153i
\(144\) −573.705 51.3645i −0.332005 0.0297248i
\(145\) 2213.21i 1.26757i
\(146\) 848.933 + 18.9541i 0.481221 + 0.0107442i
\(147\) 652.916i 0.366338i
\(148\) −653.870 29.2125i −0.363161 0.0162247i
\(149\) 2790.17 1.53409 0.767047 0.641591i \(-0.221725\pi\)
0.767047 + 0.641591i \(0.221725\pi\)
\(150\) 156.905 + 3.50321i 0.0854080 + 0.00190690i
\(151\) 2393.73i 1.29006i −0.764158 0.645029i \(-0.776845\pi\)
0.764158 0.645029i \(-0.223155\pi\)
\(152\) −44.4736 + 663.091i −0.0237322 + 0.353841i
\(153\) −614.502 −0.324703
\(154\) −773.771 17.2760i −0.404885 0.00903986i
\(155\) 387.112i 0.200604i
\(156\) −1068.28 + 352.497i −0.548274 + 0.180912i
\(157\) 1105.94i 0.562188i 0.959680 + 0.281094i \(0.0906973\pi\)
−0.959680 + 0.281094i \(0.909303\pi\)
\(158\) −3.89286 + 174.356i −0.00196012 + 0.0877915i
\(159\) 661.412 0.329896
\(160\) −241.530 + 2154.93i −0.119341 + 1.06477i
\(161\) 2211.48i 1.08254i
\(162\) 5.11390 229.046i 0.00248016 0.111083i
\(163\) 2591.54 1.24531 0.622653 0.782498i \(-0.286055\pi\)
0.622653 + 0.782498i \(0.286055\pi\)
\(164\) −56.8966 + 1273.53i −0.0270907 + 0.606378i
\(165\) 878.285i 0.414390i
\(166\) 24.1140 1080.04i 0.0112748 0.504983i
\(167\) 2755.28i 1.27670i −0.769744 0.638352i \(-0.779616\pi\)
0.769744 0.638352i \(-0.220384\pi\)
\(168\) 50.8619 758.339i 0.0233576 0.348257i
\(169\) −1641.93 + 1459.75i −0.747352 + 0.664429i
\(170\) −51.6378 + 2312.80i −0.0232967 + 1.04343i
\(171\) −264.335 −0.118212
\(172\) 142.837 3197.15i 0.0633209 1.41733i
\(173\) 1969.77i 0.865656i −0.901476 0.432828i \(-0.857516\pi\)
0.901476 0.432828i \(-0.142484\pi\)
\(174\) 34.9938 1567.33i 0.0152464 0.682868i
\(175\) 207.090i 0.0894544i
\(176\) −1557.90 139.481i −0.667224 0.0597374i
\(177\) 1393.94i 0.591948i
\(178\) 487.609 + 10.8868i 0.205325 + 0.00458429i
\(179\) 646.244i 0.269846i 0.990856 + 0.134923i \(0.0430788\pi\)
−0.990856 + 0.134923i \(0.956921\pi\)
\(180\) −861.627 38.4943i −0.356788 0.0159400i
\(181\) 3540.40i 1.45390i −0.686690 0.726950i \(-0.740937\pi\)
0.686690 0.726950i \(-0.259063\pi\)
\(182\) −496.474 1398.88i −0.202204 0.569735i
\(183\) 548.963 0.221752
\(184\) −299.083 + 4459.25i −0.119830 + 1.78663i
\(185\) −980.064 −0.389490
\(186\) −6.12076 + 274.142i −0.00241288 + 0.108070i
\(187\) −1668.69 −0.652549
\(188\) −65.4575 + 1465.15i −0.0253935 + 0.568389i
\(189\) 302.305 0.116346
\(190\) −22.2126 + 994.877i −0.00848144 + 0.379874i
\(191\) −81.5830 −0.0309065 −0.0154532 0.999881i \(-0.504919\pi\)
−0.0154532 + 0.999881i \(0.504919\pi\)
\(192\) 205.117 1522.24i 0.0770991 0.572179i
\(193\) 2902.47i 1.08251i −0.840859 0.541255i \(-0.817949\pi\)
0.840859 0.541255i \(-0.182051\pi\)
\(194\) 2639.50 + 58.9321i 0.976830 + 0.0218097i
\(195\) −1574.46 + 598.686i −0.578202 + 0.219861i
\(196\) −1739.38 77.7088i −0.633883 0.0283195i
\(197\) 151.798 0.0548991 0.0274496 0.999623i \(-0.491261\pi\)
0.0274496 + 0.999623i \(0.491261\pi\)
\(198\) 13.8869 621.976i 0.00498432 0.223242i
\(199\) −1551.21 −0.552575 −0.276288 0.961075i \(-0.589104\pi\)
−0.276288 + 0.961075i \(0.589104\pi\)
\(200\) −28.0070 + 417.578i −0.00990198 + 0.147636i
\(201\) 877.763i 0.308023i
\(202\) 2542.53 + 56.7672i 0.885604 + 0.0197729i
\(203\) 2068.64 0.715221
\(204\) 73.1369 1637.04i 0.0251010 0.561842i
\(205\) 1908.85i 0.650341i
\(206\) 63.3435 2837.08i 0.0214240 0.959558i
\(207\) −1777.64 −0.596882
\(208\) −811.910 2887.86i −0.270653 0.962677i
\(209\) −717.806 −0.237568
\(210\) 25.4033 1137.78i 0.00834759 0.373879i
\(211\) 1347.84i 0.439760i −0.975527 0.219880i \(-0.929433\pi\)
0.975527 0.219880i \(-0.0705665\pi\)
\(212\) −78.7199 + 1762.01i −0.0255024 + 0.570826i
\(213\) 2739.49 0.881251
\(214\) −3457.42 77.1938i −1.10441 0.0246582i
\(215\) 4792.10i 1.52009i
\(216\) 609.571 + 40.8840i 0.192019 + 0.0128787i
\(217\) −361.825 −0.113190
\(218\) −126.758 + 5677.34i −0.0393813 + 1.76384i
\(219\) −900.654 −0.277902
\(220\) −2339.76 104.532i −0.717030 0.0320342i
\(221\) −1137.47 2991.38i −0.346219 0.910506i
\(222\) 694.053 + 15.4961i 0.209828 + 0.00468482i
\(223\) 2120.01i 0.636619i −0.947987 0.318310i \(-0.896885\pi\)
0.947987 0.318310i \(-0.103115\pi\)
\(224\) 2014.17 + 225.753i 0.600791 + 0.0673381i
\(225\) −166.464 −0.0493226
\(226\) 129.695 5808.87i 0.0381732 1.70973i
\(227\) −4088.74 −1.19550 −0.597751 0.801682i \(-0.703939\pi\)
−0.597751 + 0.801682i \(0.703939\pi\)
\(228\) 31.4607 704.192i 0.00913831 0.204545i
\(229\) 1569.92 0.453026 0.226513 0.974008i \(-0.427267\pi\)
0.226513 + 0.974008i \(0.427267\pi\)
\(230\) −149.379 + 6690.49i −0.0428249 + 1.91808i
\(231\) 820.913 0.233819
\(232\) 4171.22 + 279.764i 1.18040 + 0.0791699i
\(233\) −1526.02 −0.429068 −0.214534 0.976716i \(-0.568823\pi\)
−0.214534 + 0.976716i \(0.568823\pi\)
\(234\) 1124.45 399.078i 0.314136 0.111490i
\(235\) 2196.07i 0.609598i
\(236\) −3713.46 165.904i −1.02426 0.0457602i
\(237\) 184.979i 0.0506991i
\(238\) 2161.72 + 48.2647i 0.588754 + 0.0131451i
\(239\) 706.224i 0.191137i −0.995423 0.0955687i \(-0.969533\pi\)
0.995423 0.0955687i \(-0.0304670\pi\)
\(240\) 205.098 2290.80i 0.0551627 0.616127i
\(241\) 624.829i 0.167007i −0.996507 0.0835037i \(-0.973389\pi\)
0.996507 0.0835037i \(-0.0266110\pi\)
\(242\) −46.3222 + 2074.72i −0.0123046 + 0.551106i
\(243\) 243.000i 0.0641500i
\(244\) −65.3365 + 1462.44i −0.0171424 + 0.383702i
\(245\) −2607.09 −0.679840
\(246\) 30.1815 1351.79i 0.00782236 0.350354i
\(247\) −489.295 1286.78i −0.126045 0.331480i
\(248\) −729.587 48.9335i −0.186810 0.0125294i
\(249\) 1145.84i 0.291625i
\(250\) 80.5477 3607.64i 0.0203771 0.912668i
\(251\) 966.865i 0.243139i 0.992583 + 0.121570i \(0.0387928\pi\)
−0.992583 + 0.121570i \(0.961207\pi\)
\(252\) −35.9797 + 805.343i −0.00899409 + 0.201317i
\(253\) −4827.21 −1.19954
\(254\) 135.010 6046.94i 0.0333515 1.49378i
\(255\) 2453.70i 0.602576i
\(256\) 4030.86 + 727.607i 0.984096 + 0.177639i
\(257\) −7870.71 −1.91035 −0.955177 0.296034i \(-0.904336\pi\)
−0.955177 + 0.296034i \(0.904336\pi\)
\(258\) −75.7695 + 3393.63i −0.0182837 + 0.818907i
\(259\) 916.043i 0.219769i
\(260\) −1407.52 4265.63i −0.335733 1.01747i
\(261\) 1662.82i 0.394352i
\(262\) −2133.23 47.6287i −0.503021 0.0112309i
\(263\) −4964.41 −1.16395 −0.581975 0.813207i \(-0.697720\pi\)
−0.581975 + 0.813207i \(0.697720\pi\)
\(264\) 1655.30 + 111.021i 0.385896 + 0.0258821i
\(265\) 2641.01i 0.612212i
\(266\) 929.889 + 20.7616i 0.214343 + 0.00478563i
\(267\) −517.316 −0.118574
\(268\) 2338.37 + 104.470i 0.532980 + 0.0238116i
\(269\) 75.7876i 0.0171779i 0.999963 + 0.00858895i \(0.00273398\pi\)
−0.999963 + 0.00858895i \(0.997266\pi\)
\(270\) 914.577 + 20.4198i 0.206146 + 0.00460262i
\(271\) 7195.32i 1.61286i −0.591331 0.806429i \(-0.701397\pi\)
0.591331 0.806429i \(-0.298603\pi\)
\(272\) 4352.39 + 389.675i 0.970229 + 0.0868658i
\(273\) 559.579 + 1471.61i 0.124056 + 0.326249i
\(274\) 7564.63 + 168.896i 1.66787 + 0.0372385i
\(275\) −452.035 −0.0991226
\(276\) 211.571 4735.65i 0.0461416 1.03280i
\(277\) 3555.60i 0.771247i 0.922656 + 0.385623i \(0.126014\pi\)
−0.922656 + 0.385623i \(0.873986\pi\)
\(278\) 864.008 + 19.2907i 0.186402 + 0.00416180i
\(279\) 290.843i 0.0624098i
\(280\) 3028.04 + 203.091i 0.646286 + 0.0433465i
\(281\) 4630.12i 0.982953i −0.870891 0.491476i \(-0.836457\pi\)
0.870891 0.491476i \(-0.163543\pi\)
\(282\) 34.7227 1555.19i 0.00733230 0.328405i
\(283\) 2076.65i 0.436198i 0.975927 + 0.218099i \(0.0699856\pi\)
−0.975927 + 0.218099i \(0.930014\pi\)
\(284\) −326.048 + 7298.02i −0.0681246 + 1.52485i
\(285\) 1055.49i 0.219375i
\(286\) 3053.46 1083.70i 0.631312 0.224058i
\(287\) 1784.16 0.366954
\(288\) −181.465 + 1619.04i −0.0371283 + 0.331259i
\(289\) −251.107 −0.0511108
\(290\) 6258.34 + 139.730i 1.26725 + 0.0282939i
\(291\) −2800.31 −0.564113
\(292\) 107.194 2399.35i 0.0214831 0.480861i
\(293\) 6984.62 1.39265 0.696324 0.717727i \(-0.254818\pi\)
0.696324 + 0.717727i \(0.254818\pi\)
\(294\) 1846.27 + 41.2216i 0.366246 + 0.00817718i
\(295\) −5565.98 −1.09852
\(296\) −123.887 + 1847.12i −0.0243269 + 0.362708i
\(297\) 659.869i 0.128921i
\(298\) 176.156 7889.84i 0.0342432 1.53371i
\(299\) −3290.48 8653.50i −0.636434 1.67373i
\(300\) 19.8122 443.461i 0.00381286 0.0853442i
\(301\) −4479.07 −0.857705
\(302\) −6768.79 151.127i −1.28974 0.0287959i
\(303\) −2697.44 −0.511431
\(304\) 1872.23 + 167.623i 0.353223 + 0.0316245i
\(305\) 2192.01i 0.411521i
\(306\) −38.7963 + 1737.64i −0.00724784 + 0.324622i
\(307\) 8645.79 1.60730 0.803651 0.595101i \(-0.202888\pi\)
0.803651 + 0.595101i \(0.202888\pi\)
\(308\) −97.7034 + 2186.92i −0.0180752 + 0.404582i
\(309\) 3009.93i 0.554139i
\(310\) −1094.65 24.4401i −0.200554 0.00447776i
\(311\) 7865.90 1.43419 0.717097 0.696973i \(-0.245470\pi\)
0.717097 + 0.696973i \(0.245470\pi\)
\(312\) 929.318 + 3043.05i 0.168629 + 0.552175i
\(313\) 2251.25 0.406543 0.203272 0.979122i \(-0.434843\pi\)
0.203272 + 0.979122i \(0.434843\pi\)
\(314\) 3127.29 + 69.8230i 0.562048 + 0.0125488i
\(315\) 1207.10i 0.215913i
\(316\) 492.786 + 22.0158i 0.0877259 + 0.00391926i
\(317\) 5543.27 0.982148 0.491074 0.871118i \(-0.336604\pi\)
0.491074 + 0.871118i \(0.336604\pi\)
\(318\) 41.7580 1870.29i 0.00736374 0.329813i
\(319\) 4515.41i 0.792521i
\(320\) 6078.31 + 819.030i 1.06184 + 0.143079i
\(321\) 3668.06 0.637792
\(322\) 6253.45 + 139.621i 1.08227 + 0.0241639i
\(323\) 2005.37 0.345454
\(324\) −647.354 28.9214i −0.111000 0.00495908i
\(325\) −308.131 810.341i −0.0525909 0.138306i
\(326\) 163.616 7328.15i 0.0277970 1.24500i
\(327\) 6023.23i 1.01861i
\(328\) 3597.60 + 241.292i 0.605622 + 0.0406192i
\(329\) 2052.61 0.343964
\(330\) 2483.55 + 55.4501i 0.414287 + 0.00924978i
\(331\) 2113.49 0.350961 0.175481 0.984483i \(-0.443852\pi\)
0.175481 + 0.984483i \(0.443852\pi\)
\(332\) −3052.53 136.375i −0.504606 0.0225439i
\(333\) −736.338 −0.121174
\(334\) −7791.16 173.953i −1.27639 0.0284979i
\(335\) 3504.90 0.571622
\(336\) −2141.16 191.701i −0.347648 0.0311254i
\(337\) 656.888 0.106181 0.0530905 0.998590i \(-0.483093\pi\)
0.0530905 + 0.998590i \(0.483093\pi\)
\(338\) 4024.10 + 4735.09i 0.647581 + 0.761996i
\(339\) 6162.77i 0.987362i
\(340\) 6536.69 + 292.035i 1.04265 + 0.0465818i
\(341\) 789.789i 0.125424i
\(342\) −16.6887 + 747.467i −0.00263866 + 0.118182i
\(343\) 6277.18i 0.988152i
\(344\) −9031.63 605.753i −1.41556 0.0949419i
\(345\) 7098.11i 1.10768i
\(346\) −5569.95 124.360i −0.865441 0.0193227i
\(347\) 8059.88i 1.24691i −0.781860 0.623454i \(-0.785729\pi\)
0.781860 0.623454i \(-0.214271\pi\)
\(348\) −4429.77 197.905i −0.682357 0.0304852i
\(349\) −11088.0 −1.70065 −0.850324 0.526259i \(-0.823594\pi\)
−0.850324 + 0.526259i \(0.823594\pi\)
\(350\) 585.593 + 13.0745i 0.0894322 + 0.00199675i
\(351\) −1182.92 + 449.803i −0.179884 + 0.0684008i
\(352\) −492.771 + 4396.51i −0.0746159 + 0.665724i
\(353\) 10003.2i 1.50827i −0.656721 0.754134i \(-0.728057\pi\)
0.656721 0.754134i \(-0.271943\pi\)
\(354\) 3941.67 + 88.0056i 0.591800 + 0.0132131i
\(355\) 10938.7i 1.63540i
\(356\) 61.5699 1378.14i 0.00916629 0.205171i
\(357\) −2293.42 −0.340002
\(358\) 1827.40 + 40.8003i 0.269779 + 0.00602336i
\(359\) 2760.83i 0.405881i 0.979191 + 0.202941i \(0.0650498\pi\)
−0.979191 + 0.202941i \(0.934950\pi\)
\(360\) −163.250 + 2434.01i −0.0239000 + 0.356344i
\(361\) −5996.37 −0.874234
\(362\) −10011.3 223.522i −1.45354 0.0324531i
\(363\) 2201.12i 0.318261i
\(364\) −3986.99 + 1315.57i −0.574107 + 0.189436i
\(365\) 3596.31i 0.515724i
\(366\) 34.6585 1552.32i 0.00494981 0.221696i
\(367\) −9356.73 −1.33084 −0.665418 0.746471i \(-0.731747\pi\)
−0.665418 + 0.746471i \(0.731747\pi\)
\(368\) 12590.6 + 1127.26i 1.78351 + 0.159680i
\(369\) 1434.15i 0.202328i
\(370\) −61.8759 + 2771.35i −0.00869398 + 0.389393i
\(371\) 2468.50 0.345439
\(372\) 774.810 + 34.6156i 0.107989 + 0.00482456i
\(373\) 3901.75i 0.541622i 0.962633 + 0.270811i \(0.0872918\pi\)
−0.962633 + 0.270811i \(0.912708\pi\)
\(374\) −105.352 + 4718.59i −0.0145658 + 0.652386i
\(375\) 3827.43i 0.527060i
\(376\) 4138.91 + 277.597i 0.567681 + 0.0380744i
\(377\) −8094.55 + 3077.94i −1.10581 + 0.420483i
\(378\) 19.0859 854.835i 0.00259702 0.116317i
\(379\) 12612.3 1.70936 0.854681 0.519153i \(-0.173753\pi\)
0.854681 + 0.519153i \(0.173753\pi\)
\(380\) 2811.83 + 125.622i 0.379590 + 0.0169586i
\(381\) 6415.35i 0.862646i
\(382\) −5.15071 + 230.694i −0.000689877 + 0.0308988i
\(383\) 7774.87i 1.03728i −0.854993 0.518639i \(-0.826439\pi\)
0.854993 0.518639i \(-0.173561\pi\)
\(384\) −4291.53 676.120i −0.570316 0.0898518i
\(385\) 3277.90i 0.433915i
\(386\) −8207.38 183.246i −1.08224 0.0241632i
\(387\) 3600.38i 0.472914i
\(388\) 333.287 7460.05i 0.0436085 0.976099i
\(389\) 6871.59i 0.895639i −0.894124 0.447819i \(-0.852201\pi\)
0.894124 0.447819i \(-0.147799\pi\)
\(390\) 1593.52 + 4489.93i 0.206900 + 0.582965i
\(391\) 13486.0 1.74429
\(392\) −329.554 + 4913.56i −0.0424617 + 0.633093i
\(393\) 2263.20 0.290492
\(394\) 9.58367 429.241i 0.00122543 0.0548855i
\(395\) 738.620 0.0940861
\(396\) −1757.90 78.5363i −0.223075 0.00996616i
\(397\) −4132.17 −0.522387 −0.261194 0.965286i \(-0.584116\pi\)
−0.261194 + 0.965286i \(0.584116\pi\)
\(398\) −97.9351 + 4386.40i −0.0123343 + 0.552438i
\(399\) −986.542 −0.123782
\(400\) 1179.03 + 105.560i 0.147378 + 0.0131950i
\(401\) 813.908i 0.101358i −0.998715 0.0506791i \(-0.983861\pi\)
0.998715 0.0506791i \(-0.0161386\pi\)
\(402\) −2482.07 55.4172i −0.307946 0.00687552i
\(403\) 1415.82 538.363i 0.175005 0.0665453i
\(404\) 321.044 7186.00i 0.0395359 0.884942i
\(405\) −970.297 −0.119048
\(406\) 130.602 5849.53i 0.0159648 0.715042i
\(407\) −1999.53 −0.243521
\(408\) −4624.48 310.165i −0.561142 0.0376359i
\(409\) 6461.65i 0.781194i 0.920562 + 0.390597i \(0.127731\pi\)
−0.920562 + 0.390597i \(0.872269\pi\)
\(410\) 5397.70 + 120.514i 0.650179 + 0.0145166i
\(411\) −8025.50 −0.963185
\(412\) −8018.48 358.236i −0.958840 0.0428374i
\(413\) 5202.40i 0.619839i
\(414\) −112.231 + 5026.68i −0.0133233 + 0.596733i
\(415\) −4575.33 −0.541190
\(416\) −8217.32 + 2113.53i −0.968478 + 0.249097i
\(417\) −916.647 −0.107646
\(418\) −45.3184 + 2029.76i −0.00530286 + 0.237509i
\(419\) 1295.24i 0.151018i 0.997145 + 0.0755089i \(0.0240581\pi\)
−0.997145 + 0.0755089i \(0.975942\pi\)
\(420\) −3215.73 143.667i −0.373599 0.0166910i
\(421\) 8747.69 1.01268 0.506338 0.862335i \(-0.330999\pi\)
0.506338 + 0.862335i \(0.330999\pi\)
\(422\) −3811.32 85.0954i −0.439650 0.00981607i
\(423\) 1649.94i 0.189652i
\(424\) 4977.50 + 333.842i 0.570115 + 0.0382377i
\(425\) 1262.87 0.144137
\(426\) 172.956 7746.50i 0.0196708 0.881031i
\(427\) 2048.82 0.232200
\(428\) −436.565 + 9771.74i −0.0493041 + 1.10359i
\(429\) −3212.22 + 1221.44i −0.361510 + 0.137464i
\(430\) −13550.7 302.547i −1.51971 0.0339305i
\(431\) 14848.5i 1.65946i 0.558166 + 0.829729i \(0.311505\pi\)
−0.558166 + 0.829729i \(0.688495\pi\)
\(432\) 154.094 1721.12i 0.0171616 0.191683i
\(433\) 1906.25 0.211567 0.105784 0.994389i \(-0.466265\pi\)
0.105784 + 0.994389i \(0.466265\pi\)
\(434\) −22.8437 + 1023.14i −0.00252657 + 0.113162i
\(435\) −6639.63 −0.731829
\(436\) 16045.9 + 716.873i 1.76253 + 0.0787431i
\(437\) 5801.15 0.635027
\(438\) −56.8624 + 2546.80i −0.00620317 + 0.277833i
\(439\) 967.841 0.105222 0.0526111 0.998615i \(-0.483246\pi\)
0.0526111 + 0.998615i \(0.483246\pi\)
\(440\) −443.306 + 6609.59i −0.0480314 + 0.716136i
\(441\) −1958.75 −0.211505
\(442\) −8530.60 + 3027.59i −0.918007 + 0.325809i
\(443\) 12326.5i 1.32201i −0.750381 0.661006i \(-0.770130\pi\)
0.750381 0.661006i \(-0.229870\pi\)
\(444\) 87.6374 1961.61i 0.00936731 0.209671i
\(445\) 2065.64i 0.220047i
\(446\) −5994.79 133.846i −0.636461 0.0142103i
\(447\) 8370.52i 0.885709i
\(448\) 765.529 5681.25i 0.0807318 0.599139i
\(449\) 10237.6i 1.07604i 0.842932 + 0.538020i \(0.180827\pi\)
−0.842932 + 0.538020i \(0.819173\pi\)
\(450\) −10.5096 + 470.714i −0.00110095 + 0.0493103i
\(451\) 3894.45i 0.406613i
\(452\) −16417.7 733.480i −1.70846 0.0763275i
\(453\) 7181.18 0.744815
\(454\) −258.141 + 11561.8i −0.0266853 + 1.19520i
\(455\) −5876.13 + 2234.39i −0.605445 + 0.230220i
\(456\) −1989.27 133.421i −0.204290 0.0137018i
\(457\) 5667.78i 0.580148i −0.957004 0.290074i \(-0.906320\pi\)
0.957004 0.290074i \(-0.0936798\pi\)
\(458\) 99.1159 4439.28i 0.0101122 0.452913i
\(459\) 1843.51i 0.187467i
\(460\) 18909.4 + 844.803i 1.91665 + 0.0856285i
\(461\) −15574.9 −1.57353 −0.786765 0.617253i \(-0.788246\pi\)
−0.786765 + 0.617253i \(0.788246\pi\)
\(462\) 51.8280 2321.31i 0.00521917 0.233760i
\(463\) 9059.56i 0.909359i −0.890655 0.454680i \(-0.849754\pi\)
0.890655 0.454680i \(-0.150246\pi\)
\(464\) 1054.44 11777.4i 0.105499 1.17834i
\(465\) 1161.34 0.115819
\(466\) −96.3446 + 4315.16i −0.00957742 + 0.428961i
\(467\) 14620.0i 1.44868i −0.689441 0.724341i \(-0.742144\pi\)
0.689441 0.724341i \(-0.257856\pi\)
\(468\) −1057.49 3204.83i −0.104450 0.316546i
\(469\) 3275.95i 0.322536i
\(470\) 6209.87 + 138.648i 0.609446 + 0.0136071i
\(471\) −3317.82 −0.324580
\(472\) −703.577 + 10490.2i −0.0686118 + 1.02299i
\(473\) 9776.88i 0.950405i
\(474\) −523.069 11.6786i −0.0506864 0.00113168i
\(475\) 543.238 0.0524747
\(476\) 272.958 6109.70i 0.0262837 0.588314i
\(477\) 1984.24i 0.190465i
\(478\) −1997.01 44.5872i −0.191090 0.00426646i
\(479\) 19198.4i 1.83131i 0.401966 + 0.915655i \(0.368327\pi\)
−0.401966 + 0.915655i \(0.631673\pi\)
\(480\) −6464.80 724.590i −0.614743 0.0689018i
\(481\) −1362.99 3584.47i −0.129204 0.339787i
\(482\) −1766.84 39.4483i −0.166966 0.00372784i
\(483\) −6634.44 −0.625005
\(484\) 5863.79 + 261.972i 0.550694 + 0.0246030i
\(485\) 11181.6i 1.04687i
\(486\) 687.137 + 15.3417i 0.0641340 + 0.00143192i
\(487\) 14357.2i 1.33591i 0.744204 + 0.667953i \(0.232829\pi\)
−0.744204 + 0.667953i \(0.767171\pi\)
\(488\) 4131.26 + 277.084i 0.383224 + 0.0257029i
\(489\) 7774.62i 0.718978i
\(490\) −164.598 + 7372.13i −0.0151750 + 0.679671i
\(491\) 15418.0i 1.41712i 0.705650 + 0.708561i \(0.250655\pi\)
−0.705650 + 0.708561i \(0.749345\pi\)
\(492\) −3820.59 170.690i −0.350093 0.0156408i
\(493\) 12614.9i 1.15243i
\(494\) −3669.54 + 1302.35i −0.334211 + 0.118614i
\(495\) −2634.85 −0.239248
\(496\) −184.433 + 2059.98i −0.0166961 + 0.186484i
\(497\) 10224.2 0.922773
\(498\) 3240.11 + 72.3420i 0.291552 + 0.00650948i
\(499\) 14607.1 1.31043 0.655215 0.755442i \(-0.272578\pi\)
0.655215 + 0.755442i \(0.272578\pi\)
\(500\) −10196.3 455.533i −0.911985 0.0407441i
\(501\) 8265.83 0.737106
\(502\) 2734.02 + 61.0426i 0.243079 + 0.00542722i
\(503\) −11828.8 −1.04855 −0.524274 0.851550i \(-0.675663\pi\)
−0.524274 + 0.851550i \(0.675663\pi\)
\(504\) 2275.02 + 152.586i 0.201066 + 0.0134855i
\(505\) 10770.8i 0.949102i
\(506\) −304.764 + 13650.0i −0.0267755 + 1.19924i
\(507\) −4379.25 4925.79i −0.383608 0.431484i
\(508\) −17090.5 763.542i −1.49266 0.0666864i
\(509\) 2974.43 0.259016 0.129508 0.991578i \(-0.458660\pi\)
0.129508 + 0.991578i \(0.458660\pi\)
\(510\) −6938.40 154.914i −0.602426 0.0134504i
\(511\) −3361.39 −0.290996
\(512\) 2311.96 11352.2i 0.199561 0.979885i
\(513\) 793.006i 0.0682497i
\(514\) −496.914 + 22256.2i −0.0426419 + 1.90988i
\(515\) −12018.6 −1.02836
\(516\) 9591.45 + 428.510i 0.818295 + 0.0365583i
\(517\) 4480.43i 0.381140i
\(518\) 2590.32 + 57.8340i 0.219714 + 0.00490556i
\(519\) 5909.30 0.499787
\(520\) −12150.9 + 3710.76i −1.02471 + 0.312938i
\(521\) 3470.83 0.291861 0.145931 0.989295i \(-0.453382\pi\)
0.145931 + 0.989295i \(0.453382\pi\)
\(522\) 4701.99 + 104.981i 0.394254 + 0.00880251i
\(523\) 11515.3i 0.962771i 0.876509 + 0.481385i \(0.159866\pi\)
−0.876509 + 0.481385i \(0.840134\pi\)
\(524\) −269.361 + 6029.18i −0.0224563 + 0.502645i
\(525\) −621.270 −0.0516465
\(526\) −313.426 + 14038.0i −0.0259810 + 1.16366i
\(527\) 2206.47i 0.182382i
\(528\) 418.443 4673.71i 0.0344894 0.385222i
\(529\) 26845.4 2.20641
\(530\) 7468.06 + 166.739i 0.612060 + 0.0136655i
\(531\) −4181.81 −0.341761
\(532\) 117.416 2628.16i 0.00956887 0.214183i
\(533\) −6981.40 + 2654.67i −0.567351 + 0.215735i
\(534\) −32.6605 + 1462.83i −0.00264674 + 0.118544i
\(535\) 14646.5i 1.18360i
\(536\) 443.043 6605.66i 0.0357025 0.532316i
\(537\) −1938.73 −0.155796
\(538\) 214.306 + 4.78482i 0.0171736 + 0.000383435i
\(539\) −5319.01 −0.425057
\(540\) 115.483 2584.88i 0.00920295 0.205992i
\(541\) 13390.4 1.06414 0.532070 0.846700i \(-0.321414\pi\)
0.532070 + 0.846700i \(0.321414\pi\)
\(542\) −20346.4 454.273i −1.61246 0.0360013i
\(543\) 10621.2 0.839409
\(544\) 1376.68 12282.7i 0.108501 0.968048i
\(545\) 24050.7 1.89031
\(546\) 4196.64 1489.42i 0.328937 0.116743i
\(547\) 20360.8i 1.59152i 0.605610 + 0.795762i \(0.292929\pi\)
−0.605610 + 0.795762i \(0.707071\pi\)
\(548\) 955.179 21380.0i 0.0744585 1.66662i
\(549\) 1646.89i 0.128028i
\(550\) −28.5390 + 1278.23i −0.00221256 + 0.0990979i
\(551\) 5426.44i 0.419554i
\(552\) −13377.8 897.248i −1.03151 0.0691837i
\(553\) 690.371i 0.0530879i
\(554\) 10054.3 + 224.481i 0.771055 + 0.0172153i
\(555\) 2940.19i 0.224872i
\(556\) 109.098 2441.96i 0.00832152 0.186263i
\(557\) 23186.0 1.76377 0.881887 0.471461i \(-0.156273\pi\)
0.881887 + 0.471461i \(0.156273\pi\)
\(558\) −822.425 18.3623i −0.0623943 0.00139308i
\(559\) 17526.5 6664.45i 1.32611 0.504251i
\(560\) 765.460 8549.64i 0.0577617 0.645157i
\(561\) 5006.07i 0.376749i
\(562\) −13092.7 292.320i −0.982708 0.0219409i
\(563\) 13896.8i 1.04029i 0.854079 + 0.520144i \(0.174122\pi\)
−0.854079 + 0.520144i \(0.825878\pi\)
\(564\) −4395.45 196.372i −0.328160 0.0146609i
\(565\) −24607.9 −1.83232
\(566\) 5872.19 + 131.108i 0.436089 + 0.00973656i
\(567\) 906.915i 0.0671726i
\(568\) 20616.2 + 1382.73i 1.52295 + 0.102145i
\(569\) −1366.99 −0.100716 −0.0503579 0.998731i \(-0.516036\pi\)
−0.0503579 + 0.998731i \(0.516036\pi\)
\(570\) −2984.63 66.6379i −0.219320 0.00489676i
\(571\) 2474.08i 0.181326i 0.995882 + 0.0906628i \(0.0288986\pi\)
−0.995882 + 0.0906628i \(0.971101\pi\)
\(572\) −2871.63 8702.77i −0.209910 0.636156i
\(573\) 244.749i 0.0178439i
\(574\) 112.642 5045.11i 0.00819093 0.366862i
\(575\) 3653.25 0.264958
\(576\) 4566.73 + 615.351i 0.330348 + 0.0445132i
\(577\) 24519.4i 1.76907i −0.466472 0.884536i \(-0.654475\pi\)
0.466472 0.884536i \(-0.345525\pi\)
\(578\) −15.8535 + 710.061i −0.00114087 + 0.0510980i
\(579\) 8707.41 0.624987
\(580\) 790.235 17688.0i 0.0565737 1.26630i
\(581\) 4276.45i 0.305365i
\(582\) −176.796 + 7918.50i −0.0125918 + 0.563973i
\(583\) 5388.22i 0.382774i
\(584\) −6777.93 454.597i −0.480262 0.0322112i
\(585\) −1796.06 4723.38i −0.126937 0.333825i
\(586\) 440.971 19750.6i 0.0310859 1.39230i
\(587\) −9480.60 −0.666621 −0.333310 0.942817i \(-0.608166\pi\)
−0.333310 + 0.942817i \(0.608166\pi\)
\(588\) 233.126 5218.13i 0.0163503 0.365973i
\(589\) 949.139i 0.0663983i
\(590\) −351.406 + 15739.1i −0.0245206 + 1.09825i
\(591\) 455.393i 0.0316960i
\(592\) 5215.32 + 466.934i 0.362075 + 0.0324170i
\(593\) 3068.45i 0.212490i 0.994340 + 0.106245i \(0.0338827\pi\)
−0.994340 + 0.106245i \(0.966117\pi\)
\(594\) 1865.93 + 41.6606i 0.128889 + 0.00287770i
\(595\) 9157.62i 0.630968i
\(596\) −22299.1 996.243i −1.53256 0.0684693i
\(597\) 4653.64i 0.319030i
\(598\) −24677.4 + 8758.24i −1.68752 + 0.598915i
\(599\) 11040.5 0.753095 0.376548 0.926397i \(-0.377111\pi\)
0.376548 + 0.926397i \(0.377111\pi\)
\(600\) −1252.73 84.0211i −0.0852378 0.00571691i
\(601\) 16272.6 1.10445 0.552225 0.833695i \(-0.313779\pi\)
0.552225 + 0.833695i \(0.313779\pi\)
\(602\) −282.784 + 12665.6i −0.0191452 + 0.857491i
\(603\) 2633.29 0.177837
\(604\) −854.689 + 19130.7i −0.0575775 + 1.28877i
\(605\) 8789.04 0.590621
\(606\) −170.301 + 7627.60i −0.0114159 + 0.511304i
\(607\) 11654.6 0.779321 0.389660 0.920959i \(-0.372592\pi\)
0.389660 + 0.920959i \(0.372592\pi\)
\(608\) 592.194 5283.56i 0.0395010 0.352429i
\(609\) 6205.91i 0.412933i
\(610\) 6198.39 + 138.391i 0.411419 + 0.00918574i
\(611\) −8031.85 + 3054.10i −0.531807 + 0.202219i
\(612\) 4911.12 + 219.411i 0.324380 + 0.0144921i
\(613\) −2035.60 −0.134123 −0.0670613 0.997749i \(-0.521362\pi\)
−0.0670613 + 0.997749i \(0.521362\pi\)
\(614\) 545.848 24447.9i 0.0358773 1.60690i
\(615\) −5726.55 −0.375475
\(616\) 6177.83 + 414.348i 0.404078 + 0.0271016i
\(617\) 13740.1i 0.896522i −0.893903 0.448261i \(-0.852044\pi\)
0.893903 0.448261i \(-0.147956\pi\)
\(618\) 8511.25 + 190.031i 0.554001 + 0.0123692i
\(619\) 28331.3 1.83963 0.919815 0.392352i \(-0.128338\pi\)
0.919815 + 0.392352i \(0.128338\pi\)
\(620\) −138.220 + 3093.81i −0.00895330 + 0.200404i
\(621\) 5332.92i 0.344610i
\(622\) 496.610 22242.6i 0.0320133 1.43384i
\(623\) −1930.71 −0.124161
\(624\) 8663.57 2435.73i 0.555802 0.156262i
\(625\) −17594.9 −1.12607
\(626\) 142.132 6365.90i 0.00907463 0.406442i
\(627\) 2153.42i 0.137160i
\(628\) 394.880 8838.70i 0.0250914 0.561628i
\(629\) 5586.19 0.354111
\(630\) 3413.35 + 76.2098i 0.215859 + 0.00481948i
\(631\) 6978.73i 0.440284i 0.975468 + 0.220142i \(0.0706520\pi\)
−0.975468 + 0.220142i \(0.929348\pi\)
\(632\) 93.3665 1392.07i 0.00587645 0.0876165i
\(633\) 4043.53 0.253895
\(634\) 349.972 15674.8i 0.0219230 0.981904i
\(635\) −25616.4 −1.60088
\(636\) −5286.02 236.160i −0.329567 0.0147238i
\(637\) −3625.72 9535.13i −0.225520 0.593086i
\(638\) 12768.3 + 285.078i 0.792323 + 0.0176902i
\(639\) 8218.46i 0.508790i
\(640\) 2699.74 17136.1i 0.166745 1.05838i
\(641\) 15556.2 0.958552 0.479276 0.877664i \(-0.340899\pi\)
0.479276 + 0.877664i \(0.340899\pi\)
\(642\) 231.581 10372.3i 0.0142364 0.637633i
\(643\) −2929.61 −0.179677 −0.0898385 0.995956i \(-0.528635\pi\)
−0.0898385 + 0.995956i \(0.528635\pi\)
\(644\) 789.618 17674.2i 0.0483157 1.08146i
\(645\) 14376.3 0.877622
\(646\) 126.608 5670.62i 0.00771103 0.345368i
\(647\) −2017.91 −0.122615 −0.0613077 0.998119i \(-0.519527\pi\)
−0.0613077 + 0.998119i \(0.519527\pi\)
\(648\) −122.652 + 1828.71i −0.00743554 + 0.110862i
\(649\) −11355.8 −0.686830
\(650\) −2310.87 + 820.149i −0.139446 + 0.0494906i
\(651\) 1085.47i 0.0653504i
\(652\) −20711.7 925.319i −1.24407 0.0555802i
\(653\) 25437.8i 1.52444i 0.647318 + 0.762220i \(0.275891\pi\)
−0.647318 + 0.762220i \(0.724109\pi\)
\(654\) −17032.0 380.274i −1.01836 0.0227368i
\(655\) 9036.94i 0.539087i
\(656\) 909.438 10157.8i 0.0541274 0.604565i
\(657\) 2701.96i 0.160447i
\(658\) 129.591 5804.22i 0.00767778 0.343879i
\(659\) 10414.5i 0.615616i −0.951449 0.307808i \(-0.900405\pi\)
0.951449 0.307808i \(-0.0995954\pi\)
\(660\) 313.595 7019.28i 0.0184950 0.413977i
\(661\) −16499.4 −0.970881 −0.485441 0.874270i \(-0.661341\pi\)
−0.485441 + 0.874270i \(0.661341\pi\)
\(662\) 133.435 5976.38i 0.00783396 0.350874i
\(663\) 8974.13 3412.41i 0.525681 0.199890i
\(664\) −578.352 + 8623.08i −0.0338018 + 0.503977i
\(665\) 3939.26i 0.229711i
\(666\) −46.4883 + 2082.16i −0.00270478 + 0.121144i
\(667\) 36492.5i 2.11844i
\(668\) −983.783 + 22020.2i −0.0569816 + 1.27543i
\(669\) 6360.02 0.367552
\(670\) 221.280 9910.89i 0.0127594 0.571479i
\(671\) 4472.15i 0.257296i
\(672\) −677.258 + 6042.50i −0.0388776 + 0.346867i
\(673\) 23193.1 1.32842 0.664212 0.747544i \(-0.268767\pi\)
0.664212 + 0.747544i \(0.268767\pi\)
\(674\) 41.4723 1857.50i 0.00237011 0.106154i
\(675\) 499.392i 0.0284764i
\(676\) 13643.6 11080.1i 0.776262 0.630411i
\(677\) 30368.7i 1.72403i 0.506887 + 0.862013i \(0.330796\pi\)
−0.506887 + 0.862013i \(0.669204\pi\)
\(678\) 17426.6 + 389.084i 0.987116 + 0.0220393i
\(679\) −10451.2 −0.590693
\(680\) 1238.48 18465.5i 0.0698437 1.04135i
\(681\) 12266.2i 0.690224i
\(682\) −2233.30 49.8630i −0.125392 0.00279964i
\(683\) 19430.1 1.08854 0.544269 0.838911i \(-0.316807\pi\)
0.544269 + 0.838911i \(0.316807\pi\)
\(684\) 2112.58 + 94.3820i 0.118094 + 0.00527600i
\(685\) 32045.8i 1.78745i
\(686\) 17750.1 + 396.307i 0.987905 + 0.0220570i
\(687\) 4709.75i 0.261555i
\(688\) −2283.11 + 25500.7i −0.126516 + 1.41309i
\(689\) −9659.20 + 3672.90i −0.534087 + 0.203086i
\(690\) −20071.5 448.136i −1.10740 0.0247250i
\(691\) 11909.1 0.655635 0.327818 0.944741i \(-0.393687\pi\)
0.327818 + 0.944741i \(0.393687\pi\)
\(692\) −703.313 + 15742.4i −0.0386358 + 0.864794i
\(693\) 2462.74i 0.134995i
\(694\) −22791.1 508.857i −1.24660 0.0278328i
\(695\) 3660.17i 0.199767i
\(696\) −839.293 + 12513.7i −0.0457088 + 0.681507i
\(697\) 10880.1i 0.591268i
\(698\) −700.035 + 31353.8i −0.0379609 + 1.70023i
\(699\) 4578.06i 0.247723i
\(700\) 73.9423 1655.07i 0.00399251 0.0893653i
\(701\) 28677.7i 1.54514i 0.634932 + 0.772568i \(0.281028\pi\)
−0.634932 + 0.772568i \(0.718972\pi\)
\(702\) 1197.23 + 3373.36i 0.0643685 + 0.181366i
\(703\) 2402.96 0.128918
\(704\) 12401.0 + 1670.99i 0.663893 + 0.0894572i
\(705\) −6588.20 −0.351952
\(706\) −28286.4 631.550i −1.50789 0.0336667i
\(707\) −10067.3 −0.535528
\(708\) 497.711 11140.4i 0.0264197 0.591358i
\(709\) −21674.5 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(710\) 30931.7 + 690.613i 1.63500 + 0.0365046i
\(711\) 554.937 0.0292711
\(712\) −3893.10 261.111i −0.204916 0.0137437i
\(713\) 6382.91i 0.335262i
\(714\) −144.794 + 6485.16i −0.00758934 + 0.339917i
\(715\) −4877.22 12826.4i −0.255102 0.670881i
\(716\) 230.744 5164.80i 0.0120437 0.269578i
\(717\) 2118.67 0.110353
\(718\) 7806.87 + 174.304i 0.405780 + 0.00905985i
\(719\) 2708.77 0.140501 0.0702504 0.997529i \(-0.477620\pi\)
0.0702504 + 0.997529i \(0.477620\pi\)
\(720\) 6872.40 + 615.295i 0.355721 + 0.0318482i
\(721\) 11233.5i 0.580248i
\(722\) −378.578 + 16956.1i −0.0195141 + 0.874016i
\(723\) 1874.49 0.0964217
\(724\) −1264.11 + 28295.0i −0.0648901 + 1.45245i
\(725\) 3417.27i 0.175054i
\(726\) −6224.15 138.966i −0.318181 0.00710404i
\(727\) −20052.4 −1.02298 −0.511488 0.859291i \(-0.670905\pi\)
−0.511488 + 0.859291i \(0.670905\pi\)
\(728\) 3468.36 + 11357.1i 0.176574 + 0.578192i
\(729\) −729.000 −0.0370370
\(730\) −10169.4 227.051i −0.515596 0.0115117i
\(731\) 27314.1i 1.38201i
\(732\) −4387.33 196.009i −0.221531 0.00989716i
\(733\) −15350.2 −0.773496 −0.386748 0.922185i \(-0.626402\pi\)
−0.386748 + 0.922185i \(0.626402\pi\)
\(734\) −590.733 + 26458.2i −0.0297062 + 1.33051i
\(735\) 7821.27i 0.392506i
\(736\) 3982.47 35531.7i 0.199451 1.77950i
\(737\) 7150.73 0.357396
\(738\) 4055.38 + 90.5445i 0.202277 + 0.00451624i
\(739\) −27012.8 −1.34463 −0.672316 0.740264i \(-0.734701\pi\)
−0.672316 + 0.740264i \(0.734701\pi\)
\(740\) 7832.70 + 349.936i 0.389102 + 0.0173836i
\(741\) 3860.33 1467.89i 0.191380 0.0727721i
\(742\) 155.847 6980.22i 0.00771070 0.345353i
\(743\) 7434.49i 0.367086i −0.983012 0.183543i \(-0.941243\pi\)
0.983012 0.183543i \(-0.0587567\pi\)
\(744\) 146.801 2188.76i 0.00723383 0.107855i
\(745\) −33423.4 −1.64368
\(746\) 11033.1 + 246.335i 0.541487 + 0.0120898i
\(747\) −3437.52 −0.168370
\(748\) 13336.2 + 595.812i 0.651899 + 0.0291244i
\(749\) 13689.8 0.667842
\(750\) 10822.9 + 241.643i 0.526929 + 0.0117647i
\(751\) 818.664 0.0397783 0.0198891 0.999802i \(-0.493669\pi\)
0.0198891 + 0.999802i \(0.493669\pi\)
\(752\) 1046.28 11686.2i 0.0507364 0.566689i
\(753\) −2900.59 −0.140377
\(754\) 8192.53 + 23083.5i 0.395695 + 1.11492i
\(755\) 28674.4i 1.38221i
\(756\) −2416.03 107.939i −0.116230 0.00519274i
\(757\) 20512.3i 0.984849i 0.870355 + 0.492424i \(0.163889\pi\)
−0.870355 + 0.492424i \(0.836111\pi\)
\(758\) 796.269 35664.0i 0.0381554 1.70894i
\(759\) 14481.6i 0.692555i
\(760\) 532.749 7943.16i 0.0254274 0.379116i
\(761\) 29099.9i 1.38616i −0.720859 0.693082i \(-0.756252\pi\)
0.720859 0.693082i \(-0.243748\pi\)
\(762\) 18140.8 + 405.030i 0.862431 + 0.0192555i
\(763\) 22479.7i 1.06660i
\(764\) 652.014 + 29.1295i 0.0308757 + 0.00137941i
\(765\) 7361.11 0.347898
\(766\) −21985.2 490.863i −1.03702 0.0231535i
\(767\) −7740.70 20356.9i −0.364408 0.958339i
\(768\) −2182.82 + 12092.6i −0.102560 + 0.568168i
\(769\) 6398.15i 0.300030i −0.988684 0.150015i \(-0.952068\pi\)
0.988684 0.150015i \(-0.0479323\pi\)
\(770\) 9268.99 + 206.949i 0.433807 + 0.00968561i
\(771\) 23612.1i 1.10294i
\(772\) −1036.34 + 23196.6i −0.0483143 + 1.08143i
\(773\) −15575.8 −0.724736 −0.362368 0.932035i \(-0.618032\pi\)
−0.362368 + 0.932035i \(0.618032\pi\)
\(774\) −10180.9 227.308i −0.472796