Properties

Label 312.4.m.a.181.41
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.41
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.42

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0631346 - 2.82772i) q^{2} -3.00000i q^{3} +(-7.99203 + 0.357054i) q^{4} +11.9790 q^{5} +(-8.48317 + 0.189404i) q^{6} +11.1965i q^{7} +(1.51422 + 22.5767i) q^{8} -9.00000 q^{9} +(-0.756288 - 33.8732i) q^{10} +24.4396 q^{11} +(1.07116 + 23.9761i) q^{12} +(16.6594 + 43.8117i) q^{13} +(31.6605 - 0.706885i) q^{14} -35.9369i q^{15} +(63.7450 - 5.70717i) q^{16} +68.2781 q^{17} +(0.568211 + 25.4495i) q^{18} -29.3706 q^{19} +(-95.7364 + 4.27714i) q^{20} +33.5894 q^{21} +(-1.54298 - 69.1084i) q^{22} +197.516 q^{23} +(67.7301 - 4.54267i) q^{24} +18.4960 q^{25} +(122.836 - 49.8741i) q^{26} +27.0000i q^{27} +(-3.99775 - 89.4826i) q^{28} +184.758i q^{29} +(-101.620 + 2.26886i) q^{30} +32.3159i q^{31} +(-20.1628 - 179.893i) q^{32} -73.3188i q^{33} +(-4.31070 - 193.071i) q^{34} +134.122i q^{35} +(71.9283 - 3.21349i) q^{36} -81.8153 q^{37} +(1.85430 + 83.0519i) q^{38} +(131.435 - 49.9781i) q^{39} +(18.1388 + 270.446i) q^{40} -159.350i q^{41} +(-2.12065 - 94.9816i) q^{42} -400.042i q^{43} +(-195.322 + 8.72626i) q^{44} -107.811 q^{45} +(-12.4701 - 558.520i) q^{46} -183.327i q^{47} +(-17.1215 - 191.235i) q^{48} +217.639 q^{49} +(-1.16774 - 52.3015i) q^{50} -204.834i q^{51} +(-148.785 - 344.196i) q^{52} +220.471i q^{53} +(76.3485 - 1.70463i) q^{54} +292.762 q^{55} +(-252.780 + 16.9540i) q^{56} +88.1118i q^{57} +(522.443 - 11.6646i) q^{58} -464.646 q^{59} +(12.8314 + 287.209i) q^{60} +182.988i q^{61} +(91.3805 - 2.04025i) q^{62} -100.768i q^{63} +(-507.414 + 68.3723i) q^{64} +(199.562 + 524.820i) q^{65} +(-207.325 + 4.62895i) q^{66} +292.588 q^{67} +(-545.680 + 24.3790i) q^{68} -592.547i q^{69} +(379.261 - 8.46776i) q^{70} -913.162i q^{71} +(-13.6280 - 203.190i) q^{72} +300.218i q^{73} +(5.16537 + 231.351i) q^{74} -55.4879i q^{75} +(234.731 - 10.4869i) q^{76} +273.638i q^{77} +(-149.622 - 368.507i) q^{78} -61.6597 q^{79} +(763.600 - 68.3661i) q^{80} +81.0000 q^{81} +(-450.598 + 10.0605i) q^{82} -381.946 q^{83} +(-268.448 + 11.9932i) q^{84} +817.902 q^{85} +(-1131.21 + 25.2565i) q^{86} +554.273 q^{87} +(37.0070 + 551.766i) q^{88} +172.439i q^{89} +(6.80659 + 304.859i) q^{90} +(-490.537 + 186.526i) q^{91} +(-1578.55 + 70.5238i) q^{92} +96.9478 q^{93} +(-518.397 + 11.5742i) q^{94} -351.830 q^{95} +(-539.679 + 60.4884i) q^{96} +933.436i q^{97} +(-13.7405 - 615.422i) q^{98} -219.956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0631346 2.82772i −0.0223214 0.999751i
\(3\) 3.00000i 0.577350i
\(4\) −7.99203 + 0.357054i −0.999004 + 0.0446317i
\(5\) 11.9790 1.07143 0.535716 0.844398i \(-0.320042\pi\)
0.535716 + 0.844398i \(0.320042\pi\)
\(6\) −8.48317 + 0.189404i −0.577206 + 0.0128873i
\(7\) 11.1965i 0.604553i 0.953220 + 0.302277i \(0.0977466\pi\)
−0.953220 + 0.302277i \(0.902253\pi\)
\(8\) 1.51422 + 22.5767i 0.0669198 + 0.997758i
\(9\) −9.00000 −0.333333
\(10\) −0.756288 33.8732i −0.0239159 1.07117i
\(11\) 24.4396 0.669893 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(12\) 1.07116 + 23.9761i 0.0257682 + 0.576775i
\(13\) 16.6594 + 43.8117i 0.355421 + 0.934706i
\(14\) 31.6605 0.706885i 0.604403 0.0134945i
\(15\) 35.9369i 0.618592i
\(16\) 63.7450 5.70717i 0.996016 0.0891745i
\(17\) 68.2781 0.974109 0.487055 0.873371i \(-0.338071\pi\)
0.487055 + 0.873371i \(0.338071\pi\)
\(18\) 0.568211 + 25.4495i 0.00744048 + 0.333250i
\(19\) −29.3706 −0.354636 −0.177318 0.984154i \(-0.556742\pi\)
−0.177318 + 0.984154i \(0.556742\pi\)
\(20\) −95.7364 + 4.27714i −1.07036 + 0.0478199i
\(21\) 33.5894 0.349039
\(22\) −1.54298 69.1084i −0.0149530 0.669726i
\(23\) 197.516 1.79065 0.895323 0.445417i \(-0.146945\pi\)
0.895323 + 0.445417i \(0.146945\pi\)
\(24\) 67.7301 4.54267i 0.576056 0.0386362i
\(25\) 18.4960 0.147968
\(26\) 122.836 49.8741i 0.926540 0.376197i
\(27\) 27.0000i 0.192450i
\(28\) −3.99775 89.4826i −0.0269823 0.603951i
\(29\) 184.758i 1.18306i 0.806284 + 0.591528i \(0.201475\pi\)
−0.806284 + 0.591528i \(0.798525\pi\)
\(30\) −101.620 + 2.26886i −0.618438 + 0.0138079i
\(31\) 32.3159i 0.187229i 0.995608 + 0.0936147i \(0.0298422\pi\)
−0.995608 + 0.0936147i \(0.970158\pi\)
\(32\) −20.1628 179.893i −0.111385 0.993777i
\(33\) 73.3188i 0.386763i
\(34\) −4.31070 193.071i −0.0217435 0.973867i
\(35\) 134.122i 0.647738i
\(36\) 71.9283 3.21349i 0.333001 0.0148772i
\(37\) −81.8153 −0.363523 −0.181761 0.983343i \(-0.558180\pi\)
−0.181761 + 0.983343i \(0.558180\pi\)
\(38\) 1.85430 + 83.0519i 0.00791598 + 0.354547i
\(39\) 131.435 49.9781i 0.539653 0.205202i
\(40\) 18.1388 + 270.446i 0.0717001 + 1.06903i
\(41\) 159.350i 0.606983i −0.952834 0.303491i \(-0.901848\pi\)
0.952834 0.303491i \(-0.0981524\pi\)
\(42\) −2.12065 94.9816i −0.00779105 0.348952i
\(43\) 400.042i 1.41874i −0.704835 0.709371i \(-0.748979\pi\)
0.704835 0.709371i \(-0.251021\pi\)
\(44\) −195.322 + 8.72626i −0.669225 + 0.0298985i
\(45\) −107.811 −0.357144
\(46\) −12.4701 558.520i −0.0399698 1.79020i
\(47\) 183.327i 0.568956i −0.958683 0.284478i \(-0.908180\pi\)
0.958683 0.284478i \(-0.0918203\pi\)
\(48\) −17.1215 191.235i −0.0514849 0.575050i
\(49\) 217.639 0.634515
\(50\) −1.16774 52.3015i −0.00330285 0.147931i
\(51\) 204.834i 0.562402i
\(52\) −148.785 344.196i −0.396785 0.917912i
\(53\) 220.471i 0.571396i 0.958320 + 0.285698i \(0.0922254\pi\)
−0.958320 + 0.285698i \(0.907775\pi\)
\(54\) 76.3485 1.70463i 0.192402 0.00429576i
\(55\) 292.762 0.717745
\(56\) −252.780 + 16.9540i −0.603198 + 0.0404566i
\(57\) 88.1118i 0.204749i
\(58\) 522.443 11.6646i 1.18276 0.0264075i
\(59\) −464.646 −1.02528 −0.512642 0.858603i \(-0.671333\pi\)
−0.512642 + 0.858603i \(0.671333\pi\)
\(60\) 12.8314 + 287.209i 0.0276088 + 0.617975i
\(61\) 182.988i 0.384085i 0.981387 + 0.192042i \(0.0615111\pi\)
−0.981387 + 0.192042i \(0.938489\pi\)
\(62\) 91.3805 2.04025i 0.187183 0.00417923i
\(63\) 100.768i 0.201518i
\(64\) −507.414 + 68.3723i −0.991043 + 0.133540i
\(65\) 199.562 + 524.820i 0.380810 + 1.00147i
\(66\) −207.325 + 4.62895i −0.386666 + 0.00863310i
\(67\) 292.588 0.533512 0.266756 0.963764i \(-0.414048\pi\)
0.266756 + 0.963764i \(0.414048\pi\)
\(68\) −545.680 + 24.3790i −0.973139 + 0.0434762i
\(69\) 592.547i 1.03383i
\(70\) 379.261 8.46776i 0.647577 0.0144584i
\(71\) 913.162i 1.52637i −0.646179 0.763186i \(-0.723634\pi\)
0.646179 0.763186i \(-0.276366\pi\)
\(72\) −13.6280 203.190i −0.0223066 0.332586i
\(73\) 300.218i 0.481341i 0.970607 + 0.240670i \(0.0773672\pi\)
−0.970607 + 0.240670i \(0.922633\pi\)
\(74\) 5.16537 + 231.351i 0.00811435 + 0.363432i
\(75\) 55.4879i 0.0854293i
\(76\) 234.731 10.4869i 0.354282 0.0158280i
\(77\) 273.638i 0.404986i
\(78\) −149.622 368.507i −0.217197 0.534938i
\(79\) −61.6597 −0.0878134 −0.0439067 0.999036i \(-0.513980\pi\)
−0.0439067 + 0.999036i \(0.513980\pi\)
\(80\) 763.600 68.3661i 1.06716 0.0955445i
\(81\) 81.0000 0.111111
\(82\) −450.598 + 10.0605i −0.606832 + 0.0135487i
\(83\) −381.946 −0.505109 −0.252555 0.967583i \(-0.581271\pi\)
−0.252555 + 0.967583i \(0.581271\pi\)
\(84\) −268.448 + 11.9932i −0.348691 + 0.0155782i
\(85\) 817.902 1.04369
\(86\) −1131.21 + 25.2565i −1.41839 + 0.0316683i
\(87\) 554.273 0.683038
\(88\) 37.0070 + 551.766i 0.0448291 + 0.668391i
\(89\) 172.439i 0.205376i 0.994714 + 0.102688i \(0.0327443\pi\)
−0.994714 + 0.102688i \(0.967256\pi\)
\(90\) 6.80659 + 304.859i 0.00797197 + 0.357055i
\(91\) −490.537 + 186.526i −0.565080 + 0.214871i
\(92\) −1578.55 + 70.5238i −1.78886 + 0.0799197i
\(93\) 96.9478 0.108097
\(94\) −518.397 + 11.5742i −0.568814 + 0.0126999i
\(95\) −351.830 −0.379968
\(96\) −539.679 + 60.4884i −0.573758 + 0.0643081i
\(97\) 933.436i 0.977073i 0.872543 + 0.488537i \(0.162469\pi\)
−0.872543 + 0.488537i \(0.837531\pi\)
\(98\) −13.7405 615.422i −0.0141633 0.634357i
\(99\) −219.956 −0.223298
\(100\) −147.820 + 6.60406i −0.147820 + 0.00660406i
\(101\) 899.146i 0.885825i −0.896565 0.442913i \(-0.853945\pi\)
0.896565 0.442913i \(-0.146055\pi\)
\(102\) −579.214 + 12.9321i −0.562262 + 0.0125536i
\(103\) 1003.31 0.959797 0.479898 0.877324i \(-0.340674\pi\)
0.479898 + 0.877324i \(0.340674\pi\)
\(104\) −963.898 + 442.454i −0.908826 + 0.417175i
\(105\) 402.367 0.373972
\(106\) 623.430 13.9193i 0.571253 0.0127544i
\(107\) 1222.69i 1.10469i 0.833616 + 0.552344i \(0.186266\pi\)
−0.833616 + 0.552344i \(0.813734\pi\)
\(108\) −9.64046 215.785i −0.00858938 0.192258i
\(109\) 2007.74 1.76428 0.882142 0.470984i \(-0.156101\pi\)
0.882142 + 0.470984i \(0.156101\pi\)
\(110\) −18.4834 827.849i −0.0160211 0.717566i
\(111\) 245.446i 0.209880i
\(112\) 63.9002 + 713.720i 0.0539108 + 0.602145i
\(113\) 2054.26 1.71016 0.855080 0.518495i \(-0.173508\pi\)
0.855080 + 0.518495i \(0.173508\pi\)
\(114\) 249.156 5.56290i 0.204698 0.00457029i
\(115\) 2366.04 1.91856
\(116\) −65.9685 1476.59i −0.0528019 1.18188i
\(117\) −149.934 394.305i −0.118474 0.311569i
\(118\) 29.3352 + 1313.89i 0.0228858 + 1.02503i
\(119\) 764.474i 0.588901i
\(120\) 811.337 54.4165i 0.617205 0.0413961i
\(121\) −733.705 −0.551244
\(122\) 517.438 11.5528i 0.383989 0.00857333i
\(123\) −478.050 −0.350442
\(124\) −11.5385 258.270i −0.00835638 0.187043i
\(125\) −1275.81 −0.912895
\(126\) −284.945 + 6.36196i −0.201468 + 0.00449817i
\(127\) 2138.45 1.49415 0.747074 0.664741i \(-0.231458\pi\)
0.747074 + 0.664741i \(0.231458\pi\)
\(128\) 225.373 + 1430.51i 0.155628 + 0.987816i
\(129\) −1200.13 −0.819111
\(130\) 1471.44 597.441i 0.992725 0.403069i
\(131\) 754.399i 0.503146i 0.967838 + 0.251573i \(0.0809479\pi\)
−0.967838 + 0.251573i \(0.919052\pi\)
\(132\) 26.1788 + 585.966i 0.0172619 + 0.386377i
\(133\) 328.847i 0.214396i
\(134\) −18.4724 827.357i −0.0119087 0.533379i
\(135\) 323.432i 0.206197i
\(136\) 103.388 + 1541.49i 0.0651872 + 0.971926i
\(137\) 2675.17i 1.66828i 0.551549 + 0.834142i \(0.314037\pi\)
−0.551549 + 0.834142i \(0.685963\pi\)
\(138\) −1675.56 + 37.4102i −1.03357 + 0.0230766i
\(139\) 305.549i 0.186448i −0.995645 0.0932242i \(-0.970283\pi\)
0.995645 0.0932242i \(-0.0297173\pi\)
\(140\) −47.8890 1071.91i −0.0289097 0.647093i
\(141\) −549.980 −0.328487
\(142\) −2582.17 + 57.6521i −1.52599 + 0.0340708i
\(143\) 407.148 + 1070.74i 0.238094 + 0.626153i
\(144\) −573.705 + 51.3645i −0.332005 + 0.0297248i
\(145\) 2213.21i 1.26757i
\(146\) 848.933 18.9541i 0.481221 0.0107442i
\(147\) 652.916i 0.366338i
\(148\) 653.870 29.2125i 0.363161 0.0162247i
\(149\) −2790.17 −1.53409 −0.767047 0.641591i \(-0.778275\pi\)
−0.767047 + 0.641591i \(0.778275\pi\)
\(150\) −156.905 + 3.50321i −0.0854080 + 0.00190690i
\(151\) 2393.73i 1.29006i −0.764158 0.645029i \(-0.776845\pi\)
0.764158 0.645029i \(-0.223155\pi\)
\(152\) −44.4736 663.091i −0.0237322 0.353841i
\(153\) −614.502 −0.324703
\(154\) 773.771 17.2760i 0.404885 0.00903986i
\(155\) 387.112i 0.200604i
\(156\) −1032.59 + 446.356i −0.529957 + 0.229084i
\(157\) 1105.94i 0.562188i −0.959680 0.281094i \(-0.909303\pi\)
0.959680 0.281094i \(-0.0906973\pi\)
\(158\) 3.89286 + 174.356i 0.00196012 + 0.0877915i
\(159\) 661.412 0.329896
\(160\) −241.530 2154.93i −0.119341 1.06477i
\(161\) 2211.48i 1.08254i
\(162\) −5.11390 229.046i −0.00248016 0.111083i
\(163\) −2591.54 −1.24531 −0.622653 0.782498i \(-0.713945\pi\)
−0.622653 + 0.782498i \(0.713945\pi\)
\(164\) 56.8966 + 1273.53i 0.0270907 + 0.606378i
\(165\) 878.285i 0.414390i
\(166\) 24.1140 + 1080.04i 0.0112748 + 0.504983i
\(167\) 2755.28i 1.27670i −0.769744 0.638352i \(-0.779616\pi\)
0.769744 0.638352i \(-0.220384\pi\)
\(168\) 50.8619 + 758.339i 0.0233576 + 0.348257i
\(169\) −1641.93 + 1459.75i −0.747352 + 0.664429i
\(170\) −51.6378 2312.80i −0.0232967 1.04343i
\(171\) 264.335 0.118212
\(172\) 142.837 + 3197.15i 0.0633209 + 1.41733i
\(173\) 1969.77i 0.865656i 0.901476 + 0.432828i \(0.142484\pi\)
−0.901476 + 0.432828i \(0.857516\pi\)
\(174\) −34.9938 1567.33i −0.0152464 0.682868i
\(175\) 207.090i 0.0894544i
\(176\) 1557.90 139.481i 0.667224 0.0597374i
\(177\) 1393.94i 0.591948i
\(178\) 487.609 10.8868i 0.205325 0.00458429i
\(179\) 646.244i 0.269846i −0.990856 0.134923i \(-0.956921\pi\)
0.990856 0.134923i \(-0.0430788\pi\)
\(180\) 861.627 38.4943i 0.356788 0.0159400i
\(181\) 3540.40i 1.45390i 0.686690 + 0.726950i \(0.259063\pi\)
−0.686690 + 0.726950i \(0.740937\pi\)
\(182\) 558.414 + 1375.33i 0.227431 + 0.560143i
\(183\) 548.963 0.221752
\(184\) 299.083 + 4459.25i 0.119830 + 1.78663i
\(185\) −980.064 −0.389490
\(186\) −6.12076 274.142i −0.00241288 0.108070i
\(187\) 1668.69 0.652549
\(188\) 65.4575 + 1465.15i 0.0253935 + 0.568389i
\(189\) −302.305 −0.116346
\(190\) 22.2126 + 994.877i 0.00848144 + 0.379874i
\(191\) −81.5830 −0.0309065 −0.0154532 0.999881i \(-0.504919\pi\)
−0.0154532 + 0.999881i \(0.504919\pi\)
\(192\) 205.117 + 1522.24i 0.0770991 + 0.572179i
\(193\) 2902.47i 1.08251i −0.840859 0.541255i \(-0.817949\pi\)
0.840859 0.541255i \(-0.182051\pi\)
\(194\) 2639.50 58.9321i 0.976830 0.0218097i
\(195\) 1574.46 598.686i 0.578202 0.219861i
\(196\) −1739.38 + 77.7088i −0.633883 + 0.0283195i
\(197\) −151.798 −0.0548991 −0.0274496 0.999623i \(-0.508739\pi\)
−0.0274496 + 0.999623i \(0.508739\pi\)
\(198\) 13.8869 + 621.976i 0.00498432 + 0.223242i
\(199\) −1551.21 −0.552575 −0.276288 0.961075i \(-0.589104\pi\)
−0.276288 + 0.961075i \(0.589104\pi\)
\(200\) 28.0070 + 417.578i 0.00990198 + 0.147636i
\(201\) 877.763i 0.308023i
\(202\) −2542.53 + 56.7672i −0.885604 + 0.0197729i
\(203\) −2068.64 −0.715221
\(204\) 73.1369 + 1637.04i 0.0251010 + 0.561842i
\(205\) 1908.85i 0.650341i
\(206\) −63.3435 2837.08i −0.0214240 0.959558i
\(207\) −1777.64 −0.596882
\(208\) 1311.99 + 2697.70i 0.437357 + 0.899288i
\(209\) −717.806 −0.237568
\(210\) −25.4033 1137.78i −0.00834759 0.373879i
\(211\) 1347.84i 0.439760i 0.975527 + 0.219880i \(0.0705665\pi\)
−0.975527 + 0.219880i \(0.929433\pi\)
\(212\) −78.7199 1762.01i −0.0255024 0.570826i
\(213\) −2739.49 −0.881251
\(214\) 3457.42 77.1938i 1.10441 0.0246582i
\(215\) 4792.10i 1.52009i
\(216\) −609.571 + 40.8840i −0.192019 + 0.0128787i
\(217\) −361.825 −0.113190
\(218\) −126.758 5677.34i −0.0393813 1.76384i
\(219\) 900.654 0.277902
\(220\) −2339.76 + 104.532i −0.717030 + 0.0320342i
\(221\) 1137.47 + 2991.38i 0.346219 + 0.910506i
\(222\) 694.053 15.4961i 0.209828 0.00468482i
\(223\) 2120.01i 0.636619i −0.947987 0.318310i \(-0.896885\pi\)
0.947987 0.318310i \(-0.103115\pi\)
\(224\) 2014.17 225.753i 0.600791 0.0673381i
\(225\) −166.464 −0.0493226
\(226\) −129.695 5808.87i −0.0381732 1.70973i
\(227\) 4088.74 1.19550 0.597751 0.801682i \(-0.296061\pi\)
0.597751 + 0.801682i \(0.296061\pi\)
\(228\) −31.4607 704.192i −0.00913831 0.204545i
\(229\) −1569.92 −0.453026 −0.226513 0.974008i \(-0.572733\pi\)
−0.226513 + 0.974008i \(0.572733\pi\)
\(230\) −149.379 6690.49i −0.0428249 1.91808i
\(231\) 820.913 0.233819
\(232\) −4171.22 + 279.764i −1.18040 + 0.0791699i
\(233\) −1526.02 −0.429068 −0.214534 0.976716i \(-0.568823\pi\)
−0.214534 + 0.976716i \(0.568823\pi\)
\(234\) −1105.52 + 448.867i −0.308847 + 0.125399i
\(235\) 2196.07i 0.609598i
\(236\) 3713.46 165.904i 1.02426 0.0457602i
\(237\) 184.979i 0.0506991i
\(238\) 2161.72 48.2647i 0.588754 0.0131451i
\(239\) 706.224i 0.191137i −0.995423 0.0955687i \(-0.969533\pi\)
0.995423 0.0955687i \(-0.0304670\pi\)
\(240\) −205.098 2290.80i −0.0551627 0.616127i
\(241\) 624.829i 0.167007i −0.996507 0.0835037i \(-0.973389\pi\)
0.996507 0.0835037i \(-0.0266110\pi\)
\(242\) 46.3222 + 2074.72i 0.0123046 + 0.551106i
\(243\) 243.000i 0.0641500i
\(244\) −65.3365 1462.44i −0.0171424 0.383702i
\(245\) 2607.09 0.679840
\(246\) 30.1815 + 1351.79i 0.00782236 + 0.350354i
\(247\) −489.295 1286.78i −0.126045 0.331480i
\(248\) −729.587 + 48.9335i −0.186810 + 0.0125294i
\(249\) 1145.84i 0.291625i
\(250\) 80.5477 + 3607.64i 0.0203771 + 0.912668i
\(251\) 966.865i 0.243139i −0.992583 0.121570i \(-0.961207\pi\)
0.992583 0.121570i \(-0.0387928\pi\)
\(252\) 35.9797 + 805.343i 0.00899409 + 0.201317i
\(253\) 4827.21 1.19954
\(254\) −135.010 6046.94i −0.0333515 1.49378i
\(255\) 2453.70i 0.602576i
\(256\) 4030.86 727.607i 0.984096 0.177639i
\(257\) −7870.71 −1.91035 −0.955177 0.296034i \(-0.904336\pi\)
−0.955177 + 0.296034i \(0.904336\pi\)
\(258\) 75.7695 + 3393.63i 0.0182837 + 0.818907i
\(259\) 916.043i 0.219769i
\(260\) −1782.30 4123.12i −0.425128 0.983481i
\(261\) 1662.82i 0.394352i
\(262\) 2133.23 47.6287i 0.503021 0.0112309i
\(263\) −4964.41 −1.16395 −0.581975 0.813207i \(-0.697720\pi\)
−0.581975 + 0.813207i \(0.697720\pi\)
\(264\) 1655.30 111.021i 0.385896 0.0258821i
\(265\) 2641.01i 0.612212i
\(266\) −929.889 + 20.7616i −0.214343 + 0.00478563i
\(267\) 517.316 0.118574
\(268\) −2338.37 + 104.470i −0.532980 + 0.0238116i
\(269\) 75.7876i 0.0171779i −0.999963 0.00858895i \(-0.997266\pi\)
0.999963 0.00858895i \(-0.00273398\pi\)
\(270\) 914.577 20.4198i 0.206146 0.00460262i
\(271\) 7195.32i 1.61286i −0.591331 0.806429i \(-0.701397\pi\)
0.591331 0.806429i \(-0.298603\pi\)
\(272\) 4352.39 389.675i 0.970229 0.0868658i
\(273\) 559.579 + 1471.61i 0.124056 + 0.326249i
\(274\) 7564.63 168.896i 1.66787 0.0372385i
\(275\) 452.035 0.0991226
\(276\) 211.571 + 4735.65i 0.0461416 + 1.03280i
\(277\) 3555.60i 0.771247i −0.922656 0.385623i \(-0.873986\pi\)
0.922656 0.385623i \(-0.126014\pi\)
\(278\) −864.008 + 19.2907i −0.186402 + 0.00416180i
\(279\) 290.843i 0.0624098i
\(280\) −3028.04 + 203.091i −0.646286 + 0.0433465i
\(281\) 4630.12i 0.982953i −0.870891 0.491476i \(-0.836457\pi\)
0.870891 0.491476i \(-0.163543\pi\)
\(282\) 34.7227 + 1555.19i 0.00733230 + 0.328405i
\(283\) 2076.65i 0.436198i −0.975927 0.218099i \(-0.930014\pi\)
0.975927 0.218099i \(-0.0699856\pi\)
\(284\) 326.048 + 7298.02i 0.0681246 + 1.52485i
\(285\) 1055.49i 0.219375i
\(286\) 3002.05 1218.90i 0.620682 0.252011i
\(287\) 1784.16 0.366954
\(288\) 181.465 + 1619.04i 0.0371283 + 0.331259i
\(289\) −251.107 −0.0511108
\(290\) 6258.34 139.730i 1.26725 0.0282939i
\(291\) 2800.31 0.564113
\(292\) −107.194 2399.35i −0.0214831 0.480861i
\(293\) −6984.62 −1.39265 −0.696324 0.717727i \(-0.745182\pi\)
−0.696324 + 0.717727i \(0.745182\pi\)
\(294\) −1846.27 + 41.2216i −0.366246 + 0.00817718i
\(295\) −5565.98 −1.09852
\(296\) −123.887 1847.12i −0.0243269 0.362708i
\(297\) 659.869i 0.128921i
\(298\) 176.156 + 7889.84i 0.0342432 + 1.53371i
\(299\) 3290.48 + 8653.50i 0.636434 + 1.67373i
\(300\) 19.8122 + 443.461i 0.00381286 + 0.0853442i
\(301\) 4479.07 0.857705
\(302\) −6768.79 + 151.127i −1.28974 + 0.0287959i
\(303\) −2697.44 −0.511431
\(304\) −1872.23 + 167.623i −0.353223 + 0.0316245i
\(305\) 2192.01i 0.411521i
\(306\) 38.7963 + 1737.64i 0.00724784 + 0.324622i
\(307\) −8645.79 −1.60730 −0.803651 0.595101i \(-0.797112\pi\)
−0.803651 + 0.595101i \(0.797112\pi\)
\(308\) −97.7034 2186.92i −0.0180752 0.404582i
\(309\) 3009.93i 0.554139i
\(310\) 1094.65 24.4401i 0.200554 0.00447776i
\(311\) 7865.90 1.43419 0.717097 0.696973i \(-0.245470\pi\)
0.717097 + 0.696973i \(0.245470\pi\)
\(312\) 1327.36 + 2891.69i 0.240856 + 0.524711i
\(313\) 2251.25 0.406543 0.203272 0.979122i \(-0.434843\pi\)
0.203272 + 0.979122i \(0.434843\pi\)
\(314\) −3127.29 + 69.8230i −0.562048 + 0.0125488i
\(315\) 1207.10i 0.215913i
\(316\) 492.786 22.0158i 0.0877259 0.00391926i
\(317\) −5543.27 −0.982148 −0.491074 0.871118i \(-0.663396\pi\)
−0.491074 + 0.871118i \(0.663396\pi\)
\(318\) −41.7580 1870.29i −0.00736374 0.329813i
\(319\) 4515.41i 0.792521i
\(320\) −6078.31 + 819.030i −1.06184 + 0.143079i
\(321\) 3668.06 0.637792
\(322\) 6253.45 139.621i 1.08227 0.0241639i
\(323\) −2005.37 −0.345454
\(324\) −647.354 + 28.9214i −0.111000 + 0.00495908i
\(325\) 308.131 + 810.341i 0.0525909 + 0.138306i
\(326\) 163.616 + 7328.15i 0.0277970 + 1.24500i
\(327\) 6023.23i 1.01861i
\(328\) 3597.60 241.292i 0.605622 0.0406192i
\(329\) 2052.61 0.343964
\(330\) −2483.55 + 55.4501i −0.414287 + 0.00924978i
\(331\) −2113.49 −0.350961 −0.175481 0.984483i \(-0.556148\pi\)
−0.175481 + 0.984483i \(0.556148\pi\)
\(332\) 3052.53 136.375i 0.504606 0.0225439i
\(333\) 736.338 0.121174
\(334\) −7791.16 + 173.953i −1.27639 + 0.0284979i
\(335\) 3504.90 0.571622
\(336\) 2141.16 191.701i 0.347648 0.0311254i
\(337\) 656.888 0.106181 0.0530905 0.998590i \(-0.483093\pi\)
0.0530905 + 0.998590i \(0.483093\pi\)
\(338\) 4231.43 + 4550.77i 0.680945 + 0.732334i
\(339\) 6162.77i 0.987362i
\(340\) −6536.69 + 292.035i −1.04265 + 0.0465818i
\(341\) 789.789i 0.125424i
\(342\) −16.6887 747.467i −0.00263866 0.118182i
\(343\) 6277.18i 0.988152i
\(344\) 9031.63 605.753i 1.41556 0.0949419i
\(345\) 7098.11i 1.10768i
\(346\) 5569.95 124.360i 0.865441 0.0193227i
\(347\) 8059.88i 1.24691i 0.781860 + 0.623454i \(0.214271\pi\)
−0.781860 + 0.623454i \(0.785729\pi\)
\(348\) −4429.77 + 197.905i −0.682357 + 0.0304852i
\(349\) 11088.0 1.70065 0.850324 0.526259i \(-0.176406\pi\)
0.850324 + 0.526259i \(0.176406\pi\)
\(350\) 585.593 13.0745i 0.0894322 0.00199675i
\(351\) −1182.92 + 449.803i −0.179884 + 0.0684008i
\(352\) −492.771 4396.51i −0.0746159 0.665724i
\(353\) 10003.2i 1.50827i −0.656721 0.754134i \(-0.728057\pi\)
0.656721 0.754134i \(-0.271943\pi\)
\(354\) 3941.67 88.0056i 0.591800 0.0132131i
\(355\) 10938.7i 1.63540i
\(356\) −61.5699 1378.14i −0.00916629 0.205171i
\(357\) 2293.42 0.340002
\(358\) −1827.40 + 40.8003i −0.269779 + 0.00602336i
\(359\) 2760.83i 0.405881i 0.979191 + 0.202941i \(0.0650498\pi\)
−0.979191 + 0.202941i \(0.934950\pi\)
\(360\) −163.250 2434.01i −0.0239000 0.356344i
\(361\) −5996.37 −0.874234
\(362\) 10011.3 223.522i 1.45354 0.0324531i
\(363\) 2201.12i 0.318261i
\(364\) 3853.79 1665.87i 0.554927 0.239877i
\(365\) 3596.31i 0.515724i
\(366\) −34.6585 1552.32i −0.00494981 0.221696i
\(367\) −9356.73 −1.33084 −0.665418 0.746471i \(-0.731747\pi\)
−0.665418 + 0.746471i \(0.731747\pi\)
\(368\) 12590.6 1127.26i 1.78351 0.159680i
\(369\) 1434.15i 0.202328i
\(370\) 61.8759 + 2771.35i 0.00869398 + 0.389393i
\(371\) −2468.50 −0.345439
\(372\) −774.810 + 34.6156i −0.107989 + 0.00482456i
\(373\) 3901.75i 0.541622i −0.962633 0.270811i \(-0.912708\pi\)
0.962633 0.270811i \(-0.0872918\pi\)
\(374\) −105.352 4718.59i −0.0145658 0.652386i
\(375\) 3827.43i 0.527060i
\(376\) 4138.91 277.597i 0.567681 0.0380744i
\(377\) −8094.55 + 3077.94i −1.10581 + 0.420483i
\(378\) 19.0859 + 854.835i 0.00259702 + 0.116317i
\(379\) −12612.3 −1.70936 −0.854681 0.519153i \(-0.826247\pi\)
−0.854681 + 0.519153i \(0.826247\pi\)
\(380\) 2811.83 125.622i 0.379590 0.0169586i
\(381\) 6415.35i 0.862646i
\(382\) 5.15071 + 230.694i 0.000689877 + 0.0308988i
\(383\) 7774.87i 1.03728i −0.854993 0.518639i \(-0.826439\pi\)
0.854993 0.518639i \(-0.173561\pi\)
\(384\) 4291.53 676.120i 0.570316 0.0898518i
\(385\) 3277.90i 0.433915i
\(386\) −8207.38 + 183.246i −1.08224 + 0.0241632i
\(387\) 3600.38i 0.472914i
\(388\) −333.287 7460.05i −0.0436085 0.976099i
\(389\) 6871.59i 0.895639i 0.894124 + 0.447819i \(0.147799\pi\)
−0.894124 + 0.447819i \(0.852201\pi\)
\(390\) −1792.32 4414.33i −0.232712 0.573150i
\(391\) 13486.0 1.74429
\(392\) 329.554 + 4913.56i 0.0424617 + 0.633093i
\(393\) 2263.20 0.290492
\(394\) 9.58367 + 429.241i 0.00122543 + 0.0548855i
\(395\) −738.620 −0.0940861
\(396\) 1757.90 78.5363i 0.223075 0.00996616i
\(397\) 4132.17 0.522387 0.261194 0.965286i \(-0.415884\pi\)
0.261194 + 0.965286i \(0.415884\pi\)
\(398\) 97.9351 + 4386.40i 0.0123343 + 0.552438i
\(399\) −986.542 −0.123782
\(400\) 1179.03 105.560i 0.147378 0.0131950i
\(401\) 813.908i 0.101358i −0.998715 0.0506791i \(-0.983861\pi\)
0.998715 0.0506791i \(-0.0161386\pi\)
\(402\) −2482.07 + 55.4172i −0.307946 + 0.00687552i
\(403\) −1415.82 + 538.363i −0.175005 + 0.0665453i
\(404\) 321.044 + 7186.00i 0.0395359 + 0.884942i
\(405\) 970.297 0.119048
\(406\) 130.602 + 5849.53i 0.0159648 + 0.715042i
\(407\) −1999.53 −0.243521
\(408\) 4624.48 310.165i 0.561142 0.0376359i
\(409\) 6461.65i 0.781194i 0.920562 + 0.390597i \(0.127731\pi\)
−0.920562 + 0.390597i \(0.872269\pi\)
\(410\) −5397.70 + 120.514i −0.650179 + 0.0145166i
\(411\) 8025.50 0.963185
\(412\) −8018.48 + 358.236i −0.958840 + 0.0428374i
\(413\) 5202.40i 0.619839i
\(414\) 112.231 + 5026.68i 0.0133233 + 0.596733i
\(415\) −4575.33 −0.541190
\(416\) 7545.52 3880.27i 0.889301 0.457322i
\(417\) −916.647 −0.107646
\(418\) 45.3184 + 2029.76i 0.00530286 + 0.237509i
\(419\) 1295.24i 0.151018i −0.997145 0.0755089i \(-0.975942\pi\)
0.997145 0.0755089i \(-0.0240581\pi\)
\(420\) −3215.73 + 143.667i −0.373599 + 0.0166910i
\(421\) −8747.69 −1.01268 −0.506338 0.862335i \(-0.669001\pi\)
−0.506338 + 0.862335i \(0.669001\pi\)
\(422\) 3811.32 85.0954i 0.439650 0.00981607i
\(423\) 1649.94i 0.189652i
\(424\) −4977.50 + 333.842i −0.570115 + 0.0382377i
\(425\) 1262.87 0.144137
\(426\) 172.956 + 7746.50i 0.0196708 + 0.881031i
\(427\) −2048.82 −0.232200
\(428\) −436.565 9771.74i −0.0493041 1.10359i
\(429\) 3212.22 1221.44i 0.361510 0.137464i
\(430\) −13550.7 + 302.547i −1.51971 + 0.0339305i
\(431\) 14848.5i 1.65946i 0.558166 + 0.829729i \(0.311505\pi\)
−0.558166 + 0.829729i \(0.688495\pi\)
\(432\) 154.094 + 1721.12i 0.0171616 + 0.191683i
\(433\) 1906.25 0.211567 0.105784 0.994389i \(-0.466265\pi\)
0.105784 + 0.994389i \(0.466265\pi\)
\(434\) 22.8437 + 1023.14i 0.00252657 + 0.113162i
\(435\) 6639.63 0.731829
\(436\) −16045.9 + 716.873i −1.76253 + 0.0787431i
\(437\) −5801.15 −0.635027
\(438\) −56.8624 2546.80i −0.00620317 0.277833i
\(439\) 967.841 0.105222 0.0526111 0.998615i \(-0.483246\pi\)
0.0526111 + 0.998615i \(0.483246\pi\)
\(440\) 443.306 + 6609.59i 0.0480314 + 0.716136i
\(441\) −1958.75 −0.211505
\(442\) 8386.97 3405.30i 0.902551 0.366457i
\(443\) 12326.5i 1.32201i 0.750381 + 0.661006i \(0.229870\pi\)
−0.750381 + 0.661006i \(0.770130\pi\)
\(444\) −87.6374 1961.61i −0.00936731 0.209671i
\(445\) 2065.64i 0.220047i
\(446\) −5994.79 + 133.846i −0.636461 + 0.0142103i
\(447\) 8370.52i 0.885709i
\(448\) −765.529 5681.25i −0.0807318 0.599139i
\(449\) 10237.6i 1.07604i 0.842932 + 0.538020i \(0.180827\pi\)
−0.842932 + 0.538020i \(0.819173\pi\)
\(450\) 10.5096 + 470.714i 0.00110095 + 0.0493103i
\(451\) 3894.45i 0.406613i
\(452\) −16417.7 + 733.480i −1.70846 + 0.0763275i
\(453\) −7181.18 −0.744815
\(454\) −258.141 11561.8i −0.0266853 1.19520i
\(455\) −5876.13 + 2234.39i −0.605445 + 0.230220i
\(456\) −1989.27 + 133.421i −0.204290 + 0.0137018i
\(457\) 5667.78i 0.580148i −0.957004 0.290074i \(-0.906320\pi\)
0.957004 0.290074i \(-0.0936798\pi\)
\(458\) 99.1159 + 4439.28i 0.0101122 + 0.452913i
\(459\) 1843.51i 0.187467i
\(460\) −18909.4 + 844.803i −1.91665 + 0.0856285i
\(461\) 15574.9 1.57353 0.786765 0.617253i \(-0.211754\pi\)
0.786765 + 0.617253i \(0.211754\pi\)
\(462\) −51.8280 2321.31i −0.00521917 0.233760i
\(463\) 9059.56i 0.909359i −0.890655 0.454680i \(-0.849754\pi\)
0.890655 0.454680i \(-0.150246\pi\)
\(464\) 1054.44 + 11777.4i 0.105499 + 1.17834i
\(465\) 1161.34 0.115819
\(466\) 96.3446 + 4315.16i 0.00957742 + 0.428961i
\(467\) 14620.0i 1.44868i 0.689441 + 0.724341i \(0.257856\pi\)
−0.689441 + 0.724341i \(0.742144\pi\)
\(468\) 1339.07 + 3097.77i 0.132262 + 0.305971i
\(469\) 3275.95i 0.322536i
\(470\) −6209.87 + 138.648i −0.609446 + 0.0136071i
\(471\) −3317.82 −0.324580
\(472\) −703.577 10490.2i −0.0686118 1.02299i
\(473\) 9776.88i 0.950405i
\(474\) 523.069 11.6786i 0.0506864 0.00113168i
\(475\) −543.238 −0.0524747
\(476\) −272.958 6109.70i −0.0262837 0.588314i
\(477\) 1984.24i 0.190465i
\(478\) −1997.01 + 44.5872i −0.191090 + 0.00426646i
\(479\) 19198.4i 1.83131i 0.401966 + 0.915655i \(0.368327\pi\)
−0.401966 + 0.915655i \(0.631673\pi\)
\(480\) −6464.80 + 724.590i −0.614743 + 0.0689018i
\(481\) −1362.99 3584.47i −0.129204 0.339787i
\(482\) −1766.84 + 39.4483i −0.166966 + 0.00372784i
\(483\) 6634.44 0.625005
\(484\) 5863.79 261.972i 0.550694 0.0246030i
\(485\) 11181.6i 1.04687i
\(486\) −687.137 + 15.3417i −0.0641340 + 0.00143192i
\(487\) 14357.2i 1.33591i 0.744204 + 0.667953i \(0.232829\pi\)
−0.744204 + 0.667953i \(0.767171\pi\)
\(488\) −4131.26 + 277.084i −0.383224 + 0.0257029i
\(489\) 7774.62i 0.718978i
\(490\) −164.598 7372.13i −0.0151750 0.679671i
\(491\) 15418.0i 1.41712i −0.705650 0.708561i \(-0.749345\pi\)
0.705650 0.708561i \(-0.250655\pi\)
\(492\) 3820.59 170.690i 0.350093 0.0156408i
\(493\) 12614.9i 1.15243i
\(494\) −3607.75 + 1464.83i −0.328584 + 0.133413i
\(495\) −2634.85 −0.239248
\(496\) 184.433 + 2059.98i 0.0166961 + 0.186484i
\(497\) 10224.2 0.922773
\(498\) 3240.11 72.3420i 0.291552 0.00650948i
\(499\) −14607.1 −1.31043 −0.655215 0.755442i \(-0.727422\pi\)
−0.655215 + 0.755442i \(0.727422\pi\)
\(500\) 10196.3 455.533i 0.911985 0.0407441i
\(501\) −8265.83 −0.737106
\(502\) −2734.02 + 61.0426i −0.243079 + 0.00542722i
\(503\) −11828.8 −1.04855 −0.524274 0.851550i \(-0.675663\pi\)
−0.524274 + 0.851550i \(0.675663\pi\)
\(504\) 2275.02 152.586i 0.201066 0.0134855i
\(505\) 10770.8i 0.949102i
\(506\) −304.764 13650.0i −0.0267755 1.19924i
\(507\) 4379.25 + 4925.79i 0.383608 + 0.431484i
\(508\) −17090.5 + 763.542i −1.49266 + 0.0666864i
\(509\) −2974.43 −0.259016 −0.129508 0.991578i \(-0.541340\pi\)
−0.129508 + 0.991578i \(0.541340\pi\)
\(510\) −6938.40 + 154.914i −0.602426 + 0.0134504i
\(511\) −3361.39 −0.290996
\(512\) −2311.96 11352.2i −0.199561 0.979885i
\(513\) 793.006i 0.0682497i
\(514\) 496.914 + 22256.2i 0.0426419 + 1.90988i
\(515\) 12018.6 1.02836
\(516\) 9591.45 428.510i 0.818295 0.0365583i
\(517\) 4480.43i 0.381140i
\(518\) −2590.32 + 57.8340i −0.219714 + 0.00490556i
\(519\) 5909.30 0.499787
\(520\) −11546.5 + 5300.15i −0.973746 + 0.446975i
\(521\) 3470.83 0.291861 0.145931 0.989295i \(-0.453382\pi\)
0.145931 + 0.989295i \(0.453382\pi\)
\(522\) −4701.99 + 104.981i −0.394254 + 0.00880251i
\(523\) 11515.3i 0.962771i −0.876509 0.481385i \(-0.840134\pi\)
0.876509 0.481385i \(-0.159866\pi\)
\(524\) −269.361 6029.18i −0.0224563 0.502645i
\(525\) 621.270 0.0516465
\(526\) 313.426 + 14038.0i 0.0259810 + 1.16366i
\(527\) 2206.47i 0.182382i
\(528\) −418.443 4673.71i −0.0344894 0.385222i
\(529\) 26845.4 2.20641
\(530\) 7468.06 166.739i 0.612060 0.0136655i
\(531\) 4181.81 0.341761
\(532\) 117.416 + 2628.16i 0.00956887 + 0.214183i
\(533\) 6981.40 2654.67i 0.567351 0.215735i
\(534\) −32.6605 1462.83i −0.00264674 0.118544i
\(535\) 14646.5i 1.18360i
\(536\) 443.043 + 6605.66i 0.0357025 + 0.532316i
\(537\) −1938.73 −0.155796
\(538\) −214.306 + 4.78482i −0.0171736 + 0.000383435i
\(539\) 5319.01 0.425057
\(540\) −115.483 2584.88i −0.00920295 0.205992i
\(541\) −13390.4 −1.06414 −0.532070 0.846700i \(-0.678586\pi\)
−0.532070 + 0.846700i \(0.678586\pi\)
\(542\) −20346.4 + 454.273i −1.61246 + 0.0360013i
\(543\) 10621.2 0.839409
\(544\) −1376.68 12282.7i −0.108501 0.968048i
\(545\) 24050.7 1.89031
\(546\) 4125.98 1675.24i 0.323399 0.131307i
\(547\) 20360.8i 1.59152i −0.605610 0.795762i \(-0.707071\pi\)
0.605610 0.795762i \(-0.292929\pi\)
\(548\) −955.179 21380.0i −0.0744585 1.66662i
\(549\) 1646.89i 0.128028i
\(550\) −28.5390 1278.23i −0.00221256 0.0990979i
\(551\) 5426.44i 0.419554i
\(552\) 13377.8 897.248i 1.03151 0.0691837i
\(553\) 690.371i 0.0530879i
\(554\) −10054.3 + 224.481i −0.771055 + 0.0172153i
\(555\) 2940.19i 0.224872i
\(556\) 109.098 + 2441.96i 0.00832152 + 0.186263i
\(557\) −23186.0 −1.76377 −0.881887 0.471461i \(-0.843727\pi\)
−0.881887 + 0.471461i \(0.843727\pi\)
\(558\) −822.425 + 18.3623i −0.0623943 + 0.00139308i
\(559\) 17526.5 6664.45i 1.32611 0.504251i
\(560\) 765.460 + 8549.64i 0.0577617 + 0.645157i
\(561\) 5006.07i 0.376749i
\(562\) −13092.7 + 292.320i −0.982708 + 0.0219409i
\(563\) 13896.8i 1.04029i −0.854079 0.520144i \(-0.825878\pi\)
0.854079 0.520144i \(-0.174122\pi\)
\(564\) 4395.45 196.372i 0.328160 0.0146609i
\(565\) 24607.9 1.83232
\(566\) −5872.19 + 131.108i −0.436089 + 0.00973656i
\(567\) 906.915i 0.0671726i
\(568\) 20616.2 1382.73i 1.52295 0.102145i
\(569\) −1366.99 −0.100716 −0.0503579 0.998731i \(-0.516036\pi\)
−0.0503579 + 0.998731i \(0.516036\pi\)
\(570\) 2984.63 66.6379i 0.219320 0.00489676i
\(571\) 2474.08i 0.181326i −0.995882 0.0906628i \(-0.971101\pi\)
0.995882 0.0906628i \(-0.0288986\pi\)
\(572\) −3636.25 8412.02i −0.265803 0.614902i
\(573\) 244.749i 0.0178439i
\(574\) −112.642 5045.11i −0.00819093 0.366862i
\(575\) 3653.25 0.264958
\(576\) 4566.73 615.351i 0.330348 0.0445132i
\(577\) 24519.4i 1.76907i −0.466472 0.884536i \(-0.654475\pi\)
0.466472 0.884536i \(-0.345525\pi\)
\(578\) 15.8535 + 710.061i 0.00114087 + 0.0510980i
\(579\) −8707.41 −0.624987
\(580\) −790.235 17688.0i −0.0565737 1.26630i
\(581\) 4276.45i 0.305365i
\(582\) −176.796 7918.50i −0.0125918 0.563973i
\(583\) 5388.22i 0.382774i
\(584\) −6777.93 + 454.597i −0.480262 + 0.0322112i
\(585\) −1796.06 4723.38i −0.126937 0.333825i
\(586\) 440.971 + 19750.6i 0.0310859 + 1.39230i
\(587\) 9480.60 0.666621 0.333310 0.942817i \(-0.391834\pi\)
0.333310 + 0.942817i \(0.391834\pi\)
\(588\) 233.126 + 5218.13i 0.0163503 + 0.365973i
\(589\) 949.139i 0.0663983i
\(590\) 351.406 + 15739.1i 0.0245206 + 1.09825i
\(591\) 455.393i 0.0316960i
\(592\) −5215.32 + 466.934i −0.362075 + 0.0324170i
\(593\) 3068.45i 0.212490i 0.994340 + 0.106245i \(0.0338827\pi\)
−0.994340 + 0.106245i \(0.966117\pi\)
\(594\) 1865.93 41.6606i 0.128889 0.00287770i
\(595\) 9157.62i 0.630968i
\(596\) 22299.1 996.243i 1.53256 0.0684693i
\(597\) 4653.64i 0.319030i
\(598\) 24262.0 9850.91i 1.65911 0.673635i
\(599\) 11040.5 0.753095 0.376548 0.926397i \(-0.377111\pi\)
0.376548 + 0.926397i \(0.377111\pi\)
\(600\) 1252.73 84.0211i 0.0852378 0.00571691i
\(601\) 16272.6 1.10445 0.552225 0.833695i \(-0.313779\pi\)
0.552225 + 0.833695i \(0.313779\pi\)
\(602\) −282.784 12665.6i −0.0191452 0.857491i
\(603\) −2633.29 −0.177837
\(604\) 854.689 + 19130.7i 0.0575775 + 1.28877i
\(605\) −8789.04 −0.590621
\(606\) 170.301 + 7627.60i 0.0114159 + 0.511304i
\(607\) 11654.6 0.779321 0.389660 0.920959i \(-0.372592\pi\)
0.389660 + 0.920959i \(0.372592\pi\)
\(608\) 592.194 + 5283.56i 0.0395010 + 0.352429i
\(609\) 6205.91i 0.412933i
\(610\) 6198.39 138.391i 0.411419 0.00918574i
\(611\) 8031.85 3054.10i 0.531807 0.202219i
\(612\) 4911.12 219.411i 0.324380 0.0144921i
\(613\) 2035.60 0.134123 0.0670613 0.997749i \(-0.478638\pi\)
0.0670613 + 0.997749i \(0.478638\pi\)
\(614\) 545.848 + 24447.9i 0.0358773 + 1.60690i
\(615\) −5726.55 −0.375475
\(616\) −6177.83 + 414.348i −0.404078 + 0.0271016i
\(617\) 13740.1i 0.896522i −0.893903 0.448261i \(-0.852044\pi\)
0.893903 0.448261i \(-0.147956\pi\)
\(618\) −8511.25 + 190.031i −0.554001 + 0.0123692i
\(619\) −28331.3 −1.83963 −0.919815 0.392352i \(-0.871662\pi\)
−0.919815 + 0.392352i \(0.871662\pi\)
\(620\) −138.220 3093.81i −0.00895330 0.200404i
\(621\) 5332.92i 0.344610i
\(622\) −496.610 22242.6i −0.0320133 1.43384i
\(623\) −1930.71 −0.124161
\(624\) 8093.10 3935.98i 0.519204 0.252508i
\(625\) −17594.9 −1.12607
\(626\) −142.132 6365.90i −0.00907463 0.406442i
\(627\) 2153.42i 0.137160i
\(628\) 394.880 + 8838.70i 0.0250914 + 0.561628i
\(629\) −5586.19 −0.354111
\(630\) −3413.35 + 76.2098i −0.215859 + 0.00481948i
\(631\) 6978.73i 0.440284i 0.975468 + 0.220142i \(0.0706520\pi\)
−0.975468 + 0.220142i \(0.929348\pi\)
\(632\) −93.3665 1392.07i −0.00587645 0.0876165i
\(633\) 4043.53 0.253895
\(634\) 349.972 + 15674.8i 0.0219230 + 0.981904i
\(635\) 25616.4 1.60088
\(636\) −5286.02 + 236.160i −0.329567 + 0.0147238i
\(637\) 3625.72 + 9535.13i 0.225520 + 0.593086i
\(638\) 12768.3 285.078i 0.792323 0.0176902i
\(639\) 8218.46i 0.508790i
\(640\) 2699.74 + 17136.1i 0.166745 + 1.05838i
\(641\) 15556.2 0.958552 0.479276 0.877664i \(-0.340899\pi\)
0.479276 + 0.877664i \(0.340899\pi\)
\(642\) −231.581 10372.3i −0.0142364 0.637633i
\(643\) 2929.61 0.179677 0.0898385 0.995956i \(-0.471365\pi\)
0.0898385 + 0.995956i \(0.471365\pi\)
\(644\) −789.618 17674.2i −0.0483157 1.08146i
\(645\) −14376.3 −0.877622
\(646\) 126.608 + 5670.62i 0.00771103 + 0.345368i
\(647\) −2017.91 −0.122615 −0.0613077 0.998119i \(-0.519527\pi\)
−0.0613077 + 0.998119i \(0.519527\pi\)
\(648\) 122.652 + 1828.71i 0.00743554 + 0.110862i
\(649\) −11355.8 −0.686830
\(650\) 2271.96 922.470i 0.137098 0.0556650i
\(651\) 1085.47i 0.0653504i
\(652\) 20711.7 925.319i 1.24407 0.0555802i
\(653\) 25437.8i 1.52444i −0.647318 0.762220i \(-0.724109\pi\)
0.647318 0.762220i \(-0.275891\pi\)
\(654\) −17032.0 + 380.274i −1.01836 + 0.0227368i
\(655\) 9036.94i 0.539087i
\(656\) −909.438 10157.8i −0.0541274 0.604565i
\(657\) 2701.96i 0.160447i
\(658\) −129.591 5804.22i −0.00767778 0.343879i
\(659\) 10414.5i 0.615616i 0.951449 + 0.307808i \(0.0995954\pi\)
−0.951449 + 0.307808i \(0.900405\pi\)
\(660\) 313.595 + 7019.28i 0.0184950 + 0.413977i
\(661\) 16499.4 0.970881 0.485441 0.874270i \(-0.338659\pi\)
0.485441 + 0.874270i \(0.338659\pi\)
\(662\) 133.435 + 5976.38i 0.00783396 + 0.350874i
\(663\) 8974.13 3412.41i 0.525681 0.199890i
\(664\) −578.352 8623.08i −0.0338018 0.503977i
\(665\) 3939.26i 0.229711i
\(666\) −46.4883 2082.16i −0.00270478 0.121144i
\(667\) 36492.5i 2.11844i
\(668\) 983.783 + 22020.2i 0.0569816 + 1.27543i
\(669\) −6360.02 −0.367552
\(670\) −221.280 9910.89i −0.0127594 0.571479i
\(671\) 4472.15i 0.257296i
\(672\) −677.258 6042.50i −0.0388776 0.346867i
\(673\) 23193.1 1.32842 0.664212 0.747544i \(-0.268767\pi\)
0.664212 + 0.747544i \(0.268767\pi\)
\(674\) −41.4723 1857.50i −0.00237011 0.106154i
\(675\) 499.392i 0.0284764i
\(676\) 12601.2 12252.6i 0.716952 0.697122i
\(677\) 30368.7i 1.72403i −0.506887 0.862013i \(-0.669204\pi\)
0.506887 0.862013i \(-0.330796\pi\)
\(678\) −17426.6 + 389.084i −0.987116 + 0.0220393i
\(679\) −10451.2 −0.590693
\(680\) 1238.48 + 18465.5i 0.0698437 + 1.04135i
\(681\) 12266.2i 0.690224i
\(682\) 2233.30 49.8630i 0.125392 0.00279964i
\(683\) −19430.1 −1.08854 −0.544269 0.838911i \(-0.683193\pi\)
−0.544269 + 0.838911i \(0.683193\pi\)
\(684\) −2112.58 + 94.3820i −0.118094 + 0.00527600i
\(685\) 32045.8i 1.78745i
\(686\) 17750.1 396.307i 0.987905 0.0220570i
\(687\) 4709.75i 0.261555i
\(688\) −2283.11 25500.7i −0.126516 1.41309i
\(689\) −9659.20 + 3672.90i −0.534087 + 0.203086i
\(690\) −20071.5 + 448.136i −1.10740 + 0.0247250i
\(691\) −11909.1 −0.655635 −0.327818 0.944741i \(-0.606313\pi\)
−0.327818 + 0.944741i \(0.606313\pi\)
\(692\) −703.313 15742.4i −0.0386358 0.864794i
\(693\) 2462.74i 0.134995i
\(694\) 22791.1 508.857i 1.24660 0.0278328i
\(695\) 3660.17i 0.199767i
\(696\) 839.293 + 12513.7i 0.0457088 + 0.681507i
\(697\) 10880.1i 0.591268i
\(698\) −700.035 31353.8i −0.0379609 1.70023i
\(699\) 4578.06i 0.247723i
\(700\) −73.9423 1655.07i −0.00399251 0.0893653i
\(701\) 28677.7i 1.54514i −0.634932 0.772568i \(-0.718972\pi\)
0.634932 0.772568i \(-0.281028\pi\)
\(702\) 1346.60 + 3316.56i 0.0723991 + 0.178313i
\(703\) 2402.96 0.128918
\(704\) −12401.0 + 1670.99i −0.663893 + 0.0894572i
\(705\) −6588.20 −0.351952
\(706\) −28286.4 + 631.550i −1.50789 + 0.0336667i
\(707\) 10067.3 0.535528
\(708\) −497.711 11140.4i −0.0264197 0.591358i
\(709\) 21674.5 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(710\) −30931.7 + 690.613i −1.63500 + 0.0365046i
\(711\) 554.937 0.0292711
\(712\) −3893.10 + 261.111i −0.204916 + 0.0137437i
\(713\) 6382.91i 0.335262i
\(714\) −144.794 6485.16i −0.00758934 0.339917i
\(715\) 4877.22 + 12826.4i 0.255102 + 0.670881i
\(716\) 230.744 + 5164.80i 0.0120437 + 0.269578i
\(717\) −2118.67 −0.110353
\(718\) 7806.87 174.304i 0.405780 0.00905985i
\(719\) 2708.77 0.140501 0.0702504 0.997529i \(-0.477620\pi\)
0.0702504 + 0.997529i \(0.477620\pi\)
\(720\) −6872.40 + 615.295i −0.355721 + 0.0318482i
\(721\) 11233.5i 0.580248i
\(722\) 378.578 + 16956.1i 0.0195141 + 0.874016i
\(723\) −1874.49 −0.0964217
\(724\) −1264.11 28295.0i −0.0648901 1.45245i
\(725\) 3417.27i 0.175054i
\(726\) 6224.15 138.966i 0.318181 0.00710404i
\(727\) −20052.4 −1.02298 −0.511488 0.859291i \(-0.670905\pi\)
−0.511488 + 0.859291i \(0.670905\pi\)
\(728\) −4953.93 10792.3i −0.252204 0.549434i
\(729\) −729.000 −0.0370370
\(730\) 10169.4 227.051i 0.515596 0.0115117i
\(731\) 27314.1i 1.38201i
\(732\) −4387.33 + 196.009i −0.221531 + 0.00989716i
\(733\) 15350.2 0.773496 0.386748 0.922185i \(-0.373598\pi\)
0.386748 + 0.922185i \(0.373598\pi\)
\(734\) 590.733 + 26458.2i 0.0297062 + 1.33051i
\(735\) 7821.27i 0.392506i
\(736\) −3982.47 35531.7i −0.199451 1.77950i
\(737\) 7150.73 0.357396
\(738\) 4055.38 90.5445i 0.202277 0.00451624i
\(739\) 27012.8 1.34463 0.672316 0.740264i \(-0.265299\pi\)
0.672316 + 0.740264i \(0.265299\pi\)
\(740\) 7832.70 349.936i 0.389102 0.0173836i
\(741\) −3860.33 + 1467.89i −0.191380 + 0.0727721i
\(742\) 155.847 + 6980.22i 0.00771070 + 0.345353i
\(743\) 7434.49i 0.367086i −0.983012 0.183543i \(-0.941243\pi\)
0.983012 0.183543i \(-0.0587567\pi\)
\(744\) 146.801 + 2188.76i 0.00723383 + 0.107855i
\(745\) −33423.4 −1.64368
\(746\) −11033.1 + 246.335i −0.541487 + 0.0120898i
\(747\) 3437.52 0.168370
\(748\) −13336.2 + 595.812i −0.651899 + 0.0291244i
\(749\) −13689.8 −0.667842
\(750\) 10822.9 241.643i 0.526929 0.0117647i
\(751\) 818.664 0.0397783 0.0198891 0.999802i \(-0.493669\pi\)
0.0198891 + 0.999802i \(0.493669\pi\)
\(752\) −1046.28 11686.2i −0.0507364 0.566689i
\(753\) −2900.59 −0.140377
\(754\) 9214.62 + 22694.8i 0.445062 + 1.09615i
\(755\) 28674.4i 1.38221i
\(756\) 2416.03 107.939i 0.116230 0.00519274i
\(757\) 20512.3i 0.984849i −0.870355 0.492424i \(-0.836111\pi\)
0.870355 0.492424i \(-0.163889\pi\)
\(758\) 796.269 + 35664.0i 0.0381554 + 1.70894i
\(759\) 14481.6i 0.692555i
\(760\) −532.749 7943.16i −0.0254274 0.379116i
\(761\) 29099.9i 1.38616i −0.720859 0.693082i \(-0.756252\pi\)
0.720859 0.693082i \(-0.243748\pi\)
\(762\) −18140.8 + 405.030i −0.862431 + 0.0192555i
\(763\) 22479.7i 1.06660i
\(764\) 652.014 29.1295i 0.0308757 0.00137941i
\(765\) −7361.11 −0.347898
\(766\) −21985.2 + 490.863i −1.03702 + 0.0231535i
\(767\) −7740.70 20356.9i −0.364408 0.958339i
\(768\) −2182.82 12092.6i −0.102560 0.568168i
\(769\) 6398.15i 0.300030i −0.988684 0.150015i \(-0.952068\pi\)
0.988684 0.150015i \(-0.0479323\pi\)
\(770\) 9268.99 206.949i 0.433807 0.00968561i
\(771\) 23612.1i 1.10294i
\(772\) 1036.34 + 23196.6i 0.0483143 + 1.08143i
\(773\) 15575.8 0.724736 0.362368 0.932035i \(-0.381968\pi\)
0.362368 + 0.932035i \(0.381968\pi\)
\(774\) 10180.9 227.308i