Properties

Label 312.4.m.a.181.38
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.38
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.37

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.481589 + 2.78713i) q^{2} +3.00000i q^{3} +(-7.53614 - 2.68450i) q^{4} -21.7286 q^{5} +(-8.36138 - 1.44477i) q^{6} +13.0550i q^{7} +(11.1114 - 19.7114i) q^{8} -9.00000 q^{9} +(10.4643 - 60.5604i) q^{10} -21.2862 q^{11} +(8.05349 - 22.6084i) q^{12} +(29.0436 - 36.7895i) q^{13} +(-36.3859 - 6.28713i) q^{14} -65.1858i q^{15} +(49.5870 + 40.4615i) q^{16} -41.3375 q^{17} +(4.33430 - 25.0841i) q^{18} -147.281 q^{19} +(163.750 + 58.3304i) q^{20} -39.1649 q^{21} +(10.2512 - 59.3273i) q^{22} +58.4571 q^{23} +(59.1341 + 33.3341i) q^{24} +347.133 q^{25} +(88.5499 + 98.6656i) q^{26} -27.0000i q^{27} +(35.0460 - 98.3842i) q^{28} +180.566i q^{29} +(181.681 + 31.3928i) q^{30} +272.316i q^{31} +(-136.652 + 118.719i) q^{32} -63.8585i q^{33} +(19.9077 - 115.213i) q^{34} -283.666i q^{35} +(67.8253 + 24.1605i) q^{36} +337.223 q^{37} +(70.9287 - 410.490i) q^{38} +(110.369 + 87.1309i) q^{39} +(-241.434 + 428.301i) q^{40} -118.629i q^{41} +(18.8614 - 109.158i) q^{42} -404.289i q^{43} +(160.416 + 57.1427i) q^{44} +195.558 q^{45} +(-28.1523 + 162.927i) q^{46} +145.629i q^{47} +(-121.385 + 148.761i) q^{48} +172.568 q^{49} +(-167.175 + 967.503i) q^{50} -124.012i q^{51} +(-317.638 + 199.284i) q^{52} -409.695i q^{53} +(75.2524 + 13.0029i) q^{54} +462.519 q^{55} +(257.331 + 145.058i) q^{56} -441.842i q^{57} +(-503.260 - 86.9586i) q^{58} -809.386 q^{59} +(-174.991 + 491.250i) q^{60} +34.5359i q^{61} +(-758.979 - 131.144i) q^{62} -117.495i q^{63} +(-265.076 - 438.040i) q^{64} +(-631.078 + 799.385i) q^{65} +(177.982 + 30.7535i) q^{66} +750.048 q^{67} +(311.525 + 110.970i) q^{68} +175.371i q^{69} +(790.614 + 136.611i) q^{70} -455.788i q^{71} +(-100.002 + 177.402i) q^{72} -130.323i q^{73} +(-162.403 + 939.883i) q^{74} +1041.40i q^{75} +(1109.93 + 395.375i) q^{76} -277.890i q^{77} +(-295.997 + 265.650i) q^{78} +108.684 q^{79} +(-1077.46 - 879.173i) q^{80} +81.0000 q^{81} +(330.634 + 57.1304i) q^{82} +201.602 q^{83} +(295.153 + 105.138i) q^{84} +898.206 q^{85} +(1126.81 + 194.701i) q^{86} -541.698 q^{87} +(-236.518 + 419.580i) q^{88} -1268.20i q^{89} +(-94.1783 + 545.043i) q^{90} +(480.286 + 379.164i) q^{91} +(-440.541 - 156.928i) q^{92} -816.948 q^{93} +(-405.887 - 70.1333i) q^{94} +3200.21 q^{95} +(-356.158 - 409.956i) q^{96} -1421.15i q^{97} +(-83.1066 + 480.968i) q^{98} +191.576 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.481589 + 2.78713i −0.170267 + 0.985398i
\(3\) 3.00000i 0.577350i
\(4\) −7.53614 2.68450i −0.942018 0.335562i
\(5\) −21.7286 −1.94347 −0.971733 0.236082i \(-0.924137\pi\)
−0.971733 + 0.236082i \(0.924137\pi\)
\(6\) −8.36138 1.44477i −0.568920 0.0983039i
\(7\) 13.0550i 0.704902i 0.935830 + 0.352451i \(0.114652\pi\)
−0.935830 + 0.352451i \(0.885348\pi\)
\(8\) 11.1114 19.7114i 0.491057 0.871127i
\(9\) −9.00000 −0.333333
\(10\) 10.4643 60.5604i 0.330909 1.91509i
\(11\) −21.2862 −0.583457 −0.291728 0.956501i \(-0.594230\pi\)
−0.291728 + 0.956501i \(0.594230\pi\)
\(12\) 8.05349 22.6084i 0.193737 0.543874i
\(13\) 29.0436 36.7895i 0.619635 0.784890i
\(14\) −36.3859 6.28713i −0.694609 0.120022i
\(15\) 65.1858i 1.12206i
\(16\) 49.5870 + 40.4615i 0.774796 + 0.632211i
\(17\) −41.3375 −0.589754 −0.294877 0.955535i \(-0.595279\pi\)
−0.294877 + 0.955535i \(0.595279\pi\)
\(18\) 4.33430 25.0841i 0.0567558 0.328466i
\(19\) −147.281 −1.77834 −0.889171 0.457574i \(-0.848718\pi\)
−0.889171 + 0.457574i \(0.848718\pi\)
\(20\) 163.750 + 58.3304i 1.83078 + 0.652154i
\(21\) −39.1649 −0.406976
\(22\) 10.2512 59.3273i 0.0993436 0.574937i
\(23\) 58.4571 0.529963 0.264981 0.964254i \(-0.414634\pi\)
0.264981 + 0.964254i \(0.414634\pi\)
\(24\) 59.1341 + 33.3341i 0.502946 + 0.283512i
\(25\) 347.133 2.77706
\(26\) 88.5499 + 98.6656i 0.667926 + 0.744228i
\(27\) 27.0000i 0.192450i
\(28\) 35.0460 98.3842i 0.236538 0.664031i
\(29\) 180.566i 1.15622i 0.815960 + 0.578108i \(0.196209\pi\)
−0.815960 + 0.578108i \(0.803791\pi\)
\(30\) 181.681 + 31.3928i 1.10568 + 0.191050i
\(31\) 272.316i 1.57772i 0.614571 + 0.788861i \(0.289329\pi\)
−0.614571 + 0.788861i \(0.710671\pi\)
\(32\) −136.652 + 118.719i −0.754902 + 0.655838i
\(33\) 63.8585i 0.336859i
\(34\) 19.9077 115.213i 0.100416 0.581142i
\(35\) 283.666i 1.36995i
\(36\) 67.8253 + 24.1605i 0.314006 + 0.111854i
\(37\) 337.223 1.49835 0.749177 0.662370i \(-0.230449\pi\)
0.749177 + 0.662370i \(0.230449\pi\)
\(38\) 70.9287 410.490i 0.302794 1.75238i
\(39\) 110.369 + 87.1309i 0.453157 + 0.357746i
\(40\) −241.434 + 428.301i −0.954353 + 1.69301i
\(41\) 118.629i 0.451871i −0.974142 0.225936i \(-0.927456\pi\)
0.974142 0.225936i \(-0.0725439\pi\)
\(42\) 18.8614 109.158i 0.0692946 0.401033i
\(43\) 404.289i 1.43380i −0.697174 0.716902i \(-0.745560\pi\)
0.697174 0.716902i \(-0.254440\pi\)
\(44\) 160.416 + 57.1427i 0.549627 + 0.195786i
\(45\) 195.558 0.647822
\(46\) −28.1523 + 162.927i −0.0902353 + 0.522224i
\(47\) 145.629i 0.451961i 0.974132 + 0.225981i \(0.0725586\pi\)
−0.974132 + 0.225981i \(0.927441\pi\)
\(48\) −121.385 + 148.761i −0.365007 + 0.447329i
\(49\) 172.568 0.503113
\(50\) −167.175 + 967.503i −0.472843 + 2.73651i
\(51\) 124.012i 0.340495i
\(52\) −317.638 + 199.284i −0.847087 + 0.531455i
\(53\) 409.695i 1.06181i −0.847432 0.530905i \(-0.821852\pi\)
0.847432 0.530905i \(-0.178148\pi\)
\(54\) 75.2524 + 13.0029i 0.189640 + 0.0327680i
\(55\) 462.519 1.13393
\(56\) 257.331 + 145.058i 0.614060 + 0.346147i
\(57\) 441.842i 1.02673i
\(58\) −503.260 86.9586i −1.13933 0.196866i
\(59\) −809.386 −1.78599 −0.892993 0.450071i \(-0.851399\pi\)
−0.892993 + 0.450071i \(0.851399\pi\)
\(60\) −174.991 + 491.250i −0.376521 + 1.05700i
\(61\) 34.5359i 0.0724896i 0.999343 + 0.0362448i \(0.0115396\pi\)
−0.999343 + 0.0362448i \(0.988460\pi\)
\(62\) −758.979 131.144i −1.55468 0.268635i
\(63\) 117.495i 0.234967i
\(64\) −265.076 438.040i −0.517726 0.855547i
\(65\) −631.078 + 799.385i −1.20424 + 1.52541i
\(66\) 177.982 + 30.7535i 0.331940 + 0.0573561i
\(67\) 750.048 1.36766 0.683828 0.729643i \(-0.260314\pi\)
0.683828 + 0.729643i \(0.260314\pi\)
\(68\) 311.525 + 110.970i 0.555559 + 0.197899i
\(69\) 175.371i 0.305974i
\(70\) 790.614 + 136.611i 1.34995 + 0.233258i
\(71\) 455.788i 0.761861i −0.924604 0.380930i \(-0.875604\pi\)
0.924604 0.380930i \(-0.124396\pi\)
\(72\) −100.002 + 177.402i −0.163686 + 0.290376i
\(73\) 130.323i 0.208947i −0.994528 0.104473i \(-0.966684\pi\)
0.994528 0.104473i \(-0.0333157\pi\)
\(74\) −162.403 + 939.883i −0.255121 + 1.47648i
\(75\) 1041.40i 1.60334i
\(76\) 1109.93 + 395.375i 1.67523 + 0.596744i
\(77\) 277.890i 0.411280i
\(78\) −295.997 + 265.650i −0.429680 + 0.385627i
\(79\) 108.684 0.154784 0.0773918 0.997001i \(-0.475341\pi\)
0.0773918 + 0.997001i \(0.475341\pi\)
\(80\) −1077.46 879.173i −1.50579 1.22868i
\(81\) 81.0000 0.111111
\(82\) 330.634 + 57.1304i 0.445273 + 0.0769389i
\(83\) 201.602 0.266611 0.133306 0.991075i \(-0.457441\pi\)
0.133306 + 0.991075i \(0.457441\pi\)
\(84\) 295.153 + 105.138i 0.383378 + 0.136566i
\(85\) 898.206 1.14617
\(86\) 1126.81 + 194.701i 1.41287 + 0.244130i
\(87\) −541.698 −0.667542
\(88\) −236.518 + 419.580i −0.286511 + 0.508265i
\(89\) 1268.20i 1.51044i −0.655470 0.755221i \(-0.727529\pi\)
0.655470 0.755221i \(-0.272471\pi\)
\(90\) −94.1783 + 545.043i −0.110303 + 0.638363i
\(91\) 480.286 + 379.164i 0.553271 + 0.436782i
\(92\) −440.541 156.928i −0.499235 0.177835i
\(93\) −816.948 −0.910899
\(94\) −405.887 70.1333i −0.445362 0.0769543i
\(95\) 3200.21 3.45615
\(96\) −356.158 409.956i −0.378648 0.435843i
\(97\) 1421.15i 1.48759i −0.668410 0.743793i \(-0.733025\pi\)
0.668410 0.743793i \(-0.266975\pi\)
\(98\) −83.1066 + 480.968i −0.0856636 + 0.495766i
\(99\) 191.576 0.194486
\(100\) −2616.04 931.876i −2.61604 0.931876i
\(101\) 655.469i 0.645759i −0.946440 0.322879i \(-0.895349\pi\)
0.946440 0.322879i \(-0.104651\pi\)
\(102\) 345.638 + 59.7230i 0.335523 + 0.0579751i
\(103\) 464.213 0.444080 0.222040 0.975038i \(-0.428728\pi\)
0.222040 + 0.975038i \(0.428728\pi\)
\(104\) −402.458 981.271i −0.379464 0.925207i
\(105\) 850.999 0.790943
\(106\) 1141.87 + 197.304i 1.04630 + 0.180791i
\(107\) 283.880i 0.256484i 0.991743 + 0.128242i \(0.0409334\pi\)
−0.991743 + 0.128242i \(0.959067\pi\)
\(108\) −72.4814 + 203.476i −0.0645790 + 0.181291i
\(109\) −422.005 −0.370833 −0.185416 0.982660i \(-0.559363\pi\)
−0.185416 + 0.982660i \(0.559363\pi\)
\(110\) −222.744 + 1289.10i −0.193071 + 1.11737i
\(111\) 1011.67i 0.865075i
\(112\) −528.224 + 647.356i −0.445647 + 0.546156i
\(113\) −873.891 −0.727511 −0.363755 0.931495i \(-0.618506\pi\)
−0.363755 + 0.931495i \(0.618506\pi\)
\(114\) 1231.47 + 212.786i 1.01173 + 0.174818i
\(115\) −1270.19 −1.02996
\(116\) 484.729 1360.77i 0.387982 1.08918i
\(117\) −261.393 + 331.106i −0.206545 + 0.261630i
\(118\) 389.791 2255.86i 0.304095 1.75991i
\(119\) 539.660i 0.415719i
\(120\) −1284.90 724.303i −0.977458 0.550996i
\(121\) −877.899 −0.659578
\(122\) −96.2558 16.6321i −0.0714311 0.0123426i
\(123\) 355.887 0.260888
\(124\) 731.031 2052.21i 0.529424 1.48624i
\(125\) −4826.63 −3.45366
\(126\) 327.473 + 56.5841i 0.231536 + 0.0400073i
\(127\) −535.808 −0.374372 −0.187186 0.982324i \(-0.559937\pi\)
−0.187186 + 0.982324i \(0.559937\pi\)
\(128\) 1348.53 527.844i 0.931206 0.364494i
\(129\) 1212.87 0.827807
\(130\) −1924.07 2143.87i −1.29809 1.44638i
\(131\) 1795.81i 1.19772i 0.800855 + 0.598859i \(0.204379\pi\)
−0.800855 + 0.598859i \(0.795621\pi\)
\(132\) −171.428 + 481.247i −0.113037 + 0.317327i
\(133\) 1922.75i 1.25356i
\(134\) −361.215 + 2090.48i −0.232867 + 1.34769i
\(135\) 586.673i 0.374020i
\(136\) −459.315 + 814.818i −0.289603 + 0.513751i
\(137\) 818.868i 0.510662i 0.966854 + 0.255331i \(0.0821844\pi\)
−0.966854 + 0.255331i \(0.917816\pi\)
\(138\) −488.782 84.4568i −0.301506 0.0520974i
\(139\) 688.906i 0.420376i 0.977661 + 0.210188i \(0.0674076\pi\)
−0.977661 + 0.210188i \(0.932592\pi\)
\(140\) −761.502 + 2137.75i −0.459705 + 1.29052i
\(141\) −436.887 −0.260940
\(142\) 1270.34 + 219.502i 0.750736 + 0.129720i
\(143\) −618.228 + 783.108i −0.361530 + 0.457950i
\(144\) −446.283 364.154i −0.258265 0.210737i
\(145\) 3923.45i 2.24707i
\(146\) 363.226 + 62.7619i 0.205896 + 0.0355768i
\(147\) 517.703i 0.290472i
\(148\) −2541.36 905.274i −1.41148 0.502791i
\(149\) 1873.85 1.03028 0.515140 0.857106i \(-0.327740\pi\)
0.515140 + 0.857106i \(0.327740\pi\)
\(150\) −2902.51 501.525i −1.57992 0.272996i
\(151\) 2042.90i 1.10098i −0.834841 0.550492i \(-0.814440\pi\)
0.834841 0.550492i \(-0.185560\pi\)
\(152\) −1636.49 + 2903.10i −0.873268 + 1.54916i
\(153\) 372.037 0.196585
\(154\) 774.516 + 133.829i 0.405274 + 0.0700275i
\(155\) 5917.05i 3.06625i
\(156\) −597.851 952.915i −0.306836 0.489066i
\(157\) 416.042i 0.211489i 0.994393 + 0.105744i \(0.0337225\pi\)
−0.994393 + 0.105744i \(0.966277\pi\)
\(158\) −52.3409 + 302.916i −0.0263546 + 0.152523i
\(159\) 1229.08 0.613036
\(160\) 2969.26 2579.61i 1.46713 1.27460i
\(161\) 763.156i 0.373572i
\(162\) −39.0087 + 225.757i −0.0189186 + 0.109489i
\(163\) 1218.69 0.585615 0.292808 0.956171i \(-0.405410\pi\)
0.292808 + 0.956171i \(0.405410\pi\)
\(164\) −318.459 + 894.005i −0.151631 + 0.425671i
\(165\) 1387.56i 0.654674i
\(166\) −97.0894 + 561.891i −0.0453952 + 0.262718i
\(167\) 2020.62i 0.936287i −0.883653 0.468143i \(-0.844923\pi\)
0.883653 0.468143i \(-0.155077\pi\)
\(168\) −435.175 + 771.994i −0.199848 + 0.354528i
\(169\) −509.936 2137.00i −0.232106 0.972691i
\(170\) −432.566 + 2503.41i −0.195155 + 1.12943i
\(171\) 1325.53 0.592781
\(172\) −1085.31 + 3046.78i −0.481130 + 1.35067i
\(173\) 2227.75i 0.979031i 0.871995 + 0.489516i \(0.162826\pi\)
−0.871995 + 0.489516i \(0.837174\pi\)
\(174\) 260.876 1509.78i 0.113661 0.657794i
\(175\) 4531.81i 1.95756i
\(176\) −1055.52 861.271i −0.452060 0.368868i
\(177\) 2428.16i 1.03114i
\(178\) 3534.65 + 610.753i 1.48839 + 0.257179i
\(179\) 141.910i 0.0592560i −0.999561 0.0296280i \(-0.990568\pi\)
0.999561 0.0296280i \(-0.00943227\pi\)
\(180\) −1473.75 524.974i −0.610260 0.217385i
\(181\) 701.384i 0.288030i −0.989575 0.144015i \(-0.953999\pi\)
0.989575 0.144015i \(-0.0460014\pi\)
\(182\) −1288.08 + 1156.02i −0.524608 + 0.470822i
\(183\) −103.608 −0.0418519
\(184\) 649.537 1152.27i 0.260242 0.461665i
\(185\) −7327.39 −2.91200
\(186\) 393.433 2276.94i 0.155096 0.897598i
\(187\) 879.917 0.344096
\(188\) 390.941 1097.48i 0.151661 0.425756i
\(189\) 352.484 0.135659
\(190\) −1541.18 + 8919.38i −0.588469 + 3.40568i
\(191\) 2179.85 0.825803 0.412902 0.910776i \(-0.364515\pi\)
0.412902 + 0.910776i \(0.364515\pi\)
\(192\) 1314.12 795.227i 0.493950 0.298909i
\(193\) 3338.36i 1.24508i −0.782588 0.622540i \(-0.786101\pi\)
0.782588 0.622540i \(-0.213899\pi\)
\(194\) 3960.92 + 684.409i 1.46586 + 0.253287i
\(195\) −2398.16 1893.23i −0.880695 0.695268i
\(196\) −1300.49 463.257i −0.473941 0.168826i
\(197\) 2468.85 0.892885 0.446443 0.894812i \(-0.352691\pi\)
0.446443 + 0.894812i \(0.352691\pi\)
\(198\) −92.2606 + 533.945i −0.0331145 + 0.191646i
\(199\) −959.929 −0.341948 −0.170974 0.985276i \(-0.554691\pi\)
−0.170974 + 0.985276i \(0.554691\pi\)
\(200\) 3857.11 6842.46i 1.36370 2.41917i
\(201\) 2250.15i 0.789617i
\(202\) 1826.88 + 315.667i 0.636329 + 0.109952i
\(203\) −2357.28 −0.815020
\(204\) −332.911 + 934.576i −0.114257 + 0.320752i
\(205\) 2577.64i 0.878197i
\(206\) −223.560 + 1293.82i −0.0756123 + 0.437596i
\(207\) −526.114 −0.176654
\(208\) 2928.74 649.131i 0.976307 0.216390i
\(209\) 3135.04 1.03759
\(210\) −409.832 + 2371.84i −0.134672 + 0.779394i
\(211\) 821.620i 0.268070i −0.990977 0.134035i \(-0.957207\pi\)
0.990977 0.134035i \(-0.0427934\pi\)
\(212\) −1099.82 + 3087.52i −0.356303 + 1.00024i
\(213\) 1367.37 0.439861
\(214\) −791.211 136.714i −0.252739 0.0436708i
\(215\) 8784.65i 2.78655i
\(216\) −532.207 300.007i −0.167649 0.0945040i
\(217\) −3555.08 −1.11214
\(218\) 203.233 1176.18i 0.0631407 0.365418i
\(219\) 390.968 0.120635
\(220\) −3485.61 1241.63i −1.06818 0.380503i
\(221\) −1200.59 + 1520.79i −0.365432 + 0.462892i
\(222\) −2819.65 487.208i −0.852443 0.147294i
\(223\) 3360.91i 1.00925i −0.863338 0.504626i \(-0.831630\pi\)
0.863338 0.504626i \(-0.168370\pi\)
\(224\) −1549.88 1783.99i −0.462301 0.532132i
\(225\) −3124.19 −0.925687
\(226\) 420.856 2435.64i 0.123871 0.716888i
\(227\) 3682.56 1.07674 0.538371 0.842708i \(-0.319040\pi\)
0.538371 + 0.842708i \(0.319040\pi\)
\(228\) −1186.12 + 3329.79i −0.344531 + 0.967195i
\(229\) 4219.89 1.21772 0.608861 0.793277i \(-0.291627\pi\)
0.608861 + 0.793277i \(0.291627\pi\)
\(230\) 611.710 3540.18i 0.175369 1.01493i
\(231\) 833.671 0.237453
\(232\) 3559.20 + 2006.33i 1.00721 + 0.567768i
\(233\) 379.674 0.106752 0.0533761 0.998574i \(-0.483002\pi\)
0.0533761 + 0.998574i \(0.483002\pi\)
\(234\) −796.949 887.991i −0.222642 0.248076i
\(235\) 3164.32i 0.878372i
\(236\) 6099.65 + 2172.80i 1.68243 + 0.599309i
\(237\) 326.052i 0.0893643i
\(238\) 1504.10 + 259.894i 0.409648 + 0.0707833i
\(239\) 2710.64i 0.733626i 0.930295 + 0.366813i \(0.119551\pi\)
−0.930295 + 0.366813i \(0.880449\pi\)
\(240\) 2637.52 3232.37i 0.709379 0.869368i
\(241\) 4760.79i 1.27249i 0.771489 + 0.636243i \(0.219513\pi\)
−0.771489 + 0.636243i \(0.780487\pi\)
\(242\) 422.786 2446.81i 0.112305 0.649947i
\(243\) 243.000i 0.0641500i
\(244\) 92.7114 260.267i 0.0243248 0.0682865i
\(245\) −3749.66 −0.977783
\(246\) −171.391 + 991.902i −0.0444207 + 0.257079i
\(247\) −4277.57 + 5418.39i −1.10192 + 1.39580i
\(248\) 5367.72 + 3025.80i 1.37440 + 0.774752i
\(249\) 604.807i 0.153928i
\(250\) 2324.45 13452.4i 0.588045 3.40323i
\(251\) 2592.76i 0.652006i −0.945369 0.326003i \(-0.894298\pi\)
0.945369 0.326003i \(-0.105702\pi\)
\(252\) −315.414 + 885.458i −0.0788462 + 0.221344i
\(253\) −1244.33 −0.309210
\(254\) 258.039 1493.36i 0.0637434 0.368906i
\(255\) 2694.62i 0.661740i
\(256\) 821.732 + 4012.73i 0.200618 + 0.979669i
\(257\) 3934.89 0.955065 0.477533 0.878614i \(-0.341531\pi\)
0.477533 + 0.878614i \(0.341531\pi\)
\(258\) −584.104 + 3380.42i −0.140948 + 0.815719i
\(259\) 4402.44i 1.05619i
\(260\) 6901.84 4330.16i 1.64628 1.03286i
\(261\) 1625.09i 0.385405i
\(262\) −5005.16 864.844i −1.18023 0.203932i
\(263\) −457.722 −0.107317 −0.0536585 0.998559i \(-0.517088\pi\)
−0.0536585 + 0.998559i \(0.517088\pi\)
\(264\) −1258.74 709.555i −0.293447 0.165417i
\(265\) 8902.10i 2.06359i
\(266\) 5358.94 + 925.973i 1.23525 + 0.213440i
\(267\) 3804.61 0.872055
\(268\) −5652.47 2013.50i −1.28836 0.458934i
\(269\) 1601.26i 0.362940i −0.983397 0.181470i \(-0.941915\pi\)
0.983397 0.181470i \(-0.0580855\pi\)
\(270\) −1635.13 282.535i −0.368559 0.0636834i
\(271\) 2202.46i 0.493691i 0.969055 + 0.246845i \(0.0793940\pi\)
−0.969055 + 0.246845i \(0.920606\pi\)
\(272\) −2049.80 1672.58i −0.456939 0.372849i
\(273\) −1137.49 + 1440.86i −0.252176 + 0.319431i
\(274\) −2282.29 394.358i −0.503205 0.0869490i
\(275\) −7389.13 −1.62030
\(276\) 470.784 1321.62i 0.102673 0.288233i
\(277\) 4581.89i 0.993860i 0.867791 + 0.496930i \(0.165540\pi\)
−0.867791 + 0.496930i \(0.834460\pi\)
\(278\) −1920.07 331.769i −0.414238 0.0715763i
\(279\) 2450.84i 0.525908i
\(280\) −5591.45 3151.92i −1.19340 0.672725i
\(281\) 7994.12i 1.69711i −0.529103 0.848557i \(-0.677472\pi\)
0.529103 0.848557i \(-0.322528\pi\)
\(282\) 210.400 1217.66i 0.0444296 0.257130i
\(283\) 7605.59i 1.59755i 0.601632 + 0.798773i \(0.294517\pi\)
−0.601632 + 0.798773i \(0.705483\pi\)
\(284\) −1223.56 + 3434.89i −0.255652 + 0.717687i
\(285\) 9600.62i 1.99541i
\(286\) −1884.89 2100.21i −0.389706 0.434225i
\(287\) 1548.70 0.318525
\(288\) 1229.87 1068.47i 0.251634 0.218613i
\(289\) −3204.21 −0.652190
\(290\) 10935.2 + 1889.49i 2.21426 + 0.382602i
\(291\) 4263.45 0.858858
\(292\) −349.851 + 982.130i −0.0701146 + 0.196832i
\(293\) −1970.45 −0.392883 −0.196442 0.980516i \(-0.562939\pi\)
−0.196442 + 0.980516i \(0.562939\pi\)
\(294\) −1442.90 249.320i −0.286231 0.0494579i
\(295\) 17586.8 3.47100
\(296\) 3747.00 6647.12i 0.735777 1.30526i
\(297\) 574.727i 0.112286i
\(298\) −902.424 + 5222.65i −0.175423 + 1.01523i
\(299\) 1697.81 2150.61i 0.328383 0.415963i
\(300\) 2795.63 7848.13i 0.538019 1.51037i
\(301\) 5277.99 1.01069
\(302\) 5693.81 + 983.835i 1.08491 + 0.187461i
\(303\) 1966.41 0.372829
\(304\) −7303.20 5959.20i −1.37785 1.12429i
\(305\) 750.416i 0.140881i
\(306\) −179.169 + 1036.92i −0.0334719 + 0.193714i
\(307\) −4874.65 −0.906224 −0.453112 0.891453i \(-0.649686\pi\)
−0.453112 + 0.891453i \(0.649686\pi\)
\(308\) −745.996 + 2094.22i −0.138010 + 0.387433i
\(309\) 1392.64i 0.256390i
\(310\) 16491.6 + 2849.58i 3.02148 + 0.522082i
\(311\) −6585.69 −1.20077 −0.600386 0.799710i \(-0.704986\pi\)
−0.600386 + 0.799710i \(0.704986\pi\)
\(312\) 2943.81 1207.37i 0.534168 0.219083i
\(313\) −1307.67 −0.236147 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(314\) −1159.56 200.361i −0.208401 0.0360096i
\(315\) 2553.00i 0.456651i
\(316\) −819.058 291.762i −0.145809 0.0519395i
\(317\) −5262.79 −0.932454 −0.466227 0.884665i \(-0.654387\pi\)
−0.466227 + 0.884665i \(0.654387\pi\)
\(318\) −591.913 + 3425.61i −0.104380 + 0.604084i
\(319\) 3843.56i 0.674602i
\(320\) 5759.73 + 9518.00i 1.00618 + 1.66273i
\(321\) −851.641 −0.148081
\(322\) −2127.01 367.527i −0.368117 0.0636071i
\(323\) 6088.22 1.04878
\(324\) −610.428 217.444i −0.104669 0.0372847i
\(325\) 10082.0 12770.8i 1.72076 2.17969i
\(326\) −586.908 + 3396.65i −0.0997112 + 0.577064i
\(327\) 1266.02i 0.214100i
\(328\) −2338.34 1318.13i −0.393638 0.221895i
\(329\) −1901.18 −0.318589
\(330\) −3867.30 668.232i −0.645114 0.111470i
\(331\) 189.140 0.0314080 0.0157040 0.999877i \(-0.495001\pi\)
0.0157040 + 0.999877i \(0.495001\pi\)
\(332\) −1519.30 541.201i −0.251153 0.0894646i
\(333\) −3035.01 −0.499451
\(334\) 5631.71 + 973.105i 0.922615 + 0.159419i
\(335\) −16297.5 −2.65799
\(336\) −1942.07 1584.67i −0.315323 0.257294i
\(337\) −8991.25 −1.45337 −0.726683 0.686973i \(-0.758939\pi\)
−0.726683 + 0.686973i \(0.758939\pi\)
\(338\) 6201.67 392.101i 0.998007 0.0630991i
\(339\) 2621.67i 0.420029i
\(340\) −6769.01 2411.23i −1.07971 0.384610i
\(341\) 5796.57i 0.920533i
\(342\) −638.358 + 3694.41i −0.100931 + 0.584125i
\(343\) 6730.72i 1.05955i
\(344\) −7969.09 4492.20i −1.24903 0.704079i
\(345\) 3810.57i 0.594650i
\(346\) −6209.01 1072.86i −0.964735 0.166697i
\(347\) 1000.54i 0.154788i −0.997001 0.0773942i \(-0.975340\pi\)
0.997001 0.0773942i \(-0.0246600\pi\)
\(348\) 4082.32 + 1454.19i 0.628836 + 0.224002i
\(349\) 619.676 0.0950444 0.0475222 0.998870i \(-0.484868\pi\)
0.0475222 + 0.998870i \(0.484868\pi\)
\(350\) −12630.7 2182.47i −1.92897 0.333308i
\(351\) −993.317 784.178i −0.151052 0.119249i
\(352\) 2908.80 2527.08i 0.440453 0.382653i
\(353\) 1894.83i 0.285698i 0.989744 + 0.142849i \(0.0456263\pi\)
−0.989744 + 0.142849i \(0.954374\pi\)
\(354\) 6767.59 + 1169.37i 1.01608 + 0.175569i
\(355\) 9903.65i 1.48065i
\(356\) −3404.49 + 9557.37i −0.506847 + 1.42286i
\(357\) 1618.98 0.240015
\(358\) 395.520 + 68.3421i 0.0583908 + 0.0100894i
\(359\) 7682.08i 1.12937i 0.825306 + 0.564686i \(0.191003\pi\)
−0.825306 + 0.564686i \(0.808997\pi\)
\(360\) 2172.91 3854.71i 0.318118 0.564336i
\(361\) 14832.6 2.16250
\(362\) 1954.85 + 337.779i 0.283824 + 0.0490421i
\(363\) 2633.70i 0.380808i
\(364\) −2601.64 4146.76i −0.374624 0.597113i
\(365\) 2831.73i 0.406081i
\(366\) 49.8962 288.767i 0.00712601 0.0412407i
\(367\) 4776.32 0.679351 0.339676 0.940543i \(-0.389683\pi\)
0.339676 + 0.940543i \(0.389683\pi\)
\(368\) 2898.71 + 2365.26i 0.410613 + 0.335048i
\(369\) 1067.66i 0.150624i
\(370\) 3528.79 20422.3i 0.495818 2.86948i
\(371\) 5348.55 0.748472
\(372\) 6156.64 + 2193.09i 0.858083 + 0.305663i
\(373\) 10048.1i 1.39482i −0.716671 0.697412i \(-0.754335\pi\)
0.716671 0.697412i \(-0.245665\pi\)
\(374\) −423.758 + 2452.44i −0.0585883 + 0.339071i
\(375\) 14479.9i 1.99397i
\(376\) 2870.55 + 1618.14i 0.393716 + 0.221939i
\(377\) 6642.94 + 5244.29i 0.907503 + 0.716432i
\(378\) −169.752 + 982.418i −0.0230982 + 0.133678i
\(379\) −5194.68 −0.704044 −0.352022 0.935992i \(-0.614506\pi\)
−0.352022 + 0.935992i \(0.614506\pi\)
\(380\) −24117.2 8590.94i −3.25576 1.15975i
\(381\) 1607.42i 0.216144i
\(382\) −1049.79 + 6075.52i −0.140607 + 0.813745i
\(383\) 1411.54i 0.188319i −0.995557 0.0941594i \(-0.969984\pi\)
0.995557 0.0941594i \(-0.0300163\pi\)
\(384\) 1583.53 + 4045.59i 0.210441 + 0.537632i
\(385\) 6038.17i 0.799309i
\(386\) 9304.43 + 1607.72i 1.22690 + 0.211996i
\(387\) 3638.60i 0.477935i
\(388\) −3815.07 + 10710.0i −0.499177 + 1.40133i
\(389\) 14787.7i 1.92742i −0.266947 0.963711i \(-0.586015\pi\)
0.266947 0.963711i \(-0.413985\pi\)
\(390\) 6431.60 5772.20i 0.835069 0.749453i
\(391\) −2416.47 −0.312548
\(392\) 1917.46 3401.54i 0.247057 0.438275i
\(393\) −5387.44 −0.691503
\(394\) −1188.97 + 6881.00i −0.152029 + 0.879847i
\(395\) −2361.55 −0.300817
\(396\) −1443.74 514.284i −0.183209 0.0652620i
\(397\) −10111.9 −1.27834 −0.639172 0.769064i \(-0.720723\pi\)
−0.639172 + 0.769064i \(0.720723\pi\)
\(398\) 462.291 2675.44i 0.0582225 0.336954i
\(399\) 5768.24 0.723742
\(400\) 17213.3 + 14045.5i 2.15166 + 1.75569i
\(401\) 7313.73i 0.910799i −0.890287 0.455400i \(-0.849496\pi\)
0.890287 0.455400i \(-0.150504\pi\)
\(402\) −6271.44 1083.64i −0.778087 0.134446i
\(403\) 10018.4 + 7909.04i 1.23834 + 0.977612i
\(404\) −1759.60 + 4939.71i −0.216692 + 0.608316i
\(405\) −1760.02 −0.215941
\(406\) 1135.24 6570.05i 0.138771 0.803119i
\(407\) −7178.19 −0.874225
\(408\) −2444.46 1377.95i −0.296614 0.167202i
\(409\) 13472.1i 1.62873i −0.580352 0.814366i \(-0.697085\pi\)
0.580352 0.814366i \(-0.302915\pi\)
\(410\) −7184.22 1241.36i −0.865373 0.149528i
\(411\) −2456.60 −0.294831
\(412\) −3498.38 1246.18i −0.418332 0.149016i
\(413\) 10566.5i 1.25895i
\(414\) 253.370 1466.35i 0.0300784 0.174075i
\(415\) −4380.54 −0.518150
\(416\) 398.761 + 8475.39i 0.0469972 + 0.998895i
\(417\) −2066.72 −0.242704
\(418\) −1509.80 + 8737.76i −0.176667 + 1.02244i
\(419\) 5187.31i 0.604813i −0.953179 0.302406i \(-0.902210\pi\)
0.953179 0.302406i \(-0.0977900\pi\)
\(420\) −6413.25 2284.51i −0.745083 0.265411i
\(421\) 7353.20 0.851243 0.425621 0.904901i \(-0.360056\pi\)
0.425621 + 0.904901i \(0.360056\pi\)
\(422\) 2289.96 + 395.683i 0.264155 + 0.0456435i
\(423\) 1310.66i 0.150654i
\(424\) −8075.64 4552.26i −0.924971 0.521409i
\(425\) −14349.6 −1.63778
\(426\) −658.507 + 3811.02i −0.0748939 + 0.433438i
\(427\) −450.865 −0.0510981
\(428\) 762.076 2139.36i 0.0860662 0.241612i
\(429\) −2349.32 1854.68i −0.264397 0.208729i
\(430\) −24483.9 4230.59i −2.74586 0.474458i
\(431\) 2116.23i 0.236508i 0.992983 + 0.118254i \(0.0377298\pi\)
−0.992983 + 0.118254i \(0.962270\pi\)
\(432\) 1092.46 1338.85i 0.121669 0.149110i
\(433\) 828.728 0.0919772 0.0459886 0.998942i \(-0.485356\pi\)
0.0459886 + 0.998942i \(0.485356\pi\)
\(434\) 1712.09 9908.45i 0.189361 1.09590i
\(435\) 11770.3 1.29735
\(436\) 3180.29 + 1132.87i 0.349331 + 0.124437i
\(437\) −8609.60 −0.942456
\(438\) −188.286 + 1089.68i −0.0205403 + 0.118874i
\(439\) −1702.92 −0.185139 −0.0925694 0.995706i \(-0.529508\pi\)
−0.0925694 + 0.995706i \(0.529508\pi\)
\(440\) 5139.21 9116.88i 0.556824 0.987796i
\(441\) −1553.11 −0.167704
\(442\) −3660.43 4078.59i −0.393912 0.438911i
\(443\) 10502.3i 1.12637i 0.826332 + 0.563184i \(0.190424\pi\)
−0.826332 + 0.563184i \(0.809576\pi\)
\(444\) 2715.82 7624.08i 0.290286 0.814916i
\(445\) 27556.3i 2.93549i
\(446\) 9367.29 + 1618.58i 0.994516 + 0.171843i
\(447\) 5621.54i 0.594832i
\(448\) 5718.60 3460.56i 0.603077 0.364946i
\(449\) 5700.06i 0.599114i 0.954078 + 0.299557i \(0.0968389\pi\)
−0.954078 + 0.299557i \(0.903161\pi\)
\(450\) 1504.58 8707.52i 0.157614 0.912170i
\(451\) 2525.16i 0.263647i
\(452\) 6585.77 + 2345.96i 0.685328 + 0.244125i
\(453\) 6128.69 0.635653
\(454\) −1773.48 + 10263.8i −0.183334 + 1.06102i
\(455\) −10436.0 8238.70i −1.07526 0.848871i
\(456\) −8709.31 4909.46i −0.894410 0.504181i
\(457\) 7723.44i 0.790563i 0.918560 + 0.395281i \(0.129353\pi\)
−0.918560 + 0.395281i \(0.870647\pi\)
\(458\) −2032.25 + 11761.4i −0.207338 + 1.19994i
\(459\) 1116.11i 0.113498i
\(460\) 9572.35 + 3409.82i 0.970246 + 0.345617i
\(461\) 5681.04 0.573953 0.286976 0.957938i \(-0.407350\pi\)
0.286976 + 0.957938i \(0.407350\pi\)
\(462\) −401.487 + 2323.55i −0.0404304 + 0.233985i
\(463\) 8410.25i 0.844185i −0.906553 0.422092i \(-0.861296\pi\)
0.906553 0.422092i \(-0.138704\pi\)
\(464\) −7305.98 + 8953.72i −0.730973 + 0.895832i
\(465\) 17751.2 1.77030
\(466\) −182.847 + 1058.20i −0.0181764 + 0.105193i
\(467\) 15102.6i 1.49650i −0.663416 0.748251i \(-0.730894\pi\)
0.663416 0.748251i \(-0.269106\pi\)
\(468\) 2858.74 1793.55i 0.282362 0.177152i
\(469\) 9791.86i 0.964064i
\(470\) 8819.36 + 1523.90i 0.865546 + 0.149558i
\(471\) −1248.13 −0.122103
\(472\) −8993.38 + 15954.1i −0.877021 + 1.55582i
\(473\) 8605.78i 0.836562i
\(474\) −908.748 157.023i −0.0880594 0.0152158i
\(475\) −51125.9 −4.93857
\(476\) −1448.72 + 4066.96i −0.139499 + 0.391615i
\(477\) 3687.25i 0.353936i
\(478\) −7554.89 1305.41i −0.722913 0.124912i
\(479\) 6424.97i 0.612869i −0.951892 0.306435i \(-0.900864\pi\)
0.951892 0.306435i \(-0.0991361\pi\)
\(480\) 7738.82 + 8907.77i 0.735890 + 0.847046i
\(481\) 9794.17 12406.3i 0.928432 1.17604i
\(482\) −13268.9 2292.74i −1.25391 0.216663i
\(483\) −2289.47 −0.215682
\(484\) 6615.97 + 2356.72i 0.621335 + 0.221329i
\(485\) 30879.6i 2.89107i
\(486\) −677.272 117.026i −0.0632133 0.0109227i
\(487\) 9662.31i 0.899058i −0.893266 0.449529i \(-0.851592\pi\)
0.893266 0.449529i \(-0.148408\pi\)
\(488\) 680.749 + 383.740i 0.0631477 + 0.0355965i
\(489\) 3656.08i 0.338105i
\(490\) 1805.79 10450.8i 0.166484 0.963505i
\(491\) 4536.18i 0.416934i −0.978029 0.208467i \(-0.933153\pi\)
0.978029 0.208467i \(-0.0668474\pi\)
\(492\) −2682.02 955.377i −0.245761 0.0875442i
\(493\) 7464.15i 0.681883i
\(494\) −13041.7 14531.5i −1.18780 1.32349i
\(495\) −4162.67 −0.377976
\(496\) −11018.3 + 13503.3i −0.997454 + 1.22241i
\(497\) 5950.30 0.537037
\(498\) −1685.67 291.268i −0.151680 0.0262089i
\(499\) −9717.54 −0.871778 −0.435889 0.900001i \(-0.643566\pi\)
−0.435889 + 0.900001i \(0.643566\pi\)
\(500\) 36374.2 + 12957.1i 3.25341 + 1.15892i
\(501\) 6061.85 0.540565
\(502\) 7226.35 + 1248.64i 0.642485 + 0.111015i
\(503\) 19916.9 1.76550 0.882752 0.469839i \(-0.155688\pi\)
0.882752 + 0.469839i \(0.155688\pi\)
\(504\) −2315.98 1305.53i −0.204687 0.115382i
\(505\) 14242.4i 1.25501i
\(506\) 599.254 3468.10i 0.0526484 0.304695i
\(507\) 6411.00 1529.81i 0.561583 0.134006i
\(508\) 4037.93 + 1438.38i 0.352666 + 0.125625i
\(509\) −13960.8 −1.21572 −0.607862 0.794043i \(-0.707972\pi\)
−0.607862 + 0.794043i \(0.707972\pi\)
\(510\) −7510.24 1297.70i −0.652077 0.112673i
\(511\) 1701.36 0.147287
\(512\) −11579.7 + 357.788i −0.999523 + 0.0308831i
\(513\) 3976.58i 0.342242i
\(514\) −1895.00 + 10967.0i −0.162616 + 0.941119i
\(515\) −10086.7 −0.863055
\(516\) −9140.35 3255.94i −0.779809 0.277781i
\(517\) 3099.89i 0.263700i
\(518\) −12270.1 2120.16i −1.04077 0.179835i
\(519\) −6683.24 −0.565244
\(520\) 8744.84 + 21321.6i 0.737475 + 1.79811i
\(521\) 17146.9 1.44188 0.720941 0.692997i \(-0.243710\pi\)
0.720941 + 0.692997i \(0.243710\pi\)
\(522\) 4529.34 + 782.627i 0.379778 + 0.0656219i
\(523\) 1202.54i 0.100542i −0.998736 0.0502711i \(-0.983991\pi\)
0.998736 0.0502711i \(-0.0160085\pi\)
\(524\) 4820.86 13533.5i 0.401909 1.12827i
\(525\) −13595.4 −1.13020
\(526\) 220.434 1275.73i 0.0182726 0.105750i
\(527\) 11256.9i 0.930468i
\(528\) 2583.81 3166.55i 0.212966 0.260997i
\(529\) −8749.77 −0.719139
\(530\) −24811.3 4287.15i −2.03346 0.351362i
\(531\) 7284.48 0.595328
\(532\) −5161.60 + 14490.1i −0.420647 + 1.18087i
\(533\) −4364.30 3445.41i −0.354670 0.279995i
\(534\) −1832.26 + 10603.9i −0.148482 + 0.859321i
\(535\) 6168.33i 0.498467i
\(536\) 8334.05 14784.5i 0.671598 1.19140i
\(537\) 425.729 0.0342115
\(538\) 4462.92 + 771.150i 0.357640 + 0.0617967i
\(539\) −3673.31 −0.293545
\(540\) 1574.92 4421.25i 0.125507 0.352334i
\(541\) 3911.67 0.310861 0.155430 0.987847i \(-0.450324\pi\)
0.155430 + 0.987847i \(0.450324\pi\)
\(542\) −6138.55 1060.68i −0.486482 0.0840594i
\(543\) 2104.15 0.166294
\(544\) 5648.85 4907.56i 0.445206 0.386783i
\(545\) 9169.59 0.720701
\(546\) −3468.05 3864.23i −0.271829 0.302883i
\(547\) 2123.59i 0.165993i −0.996550 0.0829966i \(-0.973551\pi\)
0.996550 0.0829966i \(-0.0264491\pi\)
\(548\) 2198.25 6171.11i 0.171359 0.481052i
\(549\) 310.823i 0.0241632i
\(550\) 3558.52 20594.4i 0.275883 1.59664i
\(551\) 26593.9i 2.05615i
\(552\) 3456.81 + 1948.61i 0.266542 + 0.150251i
\(553\) 1418.87i 0.109107i
\(554\) −12770.3 2206.59i −0.979348 0.169222i
\(555\) 21982.2i 1.68124i
\(556\) 1849.37 5191.70i 0.141062 0.396002i
\(557\) 11396.8 0.866960 0.433480 0.901163i \(-0.357285\pi\)
0.433480 + 0.901163i \(0.357285\pi\)
\(558\) 6830.81 + 1180.30i 0.518228 + 0.0895449i
\(559\) −14873.6 11742.0i −1.12538 0.888434i
\(560\) 11477.6 14066.2i 0.866100 1.06144i
\(561\) 2639.75i 0.198664i
\(562\) 22280.6 + 3849.88i 1.67233 + 0.288963i
\(563\) 22958.8i 1.71865i −0.511432 0.859324i \(-0.670885\pi\)
0.511432 0.859324i \(-0.329115\pi\)
\(564\) 3292.45 + 1172.82i 0.245810 + 0.0875616i
\(565\) 18988.4 1.41389
\(566\) −21197.8 3662.77i −1.57422 0.272010i
\(567\) 1057.45i 0.0783225i
\(568\) −8984.21 5064.42i −0.663678 0.374117i
\(569\) 1997.33 0.147157 0.0735786 0.997289i \(-0.476558\pi\)
0.0735786 + 0.997289i \(0.476558\pi\)
\(570\) −26758.1 4623.55i −1.96627 0.339753i
\(571\) 1360.30i 0.0996963i −0.998757 0.0498482i \(-0.984126\pi\)
0.998757 0.0498482i \(-0.0158737\pi\)
\(572\) 6761.30 4241.99i 0.494238 0.310081i
\(573\) 6539.55i 0.476778i
\(574\) −745.835 + 4316.42i −0.0542344 + 0.313874i
\(575\) 20292.4 1.47174
\(576\) 2385.68 + 3942.36i 0.172575 + 0.285182i
\(577\) 12943.8i 0.933892i −0.884286 0.466946i \(-0.845354\pi\)
0.884286 0.466946i \(-0.154646\pi\)
\(578\) 1543.11 8930.54i 0.111047 0.642667i
\(579\) 10015.1 0.718847
\(580\) −10532.5 + 29567.7i −0.754031 + 2.11678i
\(581\) 2631.91i 0.187935i
\(582\) −2053.23 + 11882.8i −0.146235 + 0.846317i
\(583\) 8720.83i 0.619520i
\(584\) −2568.84 1448.06i −0.182019 0.102605i
\(585\) 5679.70 7194.47i 0.401413 0.508469i
\(586\) 948.945 5491.88i 0.0668951 0.387146i
\(587\) 21749.2 1.52928 0.764638 0.644459i \(-0.222918\pi\)
0.764638 + 0.644459i \(0.222918\pi\)
\(588\) 1389.77 3901.48i 0.0974715 0.273630i
\(589\) 40106.9i 2.80573i
\(590\) −8469.62 + 49016.8i −0.590998 + 3.42032i
\(591\) 7406.55i 0.515507i
\(592\) 16721.9 + 13644.5i 1.16092 + 0.947276i
\(593\) 11525.0i 0.798102i 0.916929 + 0.399051i \(0.130660\pi\)
−0.916929 + 0.399051i \(0.869340\pi\)
\(594\) −1601.84 276.782i −0.110647 0.0191187i
\(595\) 11726.1i 0.807936i
\(596\) −14121.6 5030.34i −0.970542 0.345723i
\(597\) 2879.79i 0.197424i
\(598\) 5176.37 + 5767.71i 0.353976 + 0.394413i
\(599\) 3056.30 0.208476 0.104238 0.994552i \(-0.466760\pi\)
0.104238 + 0.994552i \(0.466760\pi\)
\(600\) 20527.4 + 11571.3i 1.39671 + 0.787330i
\(601\) −19514.8 −1.32450 −0.662251 0.749282i \(-0.730399\pi\)
−0.662251 + 0.749282i \(0.730399\pi\)
\(602\) −2541.82 + 14710.4i −0.172088 + 0.995933i
\(603\) −6750.44 −0.455886
\(604\) −5484.15 + 15395.6i −0.369448 + 1.03715i
\(605\) 19075.5 1.28187
\(606\) −947.000 + 5480.63i −0.0634806 + 0.367385i
\(607\) −7121.66 −0.476210 −0.238105 0.971239i \(-0.576526\pi\)
−0.238105 + 0.971239i \(0.576526\pi\)
\(608\) 20126.2 17485.1i 1.34247 1.16630i
\(609\) 7071.85i 0.470552i
\(610\) 2091.51 + 361.392i 0.138824 + 0.0239874i
\(611\) 5357.62 + 4229.60i 0.354740 + 0.280051i
\(612\) −2803.73 998.733i −0.185186 0.0659663i
\(613\) 13806.8 0.909709 0.454855 0.890566i \(-0.349691\pi\)
0.454855 + 0.890566i \(0.349691\pi\)
\(614\) 2347.58 13586.3i 0.154300 0.892992i
\(615\) −7732.93 −0.507027
\(616\) −5477.60 3087.74i −0.358277 0.201962i
\(617\) 8301.27i 0.541648i −0.962629 0.270824i \(-0.912704\pi\)
0.962629 0.270824i \(-0.0872961\pi\)
\(618\) −3881.46 670.679i −0.252646 0.0436548i
\(619\) 23396.1 1.51917 0.759587 0.650406i \(-0.225401\pi\)
0.759587 + 0.650406i \(0.225401\pi\)
\(620\) −15884.3 + 44591.7i −1.02892 + 2.88846i
\(621\) 1578.34i 0.101991i
\(622\) 3171.59 18355.1i 0.204452 1.18324i
\(623\) 16556.4 1.06471
\(624\) 1947.39 + 8786.23i 0.124933 + 0.563671i
\(625\) 61484.5 3.93501
\(626\) 629.761 3644.65i 0.0402082 0.232699i
\(627\) 9405.13i 0.599051i
\(628\) 1116.86 3135.35i 0.0709676 0.199226i
\(629\) −13940.0 −0.883660
\(630\) −7115.53 1229.49i −0.449983 0.0777528i
\(631\) 22309.5i 1.40749i 0.710451 + 0.703747i \(0.248491\pi\)
−0.710451 + 0.703747i \(0.751509\pi\)
\(632\) 1207.63 2142.31i 0.0760075 0.134836i
\(633\) 2464.86 0.154770
\(634\) 2534.50 14668.1i 0.158766 0.918839i
\(635\) 11642.4 0.727580
\(636\) −9262.55 3299.47i −0.577491 0.205712i
\(637\) 5011.99 6348.68i 0.311746 0.394888i
\(638\) 10712.5 + 1851.02i 0.664752 + 0.114863i
\(639\) 4102.10i 0.253954i
\(640\) −29301.7 + 11469.3i −1.80977 + 0.708383i
\(641\) 11515.3 0.709559 0.354780 0.934950i \(-0.384556\pi\)
0.354780 + 0.934950i \(0.384556\pi\)
\(642\) 410.141 2373.63i 0.0252133 0.145919i
\(643\) −20112.3 −1.23351 −0.616757 0.787153i \(-0.711554\pi\)
−0.616757 + 0.787153i \(0.711554\pi\)
\(644\) 2048.69 5751.25i 0.125357 0.351912i
\(645\) −26353.9 −1.60881
\(646\) −2932.02 + 16968.6i −0.178574 + 1.03347i
\(647\) −15844.9 −0.962794 −0.481397 0.876503i \(-0.659870\pi\)
−0.481397 + 0.876503i \(0.659870\pi\)
\(648\) 900.020 1596.62i 0.0545619 0.0967919i
\(649\) 17228.7 1.04205
\(650\) 30738.6 + 34250.1i 1.85487 + 2.06677i
\(651\) 10665.2i 0.642095i
\(652\) −9184.24 3271.57i −0.551660 0.196510i
\(653\) 26540.8i 1.59054i 0.606257 + 0.795269i \(0.292670\pi\)
−0.606257 + 0.795269i \(0.707330\pi\)
\(654\) 3528.54 + 609.699i 0.210974 + 0.0364543i
\(655\) 39020.6i 2.32772i
\(656\) 4799.91 5882.45i 0.285678 0.350108i
\(657\) 1172.90i 0.0696489i
\(658\) 915.589 5298.84i 0.0542452 0.313937i
\(659\) 13346.4i 0.788926i 0.918912 + 0.394463i \(0.129069\pi\)
−0.918912 + 0.394463i \(0.870931\pi\)
\(660\) 3724.89 10456.8i 0.219684 0.616715i
\(661\) 937.788 0.0551826 0.0275913 0.999619i \(-0.491216\pi\)
0.0275913 + 0.999619i \(0.491216\pi\)
\(662\) −91.0876 + 527.156i −0.00534776 + 0.0309494i
\(663\) −4562.36 3601.77i −0.267251 0.210982i
\(664\) 2240.07 3973.86i 0.130921 0.232252i
\(665\) 41778.6i 2.43625i
\(666\) 1461.62 8458.94i 0.0850402 0.492158i
\(667\) 10555.4i 0.612752i
\(668\) −5424.33 + 15227.6i −0.314182 + 0.881999i
\(669\) 10082.7 0.582692
\(670\) 7848.70 45423.2i 0.452570 2.61918i
\(671\) 735.136i 0.0422945i
\(672\) 5351.96 4649.63i 0.307227 0.266910i
\(673\) −3267.28 −0.187139 −0.0935693 0.995613i \(-0.529828\pi\)
−0.0935693 + 0.995613i \(0.529828\pi\)
\(674\) 4330.08 25059.7i 0.247461 1.43214i
\(675\) 9372.58i 0.534446i
\(676\) −1893.82 + 17473.7i −0.107750 + 0.994178i
\(677\) 20225.8i 1.14821i −0.818780 0.574107i \(-0.805349\pi\)
0.818780 0.574107i \(-0.194651\pi\)
\(678\) 7306.93 + 1262.57i 0.413895 + 0.0715171i
\(679\) 18553.1 1.04860
\(680\) 9980.29 17704.9i 0.562833 0.998457i
\(681\) 11047.7i 0.621657i
\(682\) 16155.8 + 2791.56i 0.907091 + 0.156737i
\(683\) 4942.54 0.276897 0.138449 0.990370i \(-0.455788\pi\)
0.138449 + 0.990370i \(0.455788\pi\)
\(684\) −9989.36 3558.37i −0.558410 0.198915i
\(685\) 17792.9i 0.992454i
\(686\) −18759.4 3241.44i −1.04408 0.180406i
\(687\) 12659.7i 0.703052i
\(688\) 16358.2 20047.5i 0.906467 1.11091i
\(689\) −15072.5 11899.0i −0.833404 0.657934i
\(690\) 10620.6 + 1835.13i 0.585967 + 0.101250i
\(691\) 5672.16 0.312271 0.156135 0.987736i \(-0.450096\pi\)
0.156135 + 0.987736i \(0.450096\pi\)
\(692\) 5980.38 16788.6i 0.328526 0.922265i
\(693\) 2501.01i 0.137093i
\(694\) 2788.62 + 481.846i 0.152528 + 0.0263554i
\(695\) 14969.0i 0.816986i
\(696\) −6019.00 + 10677.6i −0.327801 + 0.581514i
\(697\) 4903.82i 0.266493i
\(698\) −298.429 + 1727.12i −0.0161830 + 0.0936566i
\(699\) 1139.02i 0.0616334i
\(700\) 12165.6 34152.4i 0.656882 1.84405i
\(701\) 14703.7i 0.792226i −0.918202 0.396113i \(-0.870359\pi\)
0.918202 0.396113i \(-0.129641\pi\)
\(702\) 2663.97 2390.85i 0.143227 0.128542i
\(703\) −49666.4 −2.66459
\(704\) 5642.45 + 9324.19i 0.302071 + 0.499174i
\(705\) 9492.96 0.507128
\(706\) −5281.12 912.527i −0.281526 0.0486450i
\(707\) 8557.13 0.455197
\(708\) −6518.39 + 18299.0i −0.346011 + 0.971352i
\(709\) −35465.0 −1.87858 −0.939291 0.343122i \(-0.888516\pi\)
−0.939291 + 0.343122i \(0.888516\pi\)
\(710\) −27602.7 4769.48i −1.45903 0.252106i
\(711\) −978.155 −0.0515945
\(712\) −24998.0 14091.5i −1.31579 0.741714i
\(713\) 15918.8i 0.836134i
\(714\) −779.682 + 4512.30i −0.0408668 + 0.236511i
\(715\) 13433.2 17015.9i 0.702621 0.890010i
\(716\) −380.956 + 1069.45i −0.0198841 + 0.0558202i
\(717\) −8131.91 −0.423559
\(718\) −21410.9 3699.60i −1.11288 0.192295i
\(719\) 31867.9 1.65295 0.826476 0.562971i \(-0.190342\pi\)
0.826476 + 0.562971i \(0.190342\pi\)
\(720\) 9697.10 + 7912.55i 0.501930 + 0.409560i
\(721\) 6060.29i 0.313033i
\(722\) −7143.22 + 41340.4i −0.368204 + 2.13093i
\(723\) −14282.4 −0.734670
\(724\) −1882.86 + 5285.73i −0.0966521 + 0.271330i
\(725\) 62680.4i 3.21088i
\(726\) 7340.44 + 1268.36i 0.375247 + 0.0648391i
\(727\) 16752.6 0.854633 0.427317 0.904102i \(-0.359459\pi\)
0.427317 + 0.904102i \(0.359459\pi\)
\(728\) 12810.5 5254.07i 0.652180 0.267485i
\(729\) −729.000 −0.0370370
\(730\) −7892.39 1363.73i −0.400151 0.0691423i
\(731\) 16712.3i 0.845591i
\(732\) 780.802 + 278.134i 0.0394252 + 0.0140439i
\(733\) 7015.46 0.353509 0.176754 0.984255i \(-0.443440\pi\)
0.176754 + 0.984255i \(0.443440\pi\)
\(734\) −2300.22 + 13312.2i −0.115671 + 0.669431i
\(735\) 11249.0i 0.564523i
\(736\) −7988.27 + 6939.98i −0.400070 + 0.347570i
\(737\) −15965.7 −0.797969
\(738\) −2975.70 514.173i −0.148424 0.0256463i
\(739\) 1456.76 0.0725138 0.0362569 0.999343i \(-0.488457\pi\)
0.0362569 + 0.999343i \(0.488457\pi\)
\(740\) 55220.2 + 19670.3i 2.74316 + 0.977157i
\(741\) −16255.2 12832.7i −0.805868 0.636195i
\(742\) −2575.80 + 14907.1i −0.127440 + 0.737543i
\(743\) 8657.84i 0.427491i −0.976889 0.213745i \(-0.931434\pi\)
0.976889 0.213745i \(-0.0685663\pi\)
\(744\) −9077.40 + 16103.2i −0.447303 + 0.793509i
\(745\) −40716.1 −2.00231
\(746\) 28005.2 + 4839.03i 1.37446 + 0.237493i
\(747\) −1814.42 −0.0888704
\(748\) −6631.18 2362.13i −0.324145 0.115466i
\(749\) −3706.05 −0.180796
\(750\) 40357.3 + 6973.36i 1.96485 + 0.339508i
\(751\) 1217.68 0.0591664 0.0295832 0.999562i \(-0.490582\pi\)
0.0295832 + 0.999562i \(0.490582\pi\)
\(752\) −5892.37 + 7221.30i −0.285735 + 0.350178i
\(753\) 7778.28 0.376436
\(754\) −17815.7 + 15989.1i −0.860488 + 0.772267i
\(755\) 44389.3i 2.13972i
\(756\) −2656.37 946.243i −0.127793 0.0455219i
\(757\) 27866.0i 1.33792i −0.743297 0.668962i \(-0.766739\pi\)
0.743297 0.668962i \(-0.233261\pi\)
\(758\) 2501.70 14478.2i 0.119876 0.693763i
\(759\) 3732.98i 0.178523i
\(760\) 35558.6 63080.4i 1.69717 3.01075i
\(761\) 7301.63i 0.347811i −0.984762 0.173905i \(-0.944361\pi\)
0.984762 0.173905i \(-0.0556387\pi\)
\(762\) 4480.09 + 774.117i 0.212988 + 0.0368022i
\(763\) 5509.27i 0.261401i
\(764\) −16427.7 5851.80i −0.777922 0.277108i
\(765\) −8083.86 −0.382056
\(766\) 3934.13 + 679.780i 0.185569 + 0.0320645i
\(767\) −23507.5 + 29776.9i −1.10666 + 1.40180i
\(768\) −12038.2 + 2465.20i −0.565612 + 0.115827i
\(769\) 8632.60i 0.404811i −0.979302 0.202405i \(-0.935124\pi\)
0.979302 0.202405i \(-0.0648759\pi\)
\(770\) −16829.2 2907.92i −0.787637 0.136096i
\(771\) 11804.7i 0.551407i
\(772\) −8961.82 + 25158.4i −0.417802 + 1.17289i
\(773\) 4072.53 0.189494 0.0947470 0.995501i \(-0.469796\pi\)
0.0947470 + 0.995501i \(0.469796\pi\)
\(774\) −10141.2 1752.31i −0.470956