Properties

Label 312.4.m.a.181.37
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.37
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.38

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.481589 - 2.78713i) q^{2} -3.00000i q^{3} +(-7.53614 + 2.68450i) q^{4} -21.7286 q^{5} +(-8.36138 + 1.44477i) q^{6} -13.0550i q^{7} +(11.1114 + 19.7114i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(-0.481589 - 2.78713i) q^{2} -3.00000i q^{3} +(-7.53614 + 2.68450i) q^{4} -21.7286 q^{5} +(-8.36138 + 1.44477i) q^{6} -13.0550i q^{7} +(11.1114 + 19.7114i) q^{8} -9.00000 q^{9} +(10.4643 + 60.5604i) q^{10} -21.2862 q^{11} +(8.05349 + 22.6084i) q^{12} +(29.0436 + 36.7895i) q^{13} +(-36.3859 + 6.28713i) q^{14} +65.1858i q^{15} +(49.5870 - 40.4615i) q^{16} -41.3375 q^{17} +(4.33430 + 25.0841i) q^{18} -147.281 q^{19} +(163.750 - 58.3304i) q^{20} -39.1649 q^{21} +(10.2512 + 59.3273i) q^{22} +58.4571 q^{23} +(59.1341 - 33.3341i) q^{24} +347.133 q^{25} +(88.5499 - 98.6656i) q^{26} +27.0000i q^{27} +(35.0460 + 98.3842i) q^{28} -180.566i q^{29} +(181.681 - 31.3928i) q^{30} -272.316i q^{31} +(-136.652 - 118.719i) q^{32} +63.8585i q^{33} +(19.9077 + 115.213i) q^{34} +283.666i q^{35} +(67.8253 - 24.1605i) q^{36} +337.223 q^{37} +(70.9287 + 410.490i) q^{38} +(110.369 - 87.1309i) q^{39} +(-241.434 - 428.301i) q^{40} +118.629i q^{41} +(18.8614 + 109.158i) q^{42} +404.289i q^{43} +(160.416 - 57.1427i) q^{44} +195.558 q^{45} +(-28.1523 - 162.927i) q^{46} -145.629i q^{47} +(-121.385 - 148.761i) q^{48} +172.568 q^{49} +(-167.175 - 967.503i) q^{50} +124.012i q^{51} +(-317.638 - 199.284i) q^{52} +409.695i q^{53} +(75.2524 - 13.0029i) q^{54} +462.519 q^{55} +(257.331 - 145.058i) q^{56} +441.842i q^{57} +(-503.260 + 86.9586i) q^{58} -809.386 q^{59} +(-174.991 - 491.250i) q^{60} -34.5359i q^{61} +(-758.979 + 131.144i) q^{62} +117.495i q^{63} +(-265.076 + 438.040i) q^{64} +(-631.078 - 799.385i) q^{65} +(177.982 - 30.7535i) q^{66} +750.048 q^{67} +(311.525 - 110.970i) q^{68} -175.371i q^{69} +(790.614 - 136.611i) q^{70} +455.788i q^{71} +(-100.002 - 177.402i) q^{72} +130.323i q^{73} +(-162.403 - 939.883i) q^{74} -1041.40i q^{75} +(1109.93 - 395.375i) q^{76} +277.890i q^{77} +(-295.997 - 265.650i) q^{78} +108.684 q^{79} +(-1077.46 + 879.173i) q^{80} +81.0000 q^{81} +(330.634 - 57.1304i) q^{82} +201.602 q^{83} +(295.153 - 105.138i) q^{84} +898.206 q^{85} +(1126.81 - 194.701i) q^{86} -541.698 q^{87} +(-236.518 - 419.580i) q^{88} +1268.20i q^{89} +(-94.1783 - 545.043i) q^{90} +(480.286 - 379.164i) q^{91} +(-440.541 + 156.928i) q^{92} -816.948 q^{93} +(-405.887 + 70.1333i) q^{94} +3200.21 q^{95} +(-356.158 + 409.956i) q^{96} +1421.15i q^{97} +(-83.1066 - 480.968i) q^{98} +191.576 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.481589 2.78713i −0.170267 0.985398i
\(3\) 3.00000i 0.577350i
\(4\) −7.53614 + 2.68450i −0.942018 + 0.335562i
\(5\) −21.7286 −1.94347 −0.971733 0.236082i \(-0.924137\pi\)
−0.971733 + 0.236082i \(0.924137\pi\)
\(6\) −8.36138 + 1.44477i −0.568920 + 0.0983039i
\(7\) 13.0550i 0.704902i −0.935830 0.352451i \(-0.885348\pi\)
0.935830 0.352451i \(-0.114652\pi\)
\(8\) 11.1114 + 19.7114i 0.491057 + 0.871127i
\(9\) −9.00000 −0.333333
\(10\) 10.4643 + 60.5604i 0.330909 + 1.91509i
\(11\) −21.2862 −0.583457 −0.291728 0.956501i \(-0.594230\pi\)
−0.291728 + 0.956501i \(0.594230\pi\)
\(12\) 8.05349 + 22.6084i 0.193737 + 0.543874i
\(13\) 29.0436 + 36.7895i 0.619635 + 0.784890i
\(14\) −36.3859 + 6.28713i −0.694609 + 0.120022i
\(15\) 65.1858i 1.12206i
\(16\) 49.5870 40.4615i 0.774796 0.632211i
\(17\) −41.3375 −0.589754 −0.294877 0.955535i \(-0.595279\pi\)
−0.294877 + 0.955535i \(0.595279\pi\)
\(18\) 4.33430 + 25.0841i 0.0567558 + 0.328466i
\(19\) −147.281 −1.77834 −0.889171 0.457574i \(-0.848718\pi\)
−0.889171 + 0.457574i \(0.848718\pi\)
\(20\) 163.750 58.3304i 1.83078 0.652154i
\(21\) −39.1649 −0.406976
\(22\) 10.2512 + 59.3273i 0.0993436 + 0.574937i
\(23\) 58.4571 0.529963 0.264981 0.964254i \(-0.414634\pi\)
0.264981 + 0.964254i \(0.414634\pi\)
\(24\) 59.1341 33.3341i 0.502946 0.283512i
\(25\) 347.133 2.77706
\(26\) 88.5499 98.6656i 0.667926 0.744228i
\(27\) 27.0000i 0.192450i
\(28\) 35.0460 + 98.3842i 0.236538 + 0.664031i
\(29\) 180.566i 1.15622i −0.815960 0.578108i \(-0.803791\pi\)
0.815960 0.578108i \(-0.196209\pi\)
\(30\) 181.681 31.3928i 1.10568 0.191050i
\(31\) 272.316i 1.57772i −0.614571 0.788861i \(-0.710671\pi\)
0.614571 0.788861i \(-0.289329\pi\)
\(32\) −136.652 118.719i −0.754902 0.655838i
\(33\) 63.8585i 0.336859i
\(34\) 19.9077 + 115.213i 0.100416 + 0.581142i
\(35\) 283.666i 1.36995i
\(36\) 67.8253 24.1605i 0.314006 0.111854i
\(37\) 337.223 1.49835 0.749177 0.662370i \(-0.230449\pi\)
0.749177 + 0.662370i \(0.230449\pi\)
\(38\) 70.9287 + 410.490i 0.302794 + 1.75238i
\(39\) 110.369 87.1309i 0.453157 0.357746i
\(40\) −241.434 428.301i −0.954353 1.69301i
\(41\) 118.629i 0.451871i 0.974142 + 0.225936i \(0.0725439\pi\)
−0.974142 + 0.225936i \(0.927456\pi\)
\(42\) 18.8614 + 109.158i 0.0692946 + 0.401033i
\(43\) 404.289i 1.43380i 0.697174 + 0.716902i \(0.254440\pi\)
−0.697174 + 0.716902i \(0.745560\pi\)
\(44\) 160.416 57.1427i 0.549627 0.195786i
\(45\) 195.558 0.647822
\(46\) −28.1523 162.927i −0.0902353 0.522224i
\(47\) 145.629i 0.451961i −0.974132 0.225981i \(-0.927441\pi\)
0.974132 0.225981i \(-0.0725586\pi\)
\(48\) −121.385 148.761i −0.365007 0.447329i
\(49\) 172.568 0.503113
\(50\) −167.175 967.503i −0.472843 2.73651i
\(51\) 124.012i 0.340495i
\(52\) −317.638 199.284i −0.847087 0.531455i
\(53\) 409.695i 1.06181i 0.847432 + 0.530905i \(0.178148\pi\)
−0.847432 + 0.530905i \(0.821852\pi\)
\(54\) 75.2524 13.0029i 0.189640 0.0327680i
\(55\) 462.519 1.13393
\(56\) 257.331 145.058i 0.614060 0.346147i
\(57\) 441.842i 1.02673i
\(58\) −503.260 + 86.9586i −1.13933 + 0.196866i
\(59\) −809.386 −1.78599 −0.892993 0.450071i \(-0.851399\pi\)
−0.892993 + 0.450071i \(0.851399\pi\)
\(60\) −174.991 491.250i −0.376521 1.05700i
\(61\) 34.5359i 0.0724896i −0.999343 0.0362448i \(-0.988460\pi\)
0.999343 0.0362448i \(-0.0115396\pi\)
\(62\) −758.979 + 131.144i −1.55468 + 0.268635i
\(63\) 117.495i 0.234967i
\(64\) −265.076 + 438.040i −0.517726 + 0.855547i
\(65\) −631.078 799.385i −1.20424 1.52541i
\(66\) 177.982 30.7535i 0.331940 0.0573561i
\(67\) 750.048 1.36766 0.683828 0.729643i \(-0.260314\pi\)
0.683828 + 0.729643i \(0.260314\pi\)
\(68\) 311.525 110.970i 0.555559 0.197899i
\(69\) 175.371i 0.305974i
\(70\) 790.614 136.611i 1.34995 0.233258i
\(71\) 455.788i 0.761861i 0.924604 + 0.380930i \(0.124396\pi\)
−0.924604 + 0.380930i \(0.875604\pi\)
\(72\) −100.002 177.402i −0.163686 0.290376i
\(73\) 130.323i 0.208947i 0.994528 + 0.104473i \(0.0333157\pi\)
−0.994528 + 0.104473i \(0.966684\pi\)
\(74\) −162.403 939.883i −0.255121 1.47648i
\(75\) 1041.40i 1.60334i
\(76\) 1109.93 395.375i 1.67523 0.596744i
\(77\) 277.890i 0.411280i
\(78\) −295.997 265.650i −0.429680 0.385627i
\(79\) 108.684 0.154784 0.0773918 0.997001i \(-0.475341\pi\)
0.0773918 + 0.997001i \(0.475341\pi\)
\(80\) −1077.46 + 879.173i −1.50579 + 1.22868i
\(81\) 81.0000 0.111111
\(82\) 330.634 57.1304i 0.445273 0.0769389i
\(83\) 201.602 0.266611 0.133306 0.991075i \(-0.457441\pi\)
0.133306 + 0.991075i \(0.457441\pi\)
\(84\) 295.153 105.138i 0.383378 0.136566i
\(85\) 898.206 1.14617
\(86\) 1126.81 194.701i 1.41287 0.244130i
\(87\) −541.698 −0.667542
\(88\) −236.518 419.580i −0.286511 0.508265i
\(89\) 1268.20i 1.51044i 0.655470 + 0.755221i \(0.272471\pi\)
−0.655470 + 0.755221i \(0.727529\pi\)
\(90\) −94.1783 545.043i −0.110303 0.638363i
\(91\) 480.286 379.164i 0.553271 0.436782i
\(92\) −440.541 + 156.928i −0.499235 + 0.177835i
\(93\) −816.948 −0.910899
\(94\) −405.887 + 70.1333i −0.445362 + 0.0769543i
\(95\) 3200.21 3.45615
\(96\) −356.158 + 409.956i −0.378648 + 0.435843i
\(97\) 1421.15i 1.48759i 0.668410 + 0.743793i \(0.266975\pi\)
−0.668410 + 0.743793i \(0.733025\pi\)
\(98\) −83.1066 480.968i −0.0856636 0.495766i
\(99\) 191.576 0.194486
\(100\) −2616.04 + 931.876i −2.61604 + 0.931876i
\(101\) 655.469i 0.645759i 0.946440 + 0.322879i \(0.104651\pi\)
−0.946440 + 0.322879i \(0.895349\pi\)
\(102\) 345.638 59.7230i 0.335523 0.0579751i
\(103\) 464.213 0.444080 0.222040 0.975038i \(-0.428728\pi\)
0.222040 + 0.975038i \(0.428728\pi\)
\(104\) −402.458 + 981.271i −0.379464 + 0.925207i
\(105\) 850.999 0.790943
\(106\) 1141.87 197.304i 1.04630 0.180791i
\(107\) 283.880i 0.256484i −0.991743 0.128242i \(-0.959067\pi\)
0.991743 0.128242i \(-0.0409334\pi\)
\(108\) −72.4814 203.476i −0.0645790 0.181291i
\(109\) −422.005 −0.370833 −0.185416 0.982660i \(-0.559363\pi\)
−0.185416 + 0.982660i \(0.559363\pi\)
\(110\) −222.744 1289.10i −0.193071 1.11737i
\(111\) 1011.67i 0.865075i
\(112\) −528.224 647.356i −0.445647 0.546156i
\(113\) −873.891 −0.727511 −0.363755 0.931495i \(-0.618506\pi\)
−0.363755 + 0.931495i \(0.618506\pi\)
\(114\) 1231.47 212.786i 1.01173 0.174818i
\(115\) −1270.19 −1.02996
\(116\) 484.729 + 1360.77i 0.387982 + 1.08918i
\(117\) −261.393 331.106i −0.206545 0.261630i
\(118\) 389.791 + 2255.86i 0.304095 + 1.75991i
\(119\) 539.660i 0.415719i
\(120\) −1284.90 + 724.303i −0.977458 + 0.550996i
\(121\) −877.899 −0.659578
\(122\) −96.2558 + 16.6321i −0.0714311 + 0.0123426i
\(123\) 355.887 0.260888
\(124\) 731.031 + 2052.21i 0.529424 + 1.48624i
\(125\) −4826.63 −3.45366
\(126\) 327.473 56.5841i 0.231536 0.0400073i
\(127\) −535.808 −0.374372 −0.187186 0.982324i \(-0.559937\pi\)
−0.187186 + 0.982324i \(0.559937\pi\)
\(128\) 1348.53 + 527.844i 0.931206 + 0.364494i
\(129\) 1212.87 0.827807
\(130\) −1924.07 + 2143.87i −1.29809 + 1.44638i
\(131\) 1795.81i 1.19772i −0.800855 0.598859i \(-0.795621\pi\)
0.800855 0.598859i \(-0.204379\pi\)
\(132\) −171.428 481.247i −0.113037 0.317327i
\(133\) 1922.75i 1.25356i
\(134\) −361.215 2090.48i −0.232867 1.34769i
\(135\) 586.673i 0.374020i
\(136\) −459.315 814.818i −0.289603 0.513751i
\(137\) 818.868i 0.510662i −0.966854 0.255331i \(-0.917816\pi\)
0.966854 0.255331i \(-0.0821844\pi\)
\(138\) −488.782 + 84.4568i −0.301506 + 0.0520974i
\(139\) 688.906i 0.420376i −0.977661 0.210188i \(-0.932592\pi\)
0.977661 0.210188i \(-0.0674076\pi\)
\(140\) −761.502 2137.75i −0.459705 1.29052i
\(141\) −436.887 −0.260940
\(142\) 1270.34 219.502i 0.750736 0.129720i
\(143\) −618.228 783.108i −0.361530 0.457950i
\(144\) −446.283 + 364.154i −0.258265 + 0.210737i
\(145\) 3923.45i 2.24707i
\(146\) 363.226 62.7619i 0.205896 0.0355768i
\(147\) 517.703i 0.290472i
\(148\) −2541.36 + 905.274i −1.41148 + 0.502791i
\(149\) 1873.85 1.03028 0.515140 0.857106i \(-0.327740\pi\)
0.515140 + 0.857106i \(0.327740\pi\)
\(150\) −2902.51 + 501.525i −1.57992 + 0.272996i
\(151\) 2042.90i 1.10098i 0.834841 + 0.550492i \(0.185560\pi\)
−0.834841 + 0.550492i \(0.814440\pi\)
\(152\) −1636.49 2903.10i −0.873268 1.54916i
\(153\) 372.037 0.196585
\(154\) 774.516 133.829i 0.405274 0.0700275i
\(155\) 5917.05i 3.06625i
\(156\) −597.851 + 952.915i −0.306836 + 0.489066i
\(157\) 416.042i 0.211489i −0.994393 0.105744i \(-0.966277\pi\)
0.994393 0.105744i \(-0.0337225\pi\)
\(158\) −52.3409 302.916i −0.0263546 0.152523i
\(159\) 1229.08 0.613036
\(160\) 2969.26 + 2579.61i 1.46713 + 1.27460i
\(161\) 763.156i 0.373572i
\(162\) −39.0087 225.757i −0.0189186 0.109489i
\(163\) 1218.69 0.585615 0.292808 0.956171i \(-0.405410\pi\)
0.292808 + 0.956171i \(0.405410\pi\)
\(164\) −318.459 894.005i −0.151631 0.425671i
\(165\) 1387.56i 0.654674i
\(166\) −97.0894 561.891i −0.0453952 0.262718i
\(167\) 2020.62i 0.936287i 0.883653 + 0.468143i \(0.155077\pi\)
−0.883653 + 0.468143i \(0.844923\pi\)
\(168\) −435.175 771.994i −0.199848 0.354528i
\(169\) −509.936 + 2137.00i −0.232106 + 0.972691i
\(170\) −432.566 2503.41i −0.195155 1.12943i
\(171\) 1325.53 0.592781
\(172\) −1085.31 3046.78i −0.481130 1.35067i
\(173\) 2227.75i 0.979031i −0.871995 0.489516i \(-0.837174\pi\)
0.871995 0.489516i \(-0.162826\pi\)
\(174\) 260.876 + 1509.78i 0.113661 + 0.657794i
\(175\) 4531.81i 1.95756i
\(176\) −1055.52 + 861.271i −0.452060 + 0.368868i
\(177\) 2428.16i 1.03114i
\(178\) 3534.65 610.753i 1.48839 0.257179i
\(179\) 141.910i 0.0592560i 0.999561 + 0.0296280i \(0.00943227\pi\)
−0.999561 + 0.0296280i \(0.990568\pi\)
\(180\) −1473.75 + 524.974i −0.610260 + 0.217385i
\(181\) 701.384i 0.288030i 0.989575 + 0.144015i \(0.0460014\pi\)
−0.989575 + 0.144015i \(0.953999\pi\)
\(182\) −1288.08 1156.02i −0.524608 0.470822i
\(183\) −103.608 −0.0418519
\(184\) 649.537 + 1152.27i 0.260242 + 0.461665i
\(185\) −7327.39 −2.91200
\(186\) 393.433 + 2276.94i 0.155096 + 0.897598i
\(187\) 879.917 0.344096
\(188\) 390.941 + 1097.48i 0.151661 + 0.425756i
\(189\) 352.484 0.135659
\(190\) −1541.18 8919.38i −0.588469 3.40568i
\(191\) 2179.85 0.825803 0.412902 0.910776i \(-0.364515\pi\)
0.412902 + 0.910776i \(0.364515\pi\)
\(192\) 1314.12 + 795.227i 0.493950 + 0.298909i
\(193\) 3338.36i 1.24508i 0.782588 + 0.622540i \(0.213899\pi\)
−0.782588 + 0.622540i \(0.786101\pi\)
\(194\) 3960.92 684.409i 1.46586 0.253287i
\(195\) −2398.16 + 1893.23i −0.880695 + 0.695268i
\(196\) −1300.49 + 463.257i −0.473941 + 0.168826i
\(197\) 2468.85 0.892885 0.446443 0.894812i \(-0.352691\pi\)
0.446443 + 0.894812i \(0.352691\pi\)
\(198\) −92.2606 533.945i −0.0331145 0.191646i
\(199\) −959.929 −0.341948 −0.170974 0.985276i \(-0.554691\pi\)
−0.170974 + 0.985276i \(0.554691\pi\)
\(200\) 3857.11 + 6842.46i 1.36370 + 2.41917i
\(201\) 2250.15i 0.789617i
\(202\) 1826.88 315.667i 0.636329 0.109952i
\(203\) −2357.28 −0.815020
\(204\) −332.911 934.576i −0.114257 0.320752i
\(205\) 2577.64i 0.878197i
\(206\) −223.560 1293.82i −0.0756123 0.437596i
\(207\) −526.114 −0.176654
\(208\) 2928.74 + 649.131i 0.976307 + 0.216390i
\(209\) 3135.04 1.03759
\(210\) −409.832 2371.84i −0.134672 0.779394i
\(211\) 821.620i 0.268070i 0.990977 + 0.134035i \(0.0427934\pi\)
−0.990977 + 0.134035i \(0.957207\pi\)
\(212\) −1099.82 3087.52i −0.356303 1.00024i
\(213\) 1367.37 0.439861
\(214\) −791.211 + 136.714i −0.252739 + 0.0436708i
\(215\) 8784.65i 2.78655i
\(216\) −532.207 + 300.007i −0.167649 + 0.0945040i
\(217\) −3555.08 −1.11214
\(218\) 203.233 + 1176.18i 0.0631407 + 0.365418i
\(219\) 390.968 0.120635
\(220\) −3485.61 + 1241.63i −1.06818 + 0.380503i
\(221\) −1200.59 1520.79i −0.365432 0.462892i
\(222\) −2819.65 + 487.208i −0.852443 + 0.147294i
\(223\) 3360.91i 1.00925i 0.863338 + 0.504626i \(0.168370\pi\)
−0.863338 + 0.504626i \(0.831630\pi\)
\(224\) −1549.88 + 1783.99i −0.462301 + 0.532132i
\(225\) −3124.19 −0.925687
\(226\) 420.856 + 2435.64i 0.123871 + 0.716888i
\(227\) 3682.56 1.07674 0.538371 0.842708i \(-0.319040\pi\)
0.538371 + 0.842708i \(0.319040\pi\)
\(228\) −1186.12 3329.79i −0.344531 0.967195i
\(229\) 4219.89 1.21772 0.608861 0.793277i \(-0.291627\pi\)
0.608861 + 0.793277i \(0.291627\pi\)
\(230\) 611.710 + 3540.18i 0.175369 + 1.01493i
\(231\) 833.671 0.237453
\(232\) 3559.20 2006.33i 1.00721 0.567768i
\(233\) 379.674 0.106752 0.0533761 0.998574i \(-0.483002\pi\)
0.0533761 + 0.998574i \(0.483002\pi\)
\(234\) −796.949 + 887.991i −0.222642 + 0.248076i
\(235\) 3164.32i 0.878372i
\(236\) 6099.65 2172.80i 1.68243 0.599309i
\(237\) 326.052i 0.0893643i
\(238\) 1504.10 259.894i 0.409648 0.0707833i
\(239\) 2710.64i 0.733626i −0.930295 0.366813i \(-0.880449\pi\)
0.930295 0.366813i \(-0.119551\pi\)
\(240\) 2637.52 + 3232.37i 0.709379 + 0.869368i
\(241\) 4760.79i 1.27249i −0.771489 0.636243i \(-0.780487\pi\)
0.771489 0.636243i \(-0.219513\pi\)
\(242\) 422.786 + 2446.81i 0.112305 + 0.649947i
\(243\) 243.000i 0.0641500i
\(244\) 92.7114 + 260.267i 0.0243248 + 0.0682865i
\(245\) −3749.66 −0.977783
\(246\) −171.391 991.902i −0.0444207 0.257079i
\(247\) −4277.57 5418.39i −1.10192 1.39580i
\(248\) 5367.72 3025.80i 1.37440 0.774752i
\(249\) 604.807i 0.153928i
\(250\) 2324.45 + 13452.4i 0.588045 + 3.40323i
\(251\) 2592.76i 0.652006i 0.945369 + 0.326003i \(0.105702\pi\)
−0.945369 + 0.326003i \(0.894298\pi\)
\(252\) −315.414 885.458i −0.0788462 0.221344i
\(253\) −1244.33 −0.309210
\(254\) 258.039 + 1493.36i 0.0637434 + 0.368906i
\(255\) 2694.62i 0.661740i
\(256\) 821.732 4012.73i 0.200618 0.979669i
\(257\) 3934.89 0.955065 0.477533 0.878614i \(-0.341531\pi\)
0.477533 + 0.878614i \(0.341531\pi\)
\(258\) −584.104 3380.42i −0.140948 0.815719i
\(259\) 4402.44i 1.05619i
\(260\) 6901.84 + 4330.16i 1.64628 + 1.03286i
\(261\) 1625.09i 0.385405i
\(262\) −5005.16 + 864.844i −1.18023 + 0.203932i
\(263\) −457.722 −0.107317 −0.0536585 0.998559i \(-0.517088\pi\)
−0.0536585 + 0.998559i \(0.517088\pi\)
\(264\) −1258.74 + 709.555i −0.293447 + 0.165417i
\(265\) 8902.10i 2.06359i
\(266\) 5358.94 925.973i 1.23525 0.213440i
\(267\) 3804.61 0.872055
\(268\) −5652.47 + 2013.50i −1.28836 + 0.458934i
\(269\) 1601.26i 0.362940i 0.983397 + 0.181470i \(0.0580855\pi\)
−0.983397 + 0.181470i \(0.941915\pi\)
\(270\) −1635.13 + 282.535i −0.368559 + 0.0636834i
\(271\) 2202.46i 0.493691i −0.969055 0.246845i \(-0.920606\pi\)
0.969055 0.246845i \(-0.0793940\pi\)
\(272\) −2049.80 + 1672.58i −0.456939 + 0.372849i
\(273\) −1137.49 1440.86i −0.252176 0.319431i
\(274\) −2282.29 + 394.358i −0.503205 + 0.0869490i
\(275\) −7389.13 −1.62030
\(276\) 470.784 + 1321.62i 0.102673 + 0.288233i
\(277\) 4581.89i 0.993860i −0.867791 0.496930i \(-0.834460\pi\)
0.867791 0.496930i \(-0.165540\pi\)
\(278\) −1920.07 + 331.769i −0.414238 + 0.0715763i
\(279\) 2450.84i 0.525908i
\(280\) −5591.45 + 3151.92i −1.19340 + 0.672725i
\(281\) 7994.12i 1.69711i 0.529103 + 0.848557i \(0.322528\pi\)
−0.529103 + 0.848557i \(0.677472\pi\)
\(282\) 210.400 + 1217.66i 0.0444296 + 0.257130i
\(283\) 7605.59i 1.59755i −0.601632 0.798773i \(-0.705483\pi\)
0.601632 0.798773i \(-0.294517\pi\)
\(284\) −1223.56 3434.89i −0.255652 0.717687i
\(285\) 9600.62i 1.99541i
\(286\) −1884.89 + 2100.21i −0.389706 + 0.434225i
\(287\) 1548.70 0.318525
\(288\) 1229.87 + 1068.47i 0.251634 + 0.218613i
\(289\) −3204.21 −0.652190
\(290\) 10935.2 1889.49i 2.21426 0.382602i
\(291\) 4263.45 0.858858
\(292\) −349.851 982.130i −0.0701146 0.196832i
\(293\) −1970.45 −0.392883 −0.196442 0.980516i \(-0.562939\pi\)
−0.196442 + 0.980516i \(0.562939\pi\)
\(294\) −1442.90 + 249.320i −0.286231 + 0.0494579i
\(295\) 17586.8 3.47100
\(296\) 3747.00 + 6647.12i 0.735777 + 1.30526i
\(297\) 574.727i 0.112286i
\(298\) −902.424 5222.65i −0.175423 1.01523i
\(299\) 1697.81 + 2150.61i 0.328383 + 0.415963i
\(300\) 2795.63 + 7848.13i 0.538019 + 1.51037i
\(301\) 5277.99 1.01069
\(302\) 5693.81 983.835i 1.08491 0.187461i
\(303\) 1966.41 0.372829
\(304\) −7303.20 + 5959.20i −1.37785 + 1.12429i
\(305\) 750.416i 0.140881i
\(306\) −179.169 1036.92i −0.0334719 0.193714i
\(307\) −4874.65 −0.906224 −0.453112 0.891453i \(-0.649686\pi\)
−0.453112 + 0.891453i \(0.649686\pi\)
\(308\) −745.996 2094.22i −0.138010 0.387433i
\(309\) 1392.64i 0.256390i
\(310\) 16491.6 2849.58i 3.02148 0.522082i
\(311\) −6585.69 −1.20077 −0.600386 0.799710i \(-0.704986\pi\)
−0.600386 + 0.799710i \(0.704986\pi\)
\(312\) 2943.81 + 1207.37i 0.534168 + 0.219083i
\(313\) −1307.67 −0.236147 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(314\) −1159.56 + 200.361i −0.208401 + 0.0360096i
\(315\) 2553.00i 0.456651i
\(316\) −819.058 + 291.762i −0.145809 + 0.0519395i
\(317\) −5262.79 −0.932454 −0.466227 0.884665i \(-0.654387\pi\)
−0.466227 + 0.884665i \(0.654387\pi\)
\(318\) −591.913 3425.61i −0.104380 0.604084i
\(319\) 3843.56i 0.674602i
\(320\) 5759.73 9518.00i 1.00618 1.66273i
\(321\) −851.641 −0.148081
\(322\) −2127.01 + 367.527i −0.368117 + 0.0636071i
\(323\) 6088.22 1.04878
\(324\) −610.428 + 217.444i −0.104669 + 0.0372847i
\(325\) 10082.0 + 12770.8i 1.72076 + 2.17969i
\(326\) −586.908 3396.65i −0.0997112 0.577064i
\(327\) 1266.02i 0.214100i
\(328\) −2338.34 + 1318.13i −0.393638 + 0.221895i
\(329\) −1901.18 −0.318589
\(330\) −3867.30 + 668.232i −0.645114 + 0.111470i
\(331\) 189.140 0.0314080 0.0157040 0.999877i \(-0.495001\pi\)
0.0157040 + 0.999877i \(0.495001\pi\)
\(332\) −1519.30 + 541.201i −0.251153 + 0.0894646i
\(333\) −3035.01 −0.499451
\(334\) 5631.71 973.105i 0.922615 0.159419i
\(335\) −16297.5 −2.65799
\(336\) −1942.07 + 1584.67i −0.315323 + 0.257294i
\(337\) −8991.25 −1.45337 −0.726683 0.686973i \(-0.758939\pi\)
−0.726683 + 0.686973i \(0.758939\pi\)
\(338\) 6201.67 + 392.101i 0.998007 + 0.0630991i
\(339\) 2621.67i 0.420029i
\(340\) −6769.01 + 2411.23i −1.07971 + 0.384610i
\(341\) 5796.57i 0.920533i
\(342\) −638.358 3694.41i −0.100931 0.584125i
\(343\) 6730.72i 1.05955i
\(344\) −7969.09 + 4492.20i −1.24903 + 0.704079i
\(345\) 3810.57i 0.594650i
\(346\) −6209.01 + 1072.86i −0.964735 + 0.166697i
\(347\) 1000.54i 0.154788i 0.997001 + 0.0773942i \(0.0246600\pi\)
−0.997001 + 0.0773942i \(0.975340\pi\)
\(348\) 4082.32 1454.19i 0.628836 0.224002i
\(349\) 619.676 0.0950444 0.0475222 0.998870i \(-0.484868\pi\)
0.0475222 + 0.998870i \(0.484868\pi\)
\(350\) −12630.7 + 2182.47i −1.92897 + 0.333308i
\(351\) −993.317 + 784.178i −0.151052 + 0.119249i
\(352\) 2908.80 + 2527.08i 0.440453 + 0.382653i
\(353\) 1894.83i 0.285698i −0.989744 0.142849i \(-0.954374\pi\)
0.989744 0.142849i \(-0.0456263\pi\)
\(354\) 6767.59 1169.37i 1.01608 0.175569i
\(355\) 9903.65i 1.48065i
\(356\) −3404.49 9557.37i −0.506847 1.42286i
\(357\) 1618.98 0.240015
\(358\) 395.520 68.3421i 0.0583908 0.0100894i
\(359\) 7682.08i 1.12937i −0.825306 0.564686i \(-0.808997\pi\)
0.825306 0.564686i \(-0.191003\pi\)
\(360\) 2172.91 + 3854.71i 0.318118 + 0.564336i
\(361\) 14832.6 2.16250
\(362\) 1954.85 337.779i 0.283824 0.0490421i
\(363\) 2633.70i 0.380808i
\(364\) −2601.64 + 4146.76i −0.374624 + 0.597113i
\(365\) 2831.73i 0.406081i
\(366\) 49.8962 + 288.767i 0.00712601 + 0.0412407i
\(367\) 4776.32 0.679351 0.339676 0.940543i \(-0.389683\pi\)
0.339676 + 0.940543i \(0.389683\pi\)
\(368\) 2898.71 2365.26i 0.410613 0.335048i
\(369\) 1067.66i 0.150624i
\(370\) 3528.79 + 20422.3i 0.495818 + 2.86948i
\(371\) 5348.55 0.748472
\(372\) 6156.64 2193.09i 0.858083 0.305663i
\(373\) 10048.1i 1.39482i 0.716671 + 0.697412i \(0.245665\pi\)
−0.716671 + 0.697412i \(0.754335\pi\)
\(374\) −423.758 2452.44i −0.0585883 0.339071i
\(375\) 14479.9i 1.99397i
\(376\) 2870.55 1618.14i 0.393716 0.221939i
\(377\) 6642.94 5244.29i 0.907503 0.716432i
\(378\) −169.752 982.418i −0.0230982 0.133678i
\(379\) −5194.68 −0.704044 −0.352022 0.935992i \(-0.614506\pi\)
−0.352022 + 0.935992i \(0.614506\pi\)
\(380\) −24117.2 + 8590.94i −3.25576 + 1.15975i
\(381\) 1607.42i 0.216144i
\(382\) −1049.79 6075.52i −0.140607 0.813745i
\(383\) 1411.54i 0.188319i 0.995557 + 0.0941594i \(0.0300163\pi\)
−0.995557 + 0.0941594i \(0.969984\pi\)
\(384\) 1583.53 4045.59i 0.210441 0.537632i
\(385\) 6038.17i 0.799309i
\(386\) 9304.43 1607.72i 1.22690 0.211996i
\(387\) 3638.60i 0.477935i
\(388\) −3815.07 10710.0i −0.499177 1.40133i
\(389\) 14787.7i 1.92742i 0.266947 + 0.963711i \(0.413985\pi\)
−0.266947 + 0.963711i \(0.586015\pi\)
\(390\) 6431.60 + 5772.20i 0.835069 + 0.749453i
\(391\) −2416.47 −0.312548
\(392\) 1917.46 + 3401.54i 0.247057 + 0.438275i
\(393\) −5387.44 −0.691503
\(394\) −1188.97 6881.00i −0.152029 0.879847i
\(395\) −2361.55 −0.300817
\(396\) −1443.74 + 514.284i −0.183209 + 0.0652620i
\(397\) −10111.9 −1.27834 −0.639172 0.769064i \(-0.720723\pi\)
−0.639172 + 0.769064i \(0.720723\pi\)
\(398\) 462.291 + 2675.44i 0.0582225 + 0.336954i
\(399\) 5768.24 0.723742
\(400\) 17213.3 14045.5i 2.15166 1.75569i
\(401\) 7313.73i 0.910799i 0.890287 + 0.455400i \(0.150504\pi\)
−0.890287 + 0.455400i \(0.849496\pi\)
\(402\) −6271.44 + 1083.64i −0.778087 + 0.134446i
\(403\) 10018.4 7909.04i 1.23834 0.977612i
\(404\) −1759.60 4939.71i −0.216692 0.608316i
\(405\) −1760.02 −0.215941
\(406\) 1135.24 + 6570.05i 0.138771 + 0.803119i
\(407\) −7178.19 −0.874225
\(408\) −2444.46 + 1377.95i −0.296614 + 0.167202i
\(409\) 13472.1i 1.62873i 0.580352 + 0.814366i \(0.302915\pi\)
−0.580352 + 0.814366i \(0.697085\pi\)
\(410\) −7184.22 + 1241.36i −0.865373 + 0.149528i
\(411\) −2456.60 −0.294831
\(412\) −3498.38 + 1246.18i −0.418332 + 0.149016i
\(413\) 10566.5i 1.25895i
\(414\) 253.370 + 1466.35i 0.0300784 + 0.174075i
\(415\) −4380.54 −0.518150
\(416\) 398.761 8475.39i 0.0469972 0.998895i
\(417\) −2066.72 −0.242704
\(418\) −1509.80 8737.76i −0.176667 1.02244i
\(419\) 5187.31i 0.604813i 0.953179 + 0.302406i \(0.0977900\pi\)
−0.953179 + 0.302406i \(0.902210\pi\)
\(420\) −6413.25 + 2284.51i −0.745083 + 0.265411i
\(421\) 7353.20 0.851243 0.425621 0.904901i \(-0.360056\pi\)
0.425621 + 0.904901i \(0.360056\pi\)
\(422\) 2289.96 395.683i 0.264155 0.0456435i
\(423\) 1310.66i 0.150654i
\(424\) −8075.64 + 4552.26i −0.924971 + 0.521409i
\(425\) −14349.6 −1.63778
\(426\) −658.507 3811.02i −0.0748939 0.433438i
\(427\) −450.865 −0.0510981
\(428\) 762.076 + 2139.36i 0.0860662 + 0.241612i
\(429\) −2349.32 + 1854.68i −0.264397 + 0.208729i
\(430\) −24483.9 + 4230.59i −2.74586 + 0.474458i
\(431\) 2116.23i 0.236508i −0.992983 0.118254i \(-0.962270\pi\)
0.992983 0.118254i \(-0.0377298\pi\)
\(432\) 1092.46 + 1338.85i 0.121669 + 0.149110i
\(433\) 828.728 0.0919772 0.0459886 0.998942i \(-0.485356\pi\)
0.0459886 + 0.998942i \(0.485356\pi\)
\(434\) 1712.09 + 9908.45i 0.189361 + 1.09590i
\(435\) 11770.3 1.29735
\(436\) 3180.29 1132.87i 0.349331 0.124437i
\(437\) −8609.60 −0.942456
\(438\) −188.286 1089.68i −0.0205403 0.118874i
\(439\) −1702.92 −0.185139 −0.0925694 0.995706i \(-0.529508\pi\)
−0.0925694 + 0.995706i \(0.529508\pi\)
\(440\) 5139.21 + 9116.88i 0.556824 + 0.987796i
\(441\) −1553.11 −0.167704
\(442\) −3660.43 + 4078.59i −0.393912 + 0.438911i
\(443\) 10502.3i 1.12637i −0.826332 0.563184i \(-0.809576\pi\)
0.826332 0.563184i \(-0.190424\pi\)
\(444\) 2715.82 + 7624.08i 0.290286 + 0.814916i
\(445\) 27556.3i 2.93549i
\(446\) 9367.29 1618.58i 0.994516 0.171843i
\(447\) 5621.54i 0.594832i
\(448\) 5718.60 + 3460.56i 0.603077 + 0.364946i
\(449\) 5700.06i 0.599114i −0.954078 0.299557i \(-0.903161\pi\)
0.954078 0.299557i \(-0.0968389\pi\)
\(450\) 1504.58 + 8707.52i 0.157614 + 0.912170i
\(451\) 2525.16i 0.263647i
\(452\) 6585.77 2345.96i 0.685328 0.244125i
\(453\) 6128.69 0.635653
\(454\) −1773.48 10263.8i −0.183334 1.06102i
\(455\) −10436.0 + 8238.70i −1.07526 + 0.848871i
\(456\) −8709.31 + 4909.46i −0.894410 + 0.504181i
\(457\) 7723.44i 0.790563i −0.918560 0.395281i \(-0.870647\pi\)
0.918560 0.395281i \(-0.129353\pi\)
\(458\) −2032.25 11761.4i −0.207338 1.19994i
\(459\) 1116.11i 0.113498i
\(460\) 9572.35 3409.82i 0.970246 0.345617i
\(461\) 5681.04 0.573953 0.286976 0.957938i \(-0.407350\pi\)
0.286976 + 0.957938i \(0.407350\pi\)
\(462\) −401.487 2323.55i −0.0404304 0.233985i
\(463\) 8410.25i 0.844185i 0.906553 + 0.422092i \(0.138704\pi\)
−0.906553 + 0.422092i \(0.861296\pi\)
\(464\) −7305.98 8953.72i −0.730973 0.895832i
\(465\) 17751.2 1.77030
\(466\) −182.847 1058.20i −0.0181764 0.105193i
\(467\) 15102.6i 1.49650i 0.663416 + 0.748251i \(0.269106\pi\)
−0.663416 + 0.748251i \(0.730894\pi\)
\(468\) 2858.74 + 1793.55i 0.282362 + 0.177152i
\(469\) 9791.86i 0.964064i
\(470\) 8819.36 1523.90i 0.865546 0.149558i
\(471\) −1248.13 −0.122103
\(472\) −8993.38 15954.1i −0.877021 1.55582i
\(473\) 8605.78i 0.836562i
\(474\) −908.748 + 157.023i −0.0880594 + 0.0152158i
\(475\) −51125.9 −4.93857
\(476\) −1448.72 4066.96i −0.139499 0.391615i
\(477\) 3687.25i 0.353936i
\(478\) −7554.89 + 1305.41i −0.722913 + 0.124912i
\(479\) 6424.97i 0.612869i 0.951892 + 0.306435i \(0.0991361\pi\)
−0.951892 + 0.306435i \(0.900864\pi\)
\(480\) 7738.82 8907.77i 0.735890 0.847046i
\(481\) 9794.17 + 12406.3i 0.928432 + 1.17604i
\(482\) −13268.9 + 2292.74i −1.25391 + 0.216663i
\(483\) −2289.47 −0.215682
\(484\) 6615.97 2356.72i 0.621335 0.221329i
\(485\) 30879.6i 2.89107i
\(486\) −677.272 + 117.026i −0.0632133 + 0.0109227i
\(487\) 9662.31i 0.899058i 0.893266 + 0.449529i \(0.148408\pi\)
−0.893266 + 0.449529i \(0.851592\pi\)
\(488\) 680.749 383.740i 0.0631477 0.0355965i
\(489\) 3656.08i 0.338105i
\(490\) 1805.79 + 10450.8i 0.166484 + 0.963505i
\(491\) 4536.18i 0.416934i 0.978029 + 0.208467i \(0.0668474\pi\)
−0.978029 + 0.208467i \(0.933153\pi\)
\(492\) −2682.02 + 955.377i −0.245761 + 0.0875442i
\(493\) 7464.15i 0.681883i
\(494\) −13041.7 + 14531.5i −1.18780 + 1.32349i
\(495\) −4162.67 −0.377976
\(496\) −11018.3 13503.3i −0.997454 1.22241i
\(497\) 5950.30 0.537037
\(498\) −1685.67 + 291.268i −0.151680 + 0.0262089i
\(499\) −9717.54 −0.871778 −0.435889 0.900001i \(-0.643566\pi\)
−0.435889 + 0.900001i \(0.643566\pi\)
\(500\) 36374.2 12957.1i 3.25341 1.15892i
\(501\) 6061.85 0.540565
\(502\) 7226.35 1248.64i 0.642485 0.111015i
\(503\) 19916.9 1.76550 0.882752 0.469839i \(-0.155688\pi\)
0.882752 + 0.469839i \(0.155688\pi\)
\(504\) −2315.98 + 1305.53i −0.204687 + 0.115382i
\(505\) 14242.4i 1.25501i
\(506\) 599.254 + 3468.10i 0.0526484 + 0.304695i
\(507\) 6411.00 + 1529.81i 0.561583 + 0.134006i
\(508\) 4037.93 1438.38i 0.352666 0.125625i
\(509\) −13960.8 −1.21572 −0.607862 0.794043i \(-0.707972\pi\)
−0.607862 + 0.794043i \(0.707972\pi\)
\(510\) −7510.24 + 1297.70i −0.652077 + 0.112673i
\(511\) 1701.36 0.147287
\(512\) −11579.7 357.788i −0.999523 0.0308831i
\(513\) 3976.58i 0.342242i
\(514\) −1895.00 10967.0i −0.162616 0.941119i
\(515\) −10086.7 −0.863055
\(516\) −9140.35 + 3255.94i −0.779809 + 0.277781i
\(517\) 3099.89i 0.263700i
\(518\) −12270.1 + 2120.16i −1.04077 + 0.179835i
\(519\) −6683.24 −0.565244
\(520\) 8744.84 21321.6i 0.737475 1.79811i
\(521\) 17146.9 1.44188 0.720941 0.692997i \(-0.243710\pi\)
0.720941 + 0.692997i \(0.243710\pi\)
\(522\) 4529.34 782.627i 0.379778 0.0656219i
\(523\) 1202.54i 0.100542i 0.998736 + 0.0502711i \(0.0160085\pi\)
−0.998736 + 0.0502711i \(0.983991\pi\)
\(524\) 4820.86 + 13533.5i 0.401909 + 1.12827i
\(525\) −13595.4 −1.13020
\(526\) 220.434 + 1275.73i 0.0182726 + 0.105750i
\(527\) 11256.9i 0.930468i
\(528\) 2583.81 + 3166.55i 0.212966 + 0.260997i
\(529\) −8749.77 −0.719139
\(530\) −24811.3 + 4287.15i −2.03346 + 0.351362i
\(531\) 7284.48 0.595328
\(532\) −5161.60 14490.1i −0.420647 1.18087i
\(533\) −4364.30 + 3445.41i −0.354670 + 0.279995i
\(534\) −1832.26 10603.9i −0.148482 0.859321i
\(535\) 6168.33i 0.498467i
\(536\) 8334.05 + 14784.5i 0.671598 + 1.19140i
\(537\) 425.729 0.0342115
\(538\) 4462.92 771.150i 0.357640 0.0617967i
\(539\) −3673.31 −0.293545
\(540\) 1574.92 + 4421.25i 0.125507 + 0.352334i
\(541\) 3911.67 0.310861 0.155430 0.987847i \(-0.450324\pi\)
0.155430 + 0.987847i \(0.450324\pi\)
\(542\) −6138.55 + 1060.68i −0.486482 + 0.0840594i
\(543\) 2104.15 0.166294
\(544\) 5648.85 + 4907.56i 0.445206 + 0.386783i
\(545\) 9169.59 0.720701
\(546\) −3468.05 + 3864.23i −0.271829 + 0.302883i
\(547\) 2123.59i 0.165993i 0.996550 + 0.0829966i \(0.0264491\pi\)
−0.996550 + 0.0829966i \(0.973551\pi\)
\(548\) 2198.25 + 6171.11i 0.171359 + 0.481052i
\(549\) 310.823i 0.0241632i
\(550\) 3558.52 + 20594.4i 0.275883 + 1.59664i
\(551\) 26593.9i 2.05615i
\(552\) 3456.81 1948.61i 0.266542 0.150251i
\(553\) 1418.87i 0.109107i
\(554\) −12770.3 + 2206.59i −0.979348 + 0.169222i
\(555\) 21982.2i 1.68124i
\(556\) 1849.37 + 5191.70i 0.141062 + 0.396002i
\(557\) 11396.8 0.866960 0.433480 0.901163i \(-0.357285\pi\)
0.433480 + 0.901163i \(0.357285\pi\)
\(558\) 6830.81 1180.30i 0.518228 0.0895449i
\(559\) −14873.6 + 11742.0i −1.12538 + 0.888434i
\(560\) 11477.6 + 14066.2i 0.866100 + 1.06144i
\(561\) 2639.75i 0.198664i
\(562\) 22280.6 3849.88i 1.67233 0.288963i
\(563\) 22958.8i 1.71865i 0.511432 + 0.859324i \(0.329115\pi\)
−0.511432 + 0.859324i \(0.670885\pi\)
\(564\) 3292.45 1172.82i 0.245810 0.0875616i
\(565\) 18988.4 1.41389
\(566\) −21197.8 + 3662.77i −1.57422 + 0.272010i
\(567\) 1057.45i 0.0783225i
\(568\) −8984.21 + 5064.42i −0.663678 + 0.374117i
\(569\) 1997.33 0.147157 0.0735786 0.997289i \(-0.476558\pi\)
0.0735786 + 0.997289i \(0.476558\pi\)
\(570\) −26758.1 + 4623.55i −1.96627 + 0.339753i
\(571\) 1360.30i 0.0996963i 0.998757 + 0.0498482i \(0.0158737\pi\)
−0.998757 + 0.0498482i \(0.984126\pi\)
\(572\) 6761.30 + 4241.99i 0.494238 + 0.310081i
\(573\) 6539.55i 0.476778i
\(574\) −745.835 4316.42i −0.0542344 0.313874i
\(575\) 20292.4 1.47174
\(576\) 2385.68 3942.36i 0.172575 0.285182i
\(577\) 12943.8i 0.933892i 0.884286 + 0.466946i \(0.154646\pi\)
−0.884286 + 0.466946i \(0.845354\pi\)
\(578\) 1543.11 + 8930.54i 0.111047 + 0.642667i
\(579\) 10015.1 0.718847
\(580\) −10532.5 29567.7i −0.754031 2.11678i
\(581\) 2631.91i 0.187935i
\(582\) −2053.23 11882.8i −0.146235 0.846317i
\(583\) 8720.83i 0.619520i
\(584\) −2568.84 + 1448.06i −0.182019 + 0.102605i
\(585\) 5679.70 + 7194.47i 0.401413 + 0.508469i
\(586\) 948.945 + 5491.88i 0.0668951 + 0.387146i
\(587\) 21749.2 1.52928 0.764638 0.644459i \(-0.222918\pi\)
0.764638 + 0.644459i \(0.222918\pi\)
\(588\) 1389.77 + 3901.48i 0.0974715 + 0.273630i
\(589\) 40106.9i 2.80573i
\(590\) −8469.62 49016.8i −0.590998 3.42032i
\(591\) 7406.55i 0.515507i
\(592\) 16721.9 13644.5i 1.16092 0.947276i
\(593\) 11525.0i 0.798102i −0.916929 0.399051i \(-0.869340\pi\)
0.916929 0.399051i \(-0.130660\pi\)
\(594\) −1601.84 + 276.782i −0.110647 + 0.0191187i
\(595\) 11726.1i 0.807936i
\(596\) −14121.6 + 5030.34i −0.970542 + 0.345723i
\(597\) 2879.79i 0.197424i
\(598\) 5176.37 5767.71i 0.353976 0.394413i
\(599\) 3056.30 0.208476 0.104238 0.994552i \(-0.466760\pi\)
0.104238 + 0.994552i \(0.466760\pi\)
\(600\) 20527.4 11571.3i 1.39671 0.787330i
\(601\) −19514.8 −1.32450 −0.662251 0.749282i \(-0.730399\pi\)
−0.662251 + 0.749282i \(0.730399\pi\)
\(602\) −2541.82 14710.4i −0.172088 0.995933i
\(603\) −6750.44 −0.455886
\(604\) −5484.15 15395.6i −0.369448 1.03715i
\(605\) 19075.5 1.28187
\(606\) −947.000 5480.63i −0.0634806 0.367385i
\(607\) −7121.66 −0.476210 −0.238105 0.971239i \(-0.576526\pi\)
−0.238105 + 0.971239i \(0.576526\pi\)
\(608\) 20126.2 + 17485.1i 1.34247 + 1.16630i
\(609\) 7071.85i 0.470552i
\(610\) 2091.51 361.392i 0.138824 0.0239874i
\(611\) 5357.62 4229.60i 0.354740 0.280051i
\(612\) −2803.73 + 998.733i −0.185186 + 0.0659663i
\(613\) 13806.8 0.909709 0.454855 0.890566i \(-0.349691\pi\)
0.454855 + 0.890566i \(0.349691\pi\)
\(614\) 2347.58 + 13586.3i 0.154300 + 0.892992i
\(615\) −7732.93 −0.507027
\(616\) −5477.60 + 3087.74i −0.358277 + 0.201962i
\(617\) 8301.27i 0.541648i 0.962629 + 0.270824i \(0.0872961\pi\)
−0.962629 + 0.270824i \(0.912704\pi\)
\(618\) −3881.46 + 670.679i −0.252646 + 0.0436548i
\(619\) 23396.1 1.51917 0.759587 0.650406i \(-0.225401\pi\)
0.759587 + 0.650406i \(0.225401\pi\)
\(620\) −15884.3 44591.7i −1.02892 2.88846i
\(621\) 1578.34i 0.101991i
\(622\) 3171.59 + 18355.1i 0.204452 + 1.18324i
\(623\) 16556.4 1.06471
\(624\) 1947.39 8786.23i 0.124933 0.563671i
\(625\) 61484.5 3.93501
\(626\) 629.761 + 3644.65i 0.0402082 + 0.232699i
\(627\) 9405.13i 0.599051i
\(628\) 1116.86 + 3135.35i 0.0709676 + 0.199226i
\(629\) −13940.0 −0.883660
\(630\) −7115.53 + 1229.49i −0.449983 + 0.0777528i
\(631\) 22309.5i 1.40749i −0.710451 0.703747i \(-0.751509\pi\)
0.710451 0.703747i \(-0.248491\pi\)
\(632\) 1207.63 + 2142.31i 0.0760075 + 0.134836i
\(633\) 2464.86 0.154770
\(634\) 2534.50 + 14668.1i 0.158766 + 0.918839i
\(635\) 11642.4 0.727580
\(636\) −9262.55 + 3299.47i −0.577491 + 0.205712i
\(637\) 5011.99 + 6348.68i 0.311746 + 0.394888i
\(638\) 10712.5 1851.02i 0.664752 0.114863i
\(639\) 4102.10i 0.253954i
\(640\) −29301.7 11469.3i −1.80977 0.708383i
\(641\) 11515.3 0.709559 0.354780 0.934950i \(-0.384556\pi\)
0.354780 + 0.934950i \(0.384556\pi\)
\(642\) 410.141 + 2373.63i 0.0252133 + 0.145919i
\(643\) −20112.3 −1.23351 −0.616757 0.787153i \(-0.711554\pi\)
−0.616757 + 0.787153i \(0.711554\pi\)
\(644\) 2048.69 + 5751.25i 0.125357 + 0.351912i
\(645\) −26353.9 −1.60881
\(646\) −2932.02 16968.6i −0.178574 1.03347i
\(647\) −15844.9 −0.962794 −0.481397 0.876503i \(-0.659870\pi\)
−0.481397 + 0.876503i \(0.659870\pi\)
\(648\) 900.020 + 1596.62i 0.0545619 + 0.0967919i
\(649\) 17228.7 1.04205
\(650\) 30738.6 34250.1i 1.85487 2.06677i
\(651\) 10665.2i 0.642095i
\(652\) −9184.24 + 3271.57i −0.551660 + 0.196510i
\(653\) 26540.8i 1.59054i −0.606257 0.795269i \(-0.707330\pi\)
0.606257 0.795269i \(-0.292670\pi\)
\(654\) 3528.54 609.699i 0.210974 0.0364543i
\(655\) 39020.6i 2.32772i
\(656\) 4799.91 + 5882.45i 0.285678 + 0.350108i
\(657\) 1172.90i 0.0696489i
\(658\) 915.589 + 5298.84i 0.0542452 + 0.313937i
\(659\) 13346.4i 0.788926i −0.918912 0.394463i \(-0.870931\pi\)
0.918912 0.394463i \(-0.129069\pi\)
\(660\) 3724.89 + 10456.8i 0.219684 + 0.616715i
\(661\) 937.788 0.0551826 0.0275913 0.999619i \(-0.491216\pi\)
0.0275913 + 0.999619i \(0.491216\pi\)
\(662\) −91.0876 527.156i −0.00534776 0.0309494i
\(663\) −4562.36 + 3601.77i −0.267251 + 0.210982i
\(664\) 2240.07 + 3973.86i 0.130921 + 0.232252i
\(665\) 41778.6i 2.43625i
\(666\) 1461.62 + 8458.94i 0.0850402 + 0.492158i
\(667\) 10555.4i 0.612752i
\(668\) −5424.33 15227.6i −0.314182 0.881999i
\(669\) 10082.7 0.582692
\(670\) 7848.70 + 45423.2i 0.452570 + 2.61918i
\(671\) 735.136i 0.0422945i
\(672\) 5351.96 + 4649.63i 0.307227 + 0.266910i
\(673\) −3267.28 −0.187139 −0.0935693 0.995613i \(-0.529828\pi\)
−0.0935693 + 0.995613i \(0.529828\pi\)
\(674\) 4330.08 + 25059.7i 0.247461 + 1.43214i
\(675\) 9372.58i 0.534446i
\(676\) −1893.82 17473.7i −0.107750 0.994178i
\(677\) 20225.8i 1.14821i 0.818780 + 0.574107i \(0.194651\pi\)
−0.818780 + 0.574107i \(0.805349\pi\)
\(678\) 7306.93 1262.57i 0.413895 0.0715171i
\(679\) 18553.1 1.04860
\(680\) 9980.29 + 17704.9i 0.562833 + 0.998457i
\(681\) 11047.7i 0.621657i
\(682\) 16155.8 2791.56i 0.907091 0.156737i
\(683\) 4942.54 0.276897 0.138449 0.990370i \(-0.455788\pi\)
0.138449 + 0.990370i \(0.455788\pi\)
\(684\) −9989.36 + 3558.37i −0.558410 + 0.198915i
\(685\) 17792.9i 0.992454i
\(686\) −18759.4 + 3241.44i −1.04408 + 0.180406i
\(687\) 12659.7i 0.703052i
\(688\) 16358.2 + 20047.5i 0.906467 + 1.11091i
\(689\) −15072.5 + 11899.0i −0.833404 + 0.657934i
\(690\) 10620.6 1835.13i 0.585967 0.101250i
\(691\) 5672.16 0.312271 0.156135 0.987736i \(-0.450096\pi\)
0.156135 + 0.987736i \(0.450096\pi\)
\(692\) 5980.38 + 16788.6i 0.328526 + 0.922265i
\(693\) 2501.01i 0.137093i
\(694\) 2788.62 481.846i 0.152528 0.0263554i
\(695\) 14969.0i 0.816986i
\(696\) −6019.00 10677.6i −0.327801 0.581514i
\(697\) 4903.82i 0.266493i
\(698\) −298.429 1727.12i −0.0161830 0.0936566i
\(699\) 1139.02i 0.0616334i
\(700\) 12165.6 + 34152.4i 0.656882 + 1.84405i
\(701\) 14703.7i 0.792226i 0.918202 + 0.396113i \(0.129641\pi\)
−0.918202 + 0.396113i \(0.870359\pi\)
\(702\) 2663.97 + 2390.85i 0.143227 + 0.128542i
\(703\) −49666.4 −2.66459
\(704\) 5642.45 9324.19i 0.302071 0.499174i
\(705\) 9492.96 0.507128
\(706\) −5281.12 + 912.527i −0.281526 + 0.0486450i
\(707\) 8557.13 0.455197
\(708\) −6518.39 18299.0i −0.346011 0.971352i
\(709\) −35465.0 −1.87858 −0.939291 0.343122i \(-0.888516\pi\)
−0.939291 + 0.343122i \(0.888516\pi\)
\(710\) −27602.7 + 4769.48i −1.45903 + 0.252106i
\(711\) −978.155 −0.0515945
\(712\) −24998.0 + 14091.5i −1.31579 + 0.741714i
\(713\) 15918.8i 0.836134i
\(714\) −779.682 4512.30i −0.0408668 0.236511i
\(715\) 13433.2 + 17015.9i 0.702621 + 0.890010i
\(716\) −380.956 1069.45i −0.0198841 0.0558202i
\(717\) −8131.91 −0.423559
\(718\) −21410.9 + 3699.60i −1.11288 + 0.192295i
\(719\) 31867.9 1.65295 0.826476 0.562971i \(-0.190342\pi\)
0.826476 + 0.562971i \(0.190342\pi\)
\(720\) 9697.10 7912.55i 0.501930 0.409560i
\(721\) 6060.29i 0.313033i
\(722\) −7143.22 41340.4i −0.368204 2.13093i
\(723\) −14282.4 −0.734670
\(724\) −1882.86 5285.73i −0.0966521 0.271330i
\(725\) 62680.4i 3.21088i
\(726\) 7340.44 1268.36i 0.375247 0.0648391i
\(727\) 16752.6 0.854633 0.427317 0.904102i \(-0.359459\pi\)
0.427317 + 0.904102i \(0.359459\pi\)
\(728\) 12810.5 + 5254.07i 0.652180 + 0.267485i
\(729\) −729.000 −0.0370370
\(730\) −7892.39 + 1363.73i −0.400151 + 0.0691423i
\(731\) 16712.3i 0.845591i
\(732\) 780.802 278.134i 0.0394252 0.0140439i
\(733\) 7015.46 0.353509 0.176754 0.984255i \(-0.443440\pi\)
0.176754 + 0.984255i \(0.443440\pi\)
\(734\) −2300.22 13312.2i −0.115671 0.669431i
\(735\) 11249.0i 0.564523i
\(736\) −7988.27 6939.98i −0.400070 0.347570i
\(737\) −15965.7 −0.797969
\(738\) −2975.70 + 514.173i −0.148424 + 0.0256463i
\(739\) 1456.76 0.0725138 0.0362569 0.999343i \(-0.488457\pi\)
0.0362569 + 0.999343i \(0.488457\pi\)
\(740\) 55220.2 19670.3i 2.74316 0.977157i
\(741\) −16255.2 + 12832.7i −0.805868 + 0.636195i
\(742\) −2575.80 14907.1i −0.127440 0.737543i
\(743\) 8657.84i 0.427491i 0.976889 + 0.213745i \(0.0685663\pi\)
−0.976889 + 0.213745i \(0.931434\pi\)
\(744\) −9077.40 16103.2i −0.447303 0.793509i
\(745\) −40716.1 −2.00231
\(746\) 28005.2 4839.03i 1.37446 0.237493i
\(747\) −1814.42 −0.0888704
\(748\) −6631.18 + 2362.13i −0.324145 + 0.115466i
\(749\) −3706.05 −0.180796
\(750\) 40357.3 6973.36i 1.96485 0.339508i
\(751\) 1217.68 0.0591664 0.0295832 0.999562i \(-0.490582\pi\)
0.0295832 + 0.999562i \(0.490582\pi\)
\(752\) −5892.37 7221.30i −0.285735 0.350178i
\(753\) 7778.28 0.376436
\(754\) −17815.7 15989.1i −0.860488 0.772267i
\(755\) 44389.3i 2.13972i
\(756\) −2656.37 + 946.243i −0.127793 + 0.0455219i
\(757\) 27866.0i 1.33792i 0.743297 + 0.668962i \(0.233261\pi\)
−0.743297 + 0.668962i \(0.766739\pi\)
\(758\) 2501.70 + 14478.2i 0.119876 + 0.693763i
\(759\) 3732.98i 0.178523i
\(760\) 35558.6 + 63080.4i 1.69717 + 3.01075i
\(761\) 7301.63i 0.347811i 0.984762 + 0.173905i \(0.0556387\pi\)
−0.984762 + 0.173905i \(0.944361\pi\)
\(762\) 4480.09 774.117i 0.212988 0.0368022i
\(763\) 5509.27i 0.261401i
\(764\) −16427.7 + 5851.80i −0.777922 + 0.277108i
\(765\) −8083.86 −0.382056
\(766\) 3934.13 679.780i 0.185569 0.0320645i
\(767\) −23507.5 29776.9i −1.10666 1.40180i
\(768\) −12038.2 2465.20i −0.565612 0.115827i
\(769\) 8632.60i 0.404811i 0.979302 + 0.202405i \(0.0648759\pi\)
−0.979302 + 0.202405i \(0.935124\pi\)
\(770\) −16829.2 + 2907.92i −0.787637 + 0.136096i
\(771\) 11804.7i 0.551407i
\(772\) −8961.82 25158.4i −0.417802 1.17289i
\(773\) 4072.53 0.189494 0.0947470 0.995501i \(-0.469796\pi\)
0.0947470