Properties

Label 312.4.m.a.181.3
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.3
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.81504 - 0.274823i) q^{2} +3.00000i q^{3} +(7.84894 + 1.54728i) q^{4} -8.71484 q^{5} +(0.824470 - 8.44513i) q^{6} -16.6675i q^{7} +(-21.6699 - 6.51273i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(-2.81504 - 0.274823i) q^{2} +3.00000i q^{3} +(7.84894 + 1.54728i) q^{4} -8.71484 q^{5} +(0.824470 - 8.44513i) q^{6} -16.6675i q^{7} +(-21.6699 - 6.51273i) q^{8} -9.00000 q^{9} +(24.5327 + 2.39504i) q^{10} -35.9563 q^{11} +(-4.64184 + 23.5468i) q^{12} +(46.8360 - 1.83976i) q^{13} +(-4.58062 + 46.9198i) q^{14} -26.1445i q^{15} +(59.2119 + 24.2890i) q^{16} +23.1651 q^{17} +(25.3354 + 2.47341i) q^{18} +30.2303 q^{19} +(-68.4023 - 13.4843i) q^{20} +50.0026 q^{21} +(101.219 + 9.88164i) q^{22} +72.9013 q^{23} +(19.5382 - 65.0097i) q^{24} -49.0516 q^{25} +(-132.351 - 7.69263i) q^{26} -27.0000i q^{27} +(25.7893 - 130.822i) q^{28} +119.929i q^{29} +(-7.18512 + 73.5980i) q^{30} +96.3119i q^{31} +(-160.009 - 84.6474i) q^{32} -107.869i q^{33} +(-65.2108 - 6.36632i) q^{34} +145.255i q^{35} +(-70.6405 - 13.9255i) q^{36} -33.6307 q^{37} +(-85.0997 - 8.30800i) q^{38} +(5.51929 + 140.508i) q^{39} +(188.850 + 56.7574i) q^{40} -60.2958i q^{41} +(-140.759 - 13.7419i) q^{42} -6.93666i q^{43} +(-282.219 - 55.6345i) q^{44} +78.4335 q^{45} +(-205.220 - 20.0350i) q^{46} +452.018i q^{47} +(-72.8670 + 177.636i) q^{48} +65.1938 q^{49} +(138.082 + 13.4805i) q^{50} +69.4954i q^{51} +(370.460 + 58.0283i) q^{52} +308.251i q^{53} +(-7.42023 + 76.0062i) q^{54} +313.354 q^{55} +(-108.551 + 361.183i) q^{56} +90.6910i q^{57} +(32.9594 - 337.607i) q^{58} +92.9154 q^{59} +(40.4529 - 205.207i) q^{60} +538.354i q^{61} +(26.4688 - 271.122i) q^{62} +150.008i q^{63} +(427.169 + 282.260i) q^{64} +(-408.169 + 16.0332i) q^{65} +(-29.6449 + 303.656i) q^{66} +484.925 q^{67} +(181.822 + 35.8429i) q^{68} +218.704i q^{69} +(39.9194 - 408.898i) q^{70} +447.724i q^{71} +(195.029 + 58.6146i) q^{72} +763.242i q^{73} +(94.6719 + 9.24250i) q^{74} -147.155i q^{75} +(237.276 + 46.7748i) q^{76} +599.303i q^{77} +(23.0779 - 397.053i) q^{78} +354.543 q^{79} +(-516.022 - 211.675i) q^{80} +81.0000 q^{81} +(-16.5707 + 169.735i) q^{82} -232.957 q^{83} +(392.467 + 77.3679i) q^{84} -201.880 q^{85} +(-1.90636 + 19.5270i) q^{86} -359.788 q^{87} +(779.170 + 234.174i) q^{88} +1319.37i q^{89} +(-220.794 - 21.5554i) q^{90} +(-30.6643 - 780.641i) q^{91} +(572.198 + 112.799i) q^{92} -288.936 q^{93} +(124.225 - 1272.45i) q^{94} -263.453 q^{95} +(253.942 - 480.026i) q^{96} +1333.11i q^{97} +(-183.523 - 17.9168i) q^{98} +323.607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.81504 0.274823i −0.995268 0.0971647i
\(3\) 3.00000i 0.577350i
\(4\) 7.84894 + 1.54728i 0.981118 + 0.193410i
\(5\) −8.71484 −0.779479 −0.389739 0.920925i \(-0.627435\pi\)
−0.389739 + 0.920925i \(0.627435\pi\)
\(6\) 0.824470 8.44513i 0.0560981 0.574618i
\(7\) 16.6675i 0.899962i −0.893038 0.449981i \(-0.851431\pi\)
0.893038 0.449981i \(-0.148569\pi\)
\(8\) −21.6699 6.51273i −0.957683 0.287825i
\(9\) −9.00000 −0.333333
\(10\) 24.5327 + 2.39504i 0.775791 + 0.0757378i
\(11\) −35.9563 −0.985568 −0.492784 0.870152i \(-0.664021\pi\)
−0.492784 + 0.870152i \(0.664021\pi\)
\(12\) −4.64184 + 23.5468i −0.111665 + 0.566449i
\(13\) 46.8360 1.83976i 0.999229 0.0392506i
\(14\) −4.58062 + 46.9198i −0.0874445 + 0.895703i
\(15\) 26.1445i 0.450032i
\(16\) 59.2119 + 24.2890i 0.925185 + 0.379516i
\(17\) 23.1651 0.330492 0.165246 0.986252i \(-0.447158\pi\)
0.165246 + 0.986252i \(0.447158\pi\)
\(18\) 25.3354 + 2.47341i 0.331756 + 0.0323882i
\(19\) 30.2303 0.365017 0.182508 0.983204i \(-0.441578\pi\)
0.182508 + 0.983204i \(0.441578\pi\)
\(20\) −68.4023 13.4843i −0.764761 0.150759i
\(21\) 50.0026 0.519593
\(22\) 101.219 + 9.88164i 0.980904 + 0.0957624i
\(23\) 72.9013 0.660912 0.330456 0.943821i \(-0.392797\pi\)
0.330456 + 0.943821i \(0.392797\pi\)
\(24\) 19.5382 65.0097i 0.166176 0.552919i
\(25\) −49.0516 −0.392413
\(26\) −132.351 7.69263i −0.998315 0.0580249i
\(27\) 27.0000i 0.192450i
\(28\) 25.7893 130.822i 0.174061 0.882968i
\(29\) 119.929i 0.767943i 0.923345 + 0.383971i \(0.125444\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(30\) −7.18512 + 73.5980i −0.0437273 + 0.447903i
\(31\) 96.3119i 0.558004i 0.960290 + 0.279002i \(0.0900037\pi\)
−0.960290 + 0.279002i \(0.909996\pi\)
\(32\) −160.009 84.6474i −0.883932 0.467615i
\(33\) 107.869i 0.569018i
\(34\) −65.2108 6.36632i −0.328928 0.0321122i
\(35\) 145.255i 0.701501i
\(36\) −70.6405 13.9255i −0.327039 0.0644700i
\(37\) −33.6307 −0.149428 −0.0747142 0.997205i \(-0.523804\pi\)
−0.0747142 + 0.997205i \(0.523804\pi\)
\(38\) −85.0997 8.30800i −0.363289 0.0354667i
\(39\) 5.51929 + 140.508i 0.0226614 + 0.576905i
\(40\) 188.850 + 56.7574i 0.746494 + 0.224353i
\(41\) 60.2958i 0.229674i −0.993384 0.114837i \(-0.963365\pi\)
0.993384 0.114837i \(-0.0366345\pi\)
\(42\) −140.759 13.7419i −0.517134 0.0504861i
\(43\) 6.93666i 0.0246007i −0.999924 0.0123004i \(-0.996085\pi\)
0.999924 0.0123004i \(-0.00391542\pi\)
\(44\) −282.219 55.6345i −0.966958 0.190619i
\(45\) 78.4335 0.259826
\(46\) −205.220 20.0350i −0.657785 0.0642173i
\(47\) 452.018i 1.40284i 0.712747 + 0.701421i \(0.247451\pi\)
−0.712747 + 0.701421i \(0.752549\pi\)
\(48\) −72.8670 + 177.636i −0.219114 + 0.534156i
\(49\) 65.1938 0.190069
\(50\) 138.082 + 13.4805i 0.390556 + 0.0381287i
\(51\) 69.4954i 0.190810i
\(52\) 370.460 + 58.0283i 0.987953 + 0.154751i
\(53\) 308.251i 0.798897i 0.916756 + 0.399449i \(0.130798\pi\)
−0.916756 + 0.399449i \(0.869202\pi\)
\(54\) −7.42023 + 76.0062i −0.0186994 + 0.191539i
\(55\) 313.354 0.768229
\(56\) −108.551 + 361.183i −0.259031 + 0.861878i
\(57\) 90.6910i 0.210742i
\(58\) 32.9594 337.607i 0.0746169 0.764309i
\(59\) 92.9154 0.205026 0.102513 0.994732i \(-0.467312\pi\)
0.102513 + 0.994732i \(0.467312\pi\)
\(60\) 40.4529 205.207i 0.0870407 0.441535i
\(61\) 538.354i 1.12999i 0.825095 + 0.564993i \(0.191121\pi\)
−0.825095 + 0.564993i \(0.808879\pi\)
\(62\) 26.4688 271.122i 0.0542183 0.555364i
\(63\) 150.008i 0.299987i
\(64\) 427.169 + 282.260i 0.834314 + 0.551290i
\(65\) −408.169 + 16.0332i −0.778878 + 0.0305950i
\(66\) −29.6449 + 303.656i −0.0552884 + 0.566325i
\(67\) 484.925 0.884224 0.442112 0.896960i \(-0.354229\pi\)
0.442112 + 0.896960i \(0.354229\pi\)
\(68\) 181.822 + 35.8429i 0.324252 + 0.0639205i
\(69\) 218.704i 0.381578i
\(70\) 39.9194 408.898i 0.0681611 0.698182i
\(71\) 447.724i 0.748381i 0.927352 + 0.374190i \(0.122079\pi\)
−0.927352 + 0.374190i \(0.877921\pi\)
\(72\) 195.029 + 58.6146i 0.319228 + 0.0959416i
\(73\) 763.242i 1.22371i 0.790971 + 0.611854i \(0.209576\pi\)
−0.790971 + 0.611854i \(0.790424\pi\)
\(74\) 94.6719 + 9.24250i 0.148721 + 0.0145192i
\(75\) 147.155i 0.226560i
\(76\) 237.276 + 46.7748i 0.358124 + 0.0705978i
\(77\) 599.303i 0.886973i
\(78\) 23.0779 397.053i 0.0335007 0.576378i
\(79\) 354.543 0.504927 0.252464 0.967606i \(-0.418759\pi\)
0.252464 + 0.967606i \(0.418759\pi\)
\(80\) −516.022 211.675i −0.721162 0.295825i
\(81\) 81.0000 0.111111
\(82\) −16.5707 + 169.735i −0.0223162 + 0.228587i
\(83\) −232.957 −0.308076 −0.154038 0.988065i \(-0.549228\pi\)
−0.154038 + 0.988065i \(0.549228\pi\)
\(84\) 392.467 + 77.3679i 0.509782 + 0.100494i
\(85\) −201.880 −0.257612
\(86\) −1.90636 + 19.5270i −0.00239032 + 0.0244843i
\(87\) −359.788 −0.443372
\(88\) 779.170 + 234.174i 0.943862 + 0.283671i
\(89\) 1319.37i 1.57138i 0.618622 + 0.785689i \(0.287691\pi\)
−0.618622 + 0.785689i \(0.712309\pi\)
\(90\) −220.794 21.5554i −0.258597 0.0252459i
\(91\) −30.6643 780.641i −0.0353241 0.899268i
\(92\) 572.198 + 112.799i 0.648433 + 0.127827i
\(93\) −288.936 −0.322164
\(94\) 124.225 1272.45i 0.136307 1.39620i
\(95\) −263.453 −0.284523
\(96\) 253.942 480.026i 0.269978 0.510338i
\(97\) 1333.11i 1.39543i 0.716374 + 0.697716i \(0.245800\pi\)
−0.716374 + 0.697716i \(0.754200\pi\)
\(98\) −183.523 17.9168i −0.189170 0.0184680i
\(99\) 323.607 0.328523
\(100\) −385.003 75.8965i −0.385003 0.0758965i
\(101\) 834.686i 0.822321i −0.911563 0.411160i \(-0.865124\pi\)
0.911563 0.411160i \(-0.134876\pi\)
\(102\) 19.0989 195.633i 0.0185400 0.189907i
\(103\) 81.2939 0.0777682 0.0388841 0.999244i \(-0.487620\pi\)
0.0388841 + 0.999244i \(0.487620\pi\)
\(104\) −1026.91 265.163i −0.968242 0.250013i
\(105\) −435.764 −0.405012
\(106\) 84.7146 867.740i 0.0776246 0.795117i
\(107\) 1329.88i 1.20154i −0.799423 0.600769i \(-0.794861\pi\)
0.799423 0.600769i \(-0.205139\pi\)
\(108\) 41.7765 211.921i 0.0372218 0.188816i
\(109\) −292.074 −0.256657 −0.128329 0.991732i \(-0.540961\pi\)
−0.128329 + 0.991732i \(0.540961\pi\)
\(110\) −882.104 86.1169i −0.764594 0.0746448i
\(111\) 100.892i 0.0862726i
\(112\) 404.838 986.915i 0.341550 0.832631i
\(113\) 383.578 0.319328 0.159664 0.987171i \(-0.448959\pi\)
0.159664 + 0.987171i \(0.448959\pi\)
\(114\) 24.9240 255.299i 0.0204767 0.209745i
\(115\) −635.323 −0.515167
\(116\) −185.564 + 941.319i −0.148528 + 0.753442i
\(117\) −421.524 + 16.5579i −0.333076 + 0.0130835i
\(118\) −261.561 25.5353i −0.204056 0.0199213i
\(119\) 386.105i 0.297430i
\(120\) −170.272 + 566.549i −0.129530 + 0.430988i
\(121\) −38.1413 −0.0286561
\(122\) 147.952 1515.49i 0.109795 1.12464i
\(123\) 180.887 0.132602
\(124\) −149.021 + 755.947i −0.107924 + 0.547468i
\(125\) 1516.83 1.08536
\(126\) 41.2256 422.278i 0.0291482 0.298568i
\(127\) 568.964 0.397539 0.198769 0.980046i \(-0.436306\pi\)
0.198769 + 0.980046i \(0.436306\pi\)
\(128\) −1124.93 911.971i −0.776800 0.629747i
\(129\) 20.8100 0.0142032
\(130\) 1153.42 + 67.0400i 0.778165 + 0.0452292i
\(131\) 1759.15i 1.17327i −0.809853 0.586633i \(-0.800453\pi\)
0.809853 0.586633i \(-0.199547\pi\)
\(132\) 166.904 846.658i 0.110054 0.558274i
\(133\) 503.865i 0.328501i
\(134\) −1365.08 133.269i −0.880040 0.0859153i
\(135\) 235.301i 0.150011i
\(136\) −501.986 150.868i −0.316507 0.0951239i
\(137\) 798.340i 0.497860i −0.968521 0.248930i \(-0.919921\pi\)
0.968521 0.248930i \(-0.0800789\pi\)
\(138\) 60.1049 615.661i 0.0370759 0.379772i
\(139\) 2438.56i 1.48803i −0.668162 0.744016i \(-0.732919\pi\)
0.668162 0.744016i \(-0.267081\pi\)
\(140\) −224.750 + 1140.10i −0.135677 + 0.688255i
\(141\) −1356.05 −0.809931
\(142\) 123.045 1260.36i 0.0727162 0.744840i
\(143\) −1684.05 + 66.1511i −0.984808 + 0.0386841i
\(144\) −532.907 218.601i −0.308395 0.126505i
\(145\) 1045.17i 0.598595i
\(146\) 209.757 2148.56i 0.118901 1.21792i
\(147\) 195.581i 0.109737i
\(148\) −263.965 52.0361i −0.146607 0.0289009i
\(149\) 1811.39 0.995938 0.497969 0.867195i \(-0.334079\pi\)
0.497969 + 0.867195i \(0.334079\pi\)
\(150\) −40.4416 + 414.247i −0.0220136 + 0.225488i
\(151\) 341.374i 0.183978i 0.995760 + 0.0919888i \(0.0293224\pi\)
−0.995760 + 0.0919888i \(0.970678\pi\)
\(152\) −655.088 196.882i −0.349570 0.105061i
\(153\) −208.486 −0.110164
\(154\) 164.702 1687.06i 0.0861825 0.882776i
\(155\) 839.343i 0.434953i
\(156\) −174.085 + 1111.38i −0.0893457 + 0.570395i
\(157\) 2602.82i 1.32310i 0.749899 + 0.661552i \(0.230102\pi\)
−0.749899 + 0.661552i \(0.769898\pi\)
\(158\) −998.055 97.4368i −0.502538 0.0490611i
\(159\) −924.753 −0.461243
\(160\) 1394.45 + 737.689i 0.689006 + 0.364496i
\(161\) 1215.08i 0.594795i
\(162\) −228.019 22.2607i −0.110585 0.0107961i
\(163\) −280.578 −0.134825 −0.0674127 0.997725i \(-0.521474\pi\)
−0.0674127 + 0.997725i \(0.521474\pi\)
\(164\) 93.2945 473.258i 0.0444212 0.225337i
\(165\) 940.061i 0.443537i
\(166\) 655.784 + 64.0220i 0.306619 + 0.0299342i
\(167\) 445.106i 0.206248i 0.994669 + 0.103124i \(0.0328838\pi\)
−0.994669 + 0.103124i \(0.967116\pi\)
\(168\) −1083.55 325.653i −0.497605 0.149552i
\(169\) 2190.23 172.334i 0.996919 0.0784408i
\(170\) 568.302 + 55.4814i 0.256393 + 0.0250308i
\(171\) −272.073 −0.121672
\(172\) 10.7329 54.4455i 0.00475802 0.0241362i
\(173\) 4293.12i 1.88670i 0.331796 + 0.943351i \(0.392345\pi\)
−0.331796 + 0.943351i \(0.607655\pi\)
\(174\) 1012.82 + 98.8782i 0.441274 + 0.0430801i
\(175\) 817.569i 0.353156i
\(176\) −2129.04 873.344i −0.911833 0.374039i
\(177\) 278.746i 0.118372i
\(178\) 362.593 3714.08i 0.152682 1.56394i
\(179\) 1254.41i 0.523792i 0.965096 + 0.261896i \(0.0843478\pi\)
−0.965096 + 0.261896i \(0.915652\pi\)
\(180\) 615.620 + 121.359i 0.254920 + 0.0502530i
\(181\) 581.299i 0.238716i −0.992851 0.119358i \(-0.961916\pi\)
0.992851 0.119358i \(-0.0380837\pi\)
\(182\) −128.217 + 2205.97i −0.0522202 + 0.898445i
\(183\) −1615.06 −0.652398
\(184\) −1579.76 474.787i −0.632944 0.190227i
\(185\) 293.086 0.116476
\(186\) 813.367 + 79.4063i 0.320640 + 0.0313030i
\(187\) −832.933 −0.325723
\(188\) −699.398 + 3547.86i −0.271324 + 1.37635i
\(189\) −450.023 −0.173198
\(190\) 741.630 + 72.4029i 0.283176 + 0.0276456i
\(191\) −3296.98 −1.24901 −0.624506 0.781020i \(-0.714700\pi\)
−0.624506 + 0.781020i \(0.714700\pi\)
\(192\) −846.781 + 1281.51i −0.318287 + 0.481691i
\(193\) 450.627i 0.168067i 0.996463 + 0.0840333i \(0.0267802\pi\)
−0.996463 + 0.0840333i \(0.973220\pi\)
\(194\) 366.370 3752.77i 0.135587 1.38883i
\(195\) −48.0997 1224.51i −0.0176640 0.449685i
\(196\) 511.702 + 100.873i 0.186480 + 0.0367613i
\(197\) 4208.90 1.52219 0.761095 0.648640i \(-0.224662\pi\)
0.761095 + 0.648640i \(0.224662\pi\)
\(198\) −910.968 88.9348i −0.326968 0.0319208i
\(199\) 4910.70 1.74930 0.874649 0.484756i \(-0.161092\pi\)
0.874649 + 0.484756i \(0.161092\pi\)
\(200\) 1062.94 + 319.460i 0.375807 + 0.112946i
\(201\) 1454.77i 0.510507i
\(202\) −229.391 + 2349.68i −0.0799006 + 0.818430i
\(203\) 1998.93 0.691119
\(204\) −107.529 + 545.465i −0.0369045 + 0.187207i
\(205\) 525.468i 0.179026i
\(206\) −228.846 22.3415i −0.0774003 0.00755633i
\(207\) −656.112 −0.220304
\(208\) 2817.94 + 1028.67i 0.939369 + 0.342909i
\(209\) −1086.97 −0.359749
\(210\) 1226.70 + 119.758i 0.403095 + 0.0393528i
\(211\) 3970.82i 1.29556i −0.761829 0.647778i \(-0.775698\pi\)
0.761829 0.647778i \(-0.224302\pi\)
\(212\) −476.951 + 2419.45i −0.154515 + 0.783812i
\(213\) −1343.17 −0.432078
\(214\) −365.482 + 3743.68i −0.116747 + 1.19585i
\(215\) 60.4519i 0.0191757i
\(216\) −175.844 + 585.087i −0.0553919 + 0.184306i
\(217\) 1605.28 0.502182
\(218\) 822.202 + 80.2688i 0.255443 + 0.0249380i
\(219\) −2289.72 −0.706508
\(220\) 2459.50 + 484.846i 0.753723 + 0.148583i
\(221\) 1084.96 42.6183i 0.330238 0.0129720i
\(222\) −27.7275 + 284.016i −0.00838265 + 0.0858643i
\(223\) 484.716i 0.145556i 0.997348 + 0.0727780i \(0.0231864\pi\)
−0.997348 + 0.0727780i \(0.976814\pi\)
\(224\) −1410.86 + 2666.95i −0.420836 + 0.795505i
\(225\) 441.464 0.130804
\(226\) −1079.79 105.416i −0.317817 0.0310274i
\(227\) 6155.05 1.79967 0.899835 0.436231i \(-0.143687\pi\)
0.899835 + 0.436231i \(0.143687\pi\)
\(228\) −140.324 + 711.829i −0.0407597 + 0.206763i
\(229\) −5029.53 −1.45136 −0.725679 0.688034i \(-0.758474\pi\)
−0.725679 + 0.688034i \(0.758474\pi\)
\(230\) 1788.46 + 174.602i 0.512729 + 0.0500560i
\(231\) −1797.91 −0.512094
\(232\) 781.068 2598.86i 0.221033 0.735446i
\(233\) −1563.57 −0.439627 −0.219813 0.975542i \(-0.570545\pi\)
−0.219813 + 0.975542i \(0.570545\pi\)
\(234\) 1191.16 + 69.2336i 0.332772 + 0.0193416i
\(235\) 3939.26i 1.09349i
\(236\) 729.288 + 143.766i 0.201155 + 0.0396541i
\(237\) 1063.63i 0.291520i
\(238\) −106.111 + 1086.90i −0.0288997 + 0.296023i
\(239\) 6996.70i 1.89364i −0.321770 0.946818i \(-0.604278\pi\)
0.321770 0.946818i \(-0.395722\pi\)
\(240\) 635.024 1548.07i 0.170794 0.416363i
\(241\) 3982.68i 1.06451i −0.846584 0.532255i \(-0.821345\pi\)
0.846584 0.532255i \(-0.178655\pi\)
\(242\) 107.370 + 10.4821i 0.0285206 + 0.00278437i
\(243\) 243.000i 0.0641500i
\(244\) −832.984 + 4225.51i −0.218551 + 1.10865i
\(245\) −568.153 −0.148155
\(246\) −509.206 49.7121i −0.131975 0.0128843i
\(247\) 1415.87 55.6166i 0.364735 0.0143271i
\(248\) 627.254 2087.07i 0.160607 0.534391i
\(249\) 698.871i 0.177868i
\(250\) −4269.95 416.861i −1.08022 0.105458i
\(251\) 1286.97i 0.323636i −0.986821 0.161818i \(-0.948264\pi\)
0.986821 0.161818i \(-0.0517358\pi\)
\(252\) −232.104 + 1177.40i −0.0580205 + 0.294323i
\(253\) −2621.27 −0.651374
\(254\) −1601.66 156.365i −0.395658 0.0386267i
\(255\) 605.641i 0.148732i
\(256\) 2916.09 + 2876.40i 0.711935 + 0.702245i
\(257\) 6235.56 1.51348 0.756738 0.653718i \(-0.226792\pi\)
0.756738 + 0.653718i \(0.226792\pi\)
\(258\) −58.5810 5.71907i −0.0141360 0.00138005i
\(259\) 560.540i 0.134480i
\(260\) −3228.50 505.707i −0.770089 0.120625i
\(261\) 1079.36i 0.255981i
\(262\) −483.456 + 4952.09i −0.114000 + 1.16772i
\(263\) 692.393 0.162337 0.0811687 0.996700i \(-0.474135\pi\)
0.0811687 + 0.996700i \(0.474135\pi\)
\(264\) −702.522 + 2337.51i −0.163777 + 0.544939i
\(265\) 2686.36i 0.622723i
\(266\) −138.474 + 1418.40i −0.0319187 + 0.326947i
\(267\) −3958.10 −0.907235
\(268\) 3806.15 + 750.314i 0.867528 + 0.171018i
\(269\) 7517.66i 1.70394i 0.523591 + 0.851970i \(0.324592\pi\)
−0.523591 + 0.851970i \(0.675408\pi\)
\(270\) 64.6661 662.382i 0.0145758 0.149301i
\(271\) 3416.45i 0.765810i 0.923788 + 0.382905i \(0.125076\pi\)
−0.923788 + 0.382905i \(0.874924\pi\)
\(272\) 1371.65 + 562.658i 0.305767 + 0.125427i
\(273\) 2341.92 91.9928i 0.519193 0.0203943i
\(274\) −219.403 + 2247.36i −0.0483744 + 0.495504i
\(275\) 1763.72 0.386749
\(276\) −338.396 + 1716.60i −0.0738009 + 0.374373i
\(277\) 5784.73i 1.25477i 0.778710 + 0.627385i \(0.215875\pi\)
−0.778710 + 0.627385i \(0.784125\pi\)
\(278\) −670.174 + 6864.67i −0.144584 + 1.48099i
\(279\) 866.807i 0.186001i
\(280\) 946.005 3147.65i 0.201909 0.671816i
\(281\) 3098.96i 0.657895i −0.944348 0.328948i \(-0.893306\pi\)
0.944348 0.328948i \(-0.106694\pi\)
\(282\) 3817.35 + 372.675i 0.806099 + 0.0786967i
\(283\) 8198.04i 1.72199i 0.508614 + 0.860994i \(0.330158\pi\)
−0.508614 + 0.860994i \(0.669842\pi\)
\(284\) −692.754 + 3514.16i −0.144744 + 0.734250i
\(285\) 790.358i 0.164269i
\(286\) 4758.86 + 276.599i 0.983907 + 0.0571875i
\(287\) −1004.98 −0.206698
\(288\) 1440.08 + 761.827i 0.294644 + 0.155872i
\(289\) −4376.38 −0.890775
\(290\) −287.236 + 2942.19i −0.0581623 + 0.595763i
\(291\) −3999.33 −0.805653
\(292\) −1180.95 + 5990.64i −0.236677 + 1.20060i
\(293\) −2594.28 −0.517267 −0.258634 0.965975i \(-0.583272\pi\)
−0.258634 + 0.965975i \(0.583272\pi\)
\(294\) 53.7503 550.570i 0.0106625 0.109217i
\(295\) −809.743 −0.159814
\(296\) 728.774 + 219.028i 0.143105 + 0.0430092i
\(297\) 970.821i 0.189673i
\(298\) −5099.14 497.812i −0.991225 0.0967700i
\(299\) 3414.41 134.121i 0.660403 0.0259412i
\(300\) 227.690 1155.01i 0.0438189 0.222282i
\(301\) −115.617 −0.0221397
\(302\) 93.8175 960.982i 0.0178761 0.183107i
\(303\) 2504.06 0.474767
\(304\) 1789.99 + 734.265i 0.337708 + 0.138530i
\(305\) 4691.67i 0.880801i
\(306\) 586.898 + 57.2968i 0.109643 + 0.0107041i
\(307\) −2227.35 −0.414076 −0.207038 0.978333i \(-0.566382\pi\)
−0.207038 + 0.978333i \(0.566382\pi\)
\(308\) −927.289 + 4703.90i −0.171549 + 0.870225i
\(309\) 243.882i 0.0448995i
\(310\) −230.671 + 2362.79i −0.0422620 + 0.432894i
\(311\) 6254.74 1.14043 0.570215 0.821496i \(-0.306860\pi\)
0.570215 + 0.821496i \(0.306860\pi\)
\(312\) 795.489 3080.74i 0.144345 0.559015i
\(313\) −8081.71 −1.45944 −0.729720 0.683746i \(-0.760350\pi\)
−0.729720 + 0.683746i \(0.760350\pi\)
\(314\) 715.314 7327.04i 0.128559 1.31684i
\(315\) 1307.29i 0.233834i
\(316\) 2782.79 + 548.577i 0.495393 + 0.0976579i
\(317\) −607.880 −0.107703 −0.0538517 0.998549i \(-0.517150\pi\)
−0.0538517 + 0.998549i \(0.517150\pi\)
\(318\) 2603.22 + 254.144i 0.459061 + 0.0448166i
\(319\) 4312.22i 0.756859i
\(320\) −3722.71 2459.85i −0.650330 0.429719i
\(321\) 3989.65 0.693708
\(322\) −333.933 + 3420.52i −0.0577931 + 0.591981i
\(323\) 700.290 0.120635
\(324\) 635.764 + 125.330i 0.109013 + 0.0214900i
\(325\) −2297.38 + 90.2433i −0.392110 + 0.0154024i
\(326\) 789.838 + 77.1093i 0.134187 + 0.0131003i
\(327\) 876.223i 0.148181i
\(328\) −392.690 + 1306.60i −0.0661058 + 0.219955i
\(329\) 7534.02 1.26250
\(330\) 258.351 2646.31i 0.0430962 0.441439i
\(331\) −8021.66 −1.33206 −0.666028 0.745927i \(-0.732007\pi\)
−0.666028 + 0.745927i \(0.732007\pi\)
\(332\) −1828.47 360.449i −0.302259 0.0595850i
\(333\) 302.676 0.0498095
\(334\) 122.326 1252.99i 0.0200400 0.205272i
\(335\) −4226.04 −0.689234
\(336\) 2960.74 + 1214.51i 0.480720 + 0.197194i
\(337\) −10370.6 −1.67633 −0.838164 0.545419i \(-0.816371\pi\)
−0.838164 + 0.545419i \(0.816371\pi\)
\(338\) −6212.96 116.798i −0.999823 0.0187957i
\(339\) 1150.74i 0.184364i
\(340\) −1584.55 312.365i −0.252747 0.0498247i
\(341\) 3463.02i 0.549951i
\(342\) 765.898 + 74.7720i 0.121096 + 0.0118222i
\(343\) 6803.58i 1.07102i
\(344\) −45.1766 + 150.317i −0.00708069 + 0.0235597i
\(345\) 1905.97i 0.297432i
\(346\) 1179.85 12085.3i 0.183321 1.87778i
\(347\) 2078.35i 0.321532i 0.986993 + 0.160766i \(0.0513965\pi\)
−0.986993 + 0.160766i \(0.948604\pi\)
\(348\) −2823.96 556.693i −0.435000 0.0857525i
\(349\) 5847.40 0.896861 0.448430 0.893818i \(-0.351983\pi\)
0.448430 + 0.893818i \(0.351983\pi\)
\(350\) 224.687 2301.49i 0.0343143 0.351485i
\(351\) −49.6736 1264.57i −0.00755379 0.192302i
\(352\) 5753.33 + 3043.61i 0.871175 + 0.460867i
\(353\) 1046.41i 0.157776i −0.996883 0.0788881i \(-0.974863\pi\)
0.996883 0.0788881i \(-0.0251370\pi\)
\(354\) 76.6060 784.683i 0.0115016 0.117812i
\(355\) 3901.84i 0.583347i
\(356\) −2041.43 + 10355.6i −0.303920 + 1.54171i
\(357\) 1158.32 0.171721
\(358\) 344.741 3531.21i 0.0508941 0.521314i
\(359\) 9018.15i 1.32579i −0.748711 0.662896i \(-0.769327\pi\)
0.748711 0.662896i \(-0.230673\pi\)
\(360\) −1699.65 510.817i −0.248831 0.0747844i
\(361\) −5945.13 −0.866763
\(362\) −159.755 + 1636.38i −0.0231948 + 0.237587i
\(363\) 114.424i 0.0165446i
\(364\) 967.187 6174.65i 0.139270 0.889120i
\(365\) 6651.53i 0.953854i
\(366\) 4546.47 + 443.857i 0.649311 + 0.0633901i
\(367\) −248.518 −0.0353475 −0.0176737 0.999844i \(-0.505626\pi\)
−0.0176737 + 0.999844i \(0.505626\pi\)
\(368\) 4316.62 + 1770.70i 0.611466 + 0.250827i
\(369\) 542.662i 0.0765579i
\(370\) −825.050 80.5469i −0.115925 0.0113174i
\(371\) 5137.78 0.718977
\(372\) −2267.84 447.064i −0.316081 0.0623097i
\(373\) 5757.08i 0.799170i 0.916696 + 0.399585i \(0.130846\pi\)
−0.916696 + 0.399585i \(0.869154\pi\)
\(374\) 2344.74 + 228.909i 0.324181 + 0.0316487i
\(375\) 4550.49i 0.626631i
\(376\) 2943.87 9795.18i 0.403773 1.34348i
\(377\) 220.642 + 5617.02i 0.0301422 + 0.767351i
\(378\) 1266.83 + 123.677i 0.172378 + 0.0168287i
\(379\) −6826.63 −0.925226 −0.462613 0.886560i \(-0.653088\pi\)
−0.462613 + 0.886560i \(0.653088\pi\)
\(380\) −2067.82 407.635i −0.279150 0.0550295i
\(381\) 1706.89i 0.229519i
\(382\) 9281.15 + 906.087i 1.24310 + 0.121360i
\(383\) 1577.59i 0.210472i −0.994447 0.105236i \(-0.966440\pi\)
0.994447 0.105236i \(-0.0335598\pi\)
\(384\) 2735.91 3374.78i 0.363585 0.448486i
\(385\) 5222.83i 0.691377i
\(386\) 123.843 1268.53i 0.0163301 0.167271i
\(387\) 62.4299i 0.00820024i
\(388\) −2062.70 + 10463.5i −0.269890 + 1.36908i
\(389\) 4906.45i 0.639504i −0.947501 0.319752i \(-0.896400\pi\)
0.947501 0.319752i \(-0.103600\pi\)
\(390\) −201.120 + 3460.26i −0.0261131 + 0.449274i
\(391\) 1688.77 0.218426
\(392\) −1412.74 424.589i −0.182026 0.0547066i
\(393\) 5277.46 0.677386
\(394\) −11848.2 1156.70i −1.51499 0.147903i
\(395\) −3089.79 −0.393580
\(396\) 2539.97 + 500.711i 0.322319 + 0.0635395i
\(397\) −807.657 −0.102104 −0.0510518 0.998696i \(-0.516257\pi\)
−0.0510518 + 0.998696i \(0.516257\pi\)
\(398\) −13823.8 1349.58i −1.74102 0.169970i
\(399\) 1511.59 0.189660
\(400\) −2904.44 1191.42i −0.363055 0.148927i
\(401\) 6460.01i 0.804483i 0.915534 + 0.402241i \(0.131769\pi\)
−0.915534 + 0.402241i \(0.868231\pi\)
\(402\) 399.806 4095.25i 0.0496032 0.508091i
\(403\) 177.191 + 4510.87i 0.0219020 + 0.557574i
\(404\) 1291.49 6551.41i 0.159045 0.806794i
\(405\) −705.902 −0.0866088
\(406\) −5627.06 549.351i −0.687849 0.0671523i
\(407\) 1209.24 0.147272
\(408\) 452.605 1505.96i 0.0549198 0.182735i
\(409\) 6999.02i 0.846159i 0.906093 + 0.423079i \(0.139051\pi\)
−0.906093 + 0.423079i \(0.860949\pi\)
\(410\) 144.411 1479.22i 0.0173950 0.178179i
\(411\) 2395.02 0.287440
\(412\) 638.072 + 125.784i 0.0762998 + 0.0150411i
\(413\) 1548.67i 0.184516i
\(414\) 1846.98 + 180.315i 0.219262 + 0.0214058i
\(415\) 2030.18 0.240139
\(416\) −7649.91 3670.17i −0.901605 0.432560i
\(417\) 7315.69 0.859115
\(418\) 3059.88 + 298.725i 0.358046 + 0.0349549i
\(419\) 12515.6i 1.45925i −0.683848 0.729624i \(-0.739695\pi\)
0.683848 0.729624i \(-0.260305\pi\)
\(420\) −3420.29 674.249i −0.397364 0.0783333i
\(421\) 12863.5 1.48914 0.744571 0.667543i \(-0.232654\pi\)
0.744571 + 0.667543i \(0.232654\pi\)
\(422\) −1091.27 + 11178.0i −0.125882 + 1.28943i
\(423\) 4068.16i 0.467614i
\(424\) 2007.56 6679.77i 0.229942 0.765090i
\(425\) −1136.29 −0.129689
\(426\) 3781.09 + 369.135i 0.430033 + 0.0419827i
\(427\) 8973.03 1.01694
\(428\) 2057.70 10438.2i 0.232389 1.17885i
\(429\) −198.453 5052.16i −0.0223343 0.568579i
\(430\) 16.6136 170.175i 0.00186320 0.0190850i
\(431\) 13608.6i 1.52089i 0.649401 + 0.760446i \(0.275020\pi\)
−0.649401 + 0.760446i \(0.724980\pi\)
\(432\) 655.803 1598.72i 0.0730379 0.178052i
\(433\) −12975.4 −1.44009 −0.720043 0.693929i \(-0.755878\pi\)
−0.720043 + 0.693929i \(0.755878\pi\)
\(434\) −4518.94 441.169i −0.499806 0.0487944i
\(435\) 3135.50 0.345599
\(436\) −2292.47 451.920i −0.251811 0.0496401i
\(437\) 2203.83 0.241244
\(438\) 6445.68 + 629.270i 0.703165 + 0.0686476i
\(439\) 10025.0 1.08991 0.544953 0.838467i \(-0.316548\pi\)
0.544953 + 0.838467i \(0.316548\pi\)
\(440\) −6790.34 2040.79i −0.735720 0.221115i
\(441\) −586.744 −0.0633564
\(442\) −3065.93 178.201i −0.329935 0.0191768i
\(443\) 7965.70i 0.854315i 0.904177 + 0.427158i \(0.140485\pi\)
−0.904177 + 0.427158i \(0.859515\pi\)
\(444\) 156.108 791.896i 0.0166860 0.0846436i
\(445\) 11498.1i 1.22486i
\(446\) 133.211 1364.50i 0.0141429 0.144867i
\(447\) 5434.17i 0.575005i
\(448\) 4704.58 7119.84i 0.496140 0.750850i
\(449\) 2522.14i 0.265094i −0.991177 0.132547i \(-0.957684\pi\)
0.991177 0.132547i \(-0.0423155\pi\)
\(450\) −1242.74 121.325i −0.130185 0.0127096i
\(451\) 2168.02i 0.226359i
\(452\) 3010.69 + 593.503i 0.313298 + 0.0617611i
\(453\) −1024.12 −0.106219
\(454\) −17326.7 1691.55i −1.79115 0.174864i
\(455\) 267.234 + 6803.16i 0.0275343 + 0.700960i
\(456\) 590.646 1965.26i 0.0606569 0.201824i
\(457\) 9207.77i 0.942497i 0.882000 + 0.471249i \(0.156197\pi\)
−0.882000 + 0.471249i \(0.843803\pi\)
\(458\) 14158.4 + 1382.23i 1.44449 + 0.141021i
\(459\) 625.458i 0.0636033i
\(460\) −4986.62 983.022i −0.505440 0.0996384i
\(461\) −4470.19 −0.451622 −0.225811 0.974171i \(-0.572503\pi\)
−0.225811 + 0.974171i \(0.572503\pi\)
\(462\) 5061.19 + 494.107i 0.509671 + 0.0497575i
\(463\) 8509.64i 0.854161i −0.904214 0.427081i \(-0.859542\pi\)
0.904214 0.427081i \(-0.140458\pi\)
\(464\) −2912.97 + 7101.24i −0.291446 + 0.710489i
\(465\) 2518.03 0.251120
\(466\) 4401.52 + 429.706i 0.437546 + 0.0427162i
\(467\) 3571.08i 0.353854i 0.984224 + 0.176927i \(0.0566157\pi\)
−0.984224 + 0.176927i \(0.943384\pi\)
\(468\) −3334.14 522.254i −0.329318 0.0515838i
\(469\) 8082.49i 0.795767i
\(470\) −1082.60 + 11089.2i −0.106248 + 1.08831i
\(471\) −7808.45 −0.763895
\(472\) −2013.47 605.133i −0.196350 0.0590117i
\(473\) 249.417i 0.0242457i
\(474\) 292.310 2994.16i 0.0283254 0.290140i
\(475\) −1482.85 −0.143237
\(476\) 597.413 3030.52i 0.0575260 0.291814i
\(477\) 2774.26i 0.266299i
\(478\) −1922.86 + 19696.0i −0.183995 + 1.88468i
\(479\) 4738.57i 0.452006i 0.974127 + 0.226003i \(0.0725659\pi\)
−0.974127 + 0.226003i \(0.927434\pi\)
\(480\) −2213.07 + 4183.35i −0.210442 + 0.397798i
\(481\) −1575.13 + 61.8725i −0.149313 + 0.00586516i
\(482\) −1094.53 + 11211.4i −0.103433 + 1.05947i
\(483\) 3645.25 0.343405
\(484\) −299.369 59.0153i −0.0281151 0.00554238i
\(485\) 11617.8i 1.08771i
\(486\) 66.7821 684.056i 0.00623312 0.0638465i
\(487\) 20179.6i 1.87767i 0.344371 + 0.938834i \(0.388092\pi\)
−0.344371 + 0.938834i \(0.611908\pi\)
\(488\) 3506.16 11666.1i 0.325238 1.08217i
\(489\) 841.733i 0.0778415i
\(490\) 1599.38 + 156.142i 0.147454 + 0.0143954i
\(491\) 5526.37i 0.507946i 0.967211 + 0.253973i \(0.0817375\pi\)
−0.967211 + 0.253973i \(0.918263\pi\)
\(492\) 1419.78 + 279.883i 0.130098 + 0.0256466i
\(493\) 2778.18i 0.253799i
\(494\) −4001.02 232.551i −0.364402 0.0211801i
\(495\) −2820.18 −0.256076
\(496\) −2339.32 + 5702.81i −0.211771 + 0.516257i
\(497\) 7462.45 0.673514
\(498\) −192.066 + 1967.35i −0.0172825 + 0.177026i
\(499\) 11790.6 1.05776 0.528878 0.848698i \(-0.322613\pi\)
0.528878 + 0.848698i \(0.322613\pi\)
\(500\) 11905.5 + 2346.96i 1.06486 + 0.209919i
\(501\) −1335.32 −0.119077
\(502\) −353.689 + 3622.87i −0.0314460 + 0.322105i
\(503\) −17921.2 −1.58860 −0.794301 0.607525i \(-0.792163\pi\)
−0.794301 + 0.607525i \(0.792163\pi\)
\(504\) 976.960 3250.65i 0.0863437 0.287293i
\(505\) 7274.16i 0.640982i
\(506\) 7378.98 + 720.385i 0.648292 + 0.0632905i
\(507\) 517.003 + 6570.69i 0.0452878 + 0.575571i
\(508\) 4465.77 + 880.347i 0.390032 + 0.0768879i
\(509\) 7918.98 0.689593 0.344796 0.938677i \(-0.387948\pi\)
0.344796 + 0.938677i \(0.387948\pi\)
\(510\) −166.444 + 1704.91i −0.0144515 + 0.148028i
\(511\) 12721.3 1.10129
\(512\) −7418.41 8898.59i −0.640333 0.768097i
\(513\) 816.219i 0.0702475i
\(514\) −17553.4 1713.68i −1.50631 0.147056i
\(515\) −708.463 −0.0606187
\(516\) 163.336 + 32.1988i 0.0139350 + 0.00274704i
\(517\) 16252.9i 1.38260i
\(518\) 154.050 1577.95i 0.0130667 0.133844i
\(519\) −12879.3 −1.08929
\(520\) 8949.39 + 2310.85i 0.754724 + 0.194880i
\(521\) −9351.85 −0.786395 −0.393198 0.919454i \(-0.628631\pi\)
−0.393198 + 0.919454i \(0.628631\pi\)
\(522\) −296.635 + 3038.46i −0.0248723 + 0.254770i
\(523\) 10017.4i 0.837531i −0.908094 0.418766i \(-0.862463\pi\)
0.908094 0.418766i \(-0.137537\pi\)
\(524\) 2721.90 13807.5i 0.226921 1.15111i
\(525\) −2452.71 −0.203895
\(526\) −1949.12 190.286i −0.161569 0.0157735i
\(527\) 2231.08i 0.184416i
\(528\) 2620.03 6387.13i 0.215951 0.526447i
\(529\) −6852.40 −0.563195
\(530\) −738.274 + 7562.22i −0.0605067 + 0.619777i
\(531\) −836.239 −0.0683421
\(532\) 779.620 3954.81i 0.0635353 0.322298i
\(533\) −110.930 2824.02i −0.00901484 0.229497i
\(534\) 11142.2 + 1087.78i 0.902943 + 0.0881512i
\(535\) 11589.7i 0.936573i
\(536\) −10508.3 3158.18i −0.846806 0.254502i
\(537\) −3763.22 −0.302412
\(538\) 2066.03 21162.5i 0.165563 1.69588i
\(539\) −2344.13 −0.187326
\(540\) −364.076 + 1846.86i −0.0290136 + 0.147178i
\(541\) −18747.9 −1.48990 −0.744951 0.667119i \(-0.767527\pi\)
−0.744951 + 0.667119i \(0.767527\pi\)
\(542\) 938.919 9617.45i 0.0744097 0.762186i
\(543\) 1743.90 0.137823
\(544\) −3706.62 1960.87i −0.292133 0.154543i
\(545\) 2545.38 0.200059
\(546\) −6617.90 384.651i −0.518718 0.0301493i
\(547\) 7024.44i 0.549074i 0.961577 + 0.274537i \(0.0885246\pi\)
−0.961577 + 0.274537i \(0.911475\pi\)
\(548\) 1235.26 6266.13i 0.0962910 0.488459i
\(549\) 4845.19i 0.376662i
\(550\) −4964.94 484.710i −0.384919 0.0375784i
\(551\) 3625.51i 0.280312i
\(552\) 1424.36 4739.29i 0.109828 0.365431i
\(553\) 5909.36i 0.454415i
\(554\) 1589.78 16284.3i 0.121919 1.24883i
\(555\) 879.258i 0.0672476i
\(556\) 3773.14 19140.2i 0.287800 1.45993i
\(557\) 11378.9 0.865604 0.432802 0.901489i \(-0.357525\pi\)
0.432802 + 0.901489i \(0.357525\pi\)
\(558\) −238.219 + 2440.10i −0.0180728 + 0.185121i
\(559\) −12.7618 324.886i −0.000965593 0.0245818i
\(560\) −3528.09 + 8600.80i −0.266231 + 0.649018i
\(561\) 2498.80i 0.188056i
\(562\) −851.667 + 8723.71i −0.0639242 + 0.654782i
\(563\) 15789.5i 1.18197i 0.806683 + 0.590985i \(0.201261\pi\)
−0.806683 + 0.590985i \(0.798739\pi\)
\(564\) −10643.6 2098.19i −0.794638 0.156649i
\(565\) −3342.82 −0.248909
\(566\) 2253.01 23077.8i 0.167317 1.71384i
\(567\) 1350.07i 0.0999957i
\(568\) 2915.90 9702.13i 0.215403 0.716712i
\(569\) 13400.2 0.987284 0.493642 0.869665i \(-0.335665\pi\)
0.493642 + 0.869665i \(0.335665\pi\)
\(570\) −217.209 + 2224.89i −0.0159612 + 0.163492i
\(571\) 22295.1i 1.63401i 0.576630 + 0.817005i \(0.304367\pi\)
−0.576630 + 0.817005i \(0.695633\pi\)
\(572\) −13320.4 2086.48i −0.973695 0.152518i
\(573\) 9890.95i 0.721117i
\(574\) 2829.07 + 276.192i 0.205720 + 0.0200837i
\(575\) −3575.93 −0.259350
\(576\) −3844.52 2540.34i −0.278105 0.183763i
\(577\) 7646.84i 0.551719i 0.961198 + 0.275860i \(0.0889625\pi\)
−0.961198 + 0.275860i \(0.911038\pi\)
\(578\) 12319.7 + 1202.73i 0.886560 + 0.0865519i
\(579\) −1351.88 −0.0970332
\(580\) 1617.16 8203.45i 0.115774 0.587292i
\(581\) 3882.81i 0.277257i
\(582\) 11258.3 + 1099.11i 0.801841 + 0.0782811i
\(583\) 11083.6i 0.787367i
\(584\) 4970.79 16539.4i 0.352213 1.17192i
\(585\) 3673.52 144.299i 0.259626 0.0101983i
\(586\) 7303.01 + 712.968i 0.514820 + 0.0502601i
\(587\) −7365.05 −0.517867 −0.258934 0.965895i \(-0.583371\pi\)
−0.258934 + 0.965895i \(0.583371\pi\)
\(588\) −302.619 + 1535.11i −0.0212241 + 0.107665i
\(589\) 2911.54i 0.203681i
\(590\) 2279.46 + 222.536i 0.159058 + 0.0155283i
\(591\) 12626.7i 0.878837i
\(592\) −1991.34 816.857i −0.138249 0.0567105i
\(593\) 16147.1i 1.11818i −0.829106 0.559092i \(-0.811150\pi\)
0.829106 0.559092i \(-0.188850\pi\)
\(594\) 266.804 2732.90i 0.0184295 0.188775i
\(595\) 3364.84i 0.231841i
\(596\) 14217.5 + 2802.72i 0.977133 + 0.192624i
\(597\) 14732.1i 1.00996i
\(598\) −9648.57 560.803i −0.659798 0.0383494i
\(599\) −6027.18 −0.411125 −0.205562 0.978644i \(-0.565902\pi\)
−0.205562 + 0.978644i \(0.565902\pi\)
\(600\) −958.380 + 3188.83i −0.0652095 + 0.216972i
\(601\) −2117.99 −0.143751 −0.0718757 0.997414i \(-0.522899\pi\)
−0.0718757 + 0.997414i \(0.522899\pi\)
\(602\) 325.467 + 31.7742i 0.0220349 + 0.00215120i
\(603\) −4364.32 −0.294741
\(604\) −528.201 + 2679.42i −0.0355831 + 0.180504i
\(605\) 332.395 0.0223369
\(606\) −7049.04 688.174i −0.472521 0.0461306i
\(607\) 11132.7 0.744418 0.372209 0.928149i \(-0.378601\pi\)
0.372209 + 0.928149i \(0.378601\pi\)
\(608\) −4837.12 2558.92i −0.322650 0.170687i
\(609\) 5996.78i 0.399018i
\(610\) −1289.38 + 13207.3i −0.0855827 + 0.876633i
\(611\) 831.605 + 21170.7i 0.0550624 + 1.40176i
\(612\) −1636.40 322.586i −0.108084 0.0213068i
\(613\) −17390.2 −1.14581 −0.572906 0.819621i \(-0.694184\pi\)
−0.572906 + 0.819621i \(0.694184\pi\)
\(614\) 6270.08 + 612.127i 0.412117 + 0.0402336i
\(615\) −1576.40 −0.103361
\(616\) 3903.10 12986.8i 0.255293 0.849439i
\(617\) 17583.9i 1.14733i 0.819090 + 0.573665i \(0.194479\pi\)
−0.819090 + 0.573665i \(0.805521\pi\)
\(618\) 67.0244 686.538i 0.00436265 0.0446871i
\(619\) −9088.88 −0.590166 −0.295083 0.955472i \(-0.595347\pi\)
−0.295083 + 0.955472i \(0.595347\pi\)
\(620\) 1298.70 6587.96i 0.0841241 0.426740i
\(621\) 1968.34i 0.127193i
\(622\) −17607.4 1718.95i −1.13503 0.110809i
\(623\) 21990.6 1.41418
\(624\) −3086.00 + 8453.81i −0.197979 + 0.542345i
\(625\) −7087.49 −0.453599
\(626\) 22750.4 + 2221.04i 1.45254 + 0.141806i
\(627\) 3260.92i 0.207701i
\(628\) −4027.28 + 20429.4i −0.255901 + 1.29812i
\(629\) −779.059 −0.0493849
\(630\) −359.274 + 3680.09i −0.0227204 + 0.232727i
\(631\) 8004.69i 0.505011i −0.967596 0.252505i \(-0.918745\pi\)
0.967596 0.252505i \(-0.0812545\pi\)
\(632\) −7682.92 2309.05i −0.483560 0.145331i
\(633\) 11912.5 0.747990
\(634\) 1711.21 + 167.060i 0.107194 + 0.0104650i
\(635\) −4958.43 −0.309873
\(636\) −7258.34 1430.85i −0.452534 0.0892090i
\(637\) 3053.42 119.941i 0.189923 0.00746034i
\(638\) −1185.10 + 12139.1i −0.0735400 + 0.753278i
\(639\) 4029.51i 0.249460i
\(640\) 9803.55 + 7947.68i 0.605499 + 0.490875i
\(641\) 31376.8 1.93340 0.966699 0.255917i \(-0.0823775\pi\)
0.966699 + 0.255917i \(0.0823775\pi\)
\(642\) −11231.0 1096.45i −0.690426 0.0674039i
\(643\) 24518.9 1.50378 0.751891 0.659288i \(-0.229142\pi\)
0.751891 + 0.659288i \(0.229142\pi\)
\(644\) 1880.07 9537.13i 0.115039 0.583564i
\(645\) −181.356 −0.0110711
\(646\) −1971.35 192.456i −0.120064 0.0117215i
\(647\) −19032.6 −1.15649 −0.578243 0.815864i \(-0.696262\pi\)
−0.578243 + 0.815864i \(0.696262\pi\)
\(648\) −1755.26 527.531i −0.106409 0.0319805i
\(649\) −3340.90 −0.202067
\(650\) 6492.04 + 377.336i 0.391752 + 0.0227697i
\(651\) 4815.84i 0.289935i
\(652\) −2202.24 434.132i −0.132280 0.0260766i
\(653\) 1630.31i 0.0977012i −0.998806 0.0488506i \(-0.984444\pi\)
0.998806 0.0488506i \(-0.0155558\pi\)
\(654\) −240.806 + 2466.61i −0.0143980 + 0.147480i
\(655\) 15330.7i 0.914536i
\(656\) 1464.53 3570.23i 0.0871648 0.212491i
\(657\) 6869.17i 0.407903i
\(658\) −21208.6 2070.52i −1.25653 0.122671i
\(659\) 6216.87i 0.367489i 0.982974 + 0.183744i \(0.0588218\pi\)
−0.982974 + 0.183744i \(0.941178\pi\)
\(660\) −1454.54 + 7378.49i −0.0857845 + 0.435162i
\(661\) 17029.9 1.00210 0.501050 0.865418i \(-0.332947\pi\)
0.501050 + 0.865418i \(0.332947\pi\)
\(662\) 22581.3 + 2204.54i 1.32575 + 0.129429i
\(663\) 127.855 + 3254.89i 0.00748940 + 0.190663i
\(664\) 5048.15 + 1517.19i 0.295040 + 0.0886720i
\(665\) 4391.10i 0.256059i
\(666\) −852.047 83.1825i −0.0495738 0.00483972i
\(667\) 8743.01i 0.507542i
\(668\) −688.704 + 3493.62i −0.0398903 + 0.202353i
\(669\) −1454.15 −0.0840368
\(670\) 11896.5 + 1161.41i 0.685972 + 0.0669692i
\(671\) 19357.2i 1.11368i
\(672\) −8000.85 4232.59i −0.459285 0.242970i
\(673\) −8854.72 −0.507168 −0.253584 0.967313i \(-0.581609\pi\)
−0.253584 + 0.967313i \(0.581609\pi\)
\(674\) 29193.7 + 2850.08i 1.66840 + 0.162880i
\(675\) 1324.39i 0.0755199i
\(676\) 17457.6 + 2036.26i 0.993266 + 0.115854i
\(677\) 25869.2i 1.46859i −0.678830 0.734295i \(-0.737513\pi\)
0.678830 0.734295i \(-0.262487\pi\)
\(678\) 316.249 3239.37i 0.0179137 0.183492i
\(679\) 22219.7 1.25584
\(680\) 4374.73 + 1314.79i 0.246710 + 0.0741470i
\(681\) 18465.1i 1.03904i
\(682\) −951.720 + 9748.57i −0.0534358 + 0.547349i
\(683\) −14554.1 −0.815370 −0.407685 0.913123i \(-0.633664\pi\)
−0.407685 + 0.913123i \(0.633664\pi\)
\(684\) −2135.49 420.973i −0.119375 0.0235326i
\(685\) 6957.41i 0.388071i
\(686\) −1869.78 + 19152.4i −0.104065 + 1.06595i
\(687\) 15088.6i 0.837942i
\(688\) 168.485 410.732i 0.00933636 0.0227602i
\(689\) 567.109 + 14437.3i 0.0313572 + 0.798281i
\(690\) −523.805 + 5365.39i −0.0288999 + 0.296024i
\(691\) −31889.4 −1.75561 −0.877807 0.479015i \(-0.840994\pi\)
−0.877807 + 0.479015i \(0.840994\pi\)
\(692\) −6642.65 + 33696.4i −0.364907 + 1.85108i
\(693\) 5393.73i 0.295658i
\(694\) 571.179 5850.65i 0.0312416 0.320011i
\(695\) 21251.7i 1.15989i
\(696\) 7796.57 + 2343.20i 0.424610 + 0.127613i
\(697\) 1396.76i 0.0759054i
\(698\) −16460.7 1607.00i −0.892617 0.0871432i
\(699\) 4690.72i 0.253819i
\(700\) −1265.01 + 6417.05i −0.0683040 + 0.346488i
\(701\) 24149.2i 1.30115i 0.759443 + 0.650574i \(0.225471\pi\)
−0.759443 + 0.650574i \(0.774529\pi\)
\(702\) −207.701 + 3573.48i −0.0111669 + 0.192126i
\(703\) −1016.67 −0.0545439
\(704\) −15359.4 10149.1i −0.822273 0.543334i
\(705\) 11817.8 0.631324
\(706\) −287.579 + 2945.70i −0.0153303 + 0.157030i
\(707\) −13912.2 −0.740057
\(708\) −431.298 + 2187.86i −0.0228943 + 0.116137i
\(709\) 10731.6 0.568454 0.284227 0.958757i \(-0.408263\pi\)
0.284227 + 0.958757i \(0.408263\pi\)
\(710\) −1072.32 + 10983.9i −0.0566807 + 0.580587i
\(711\) −3190.89 −0.168309
\(712\) 8592.68 28590.5i 0.452281 1.50488i
\(713\) 7021.27i 0.368792i
\(714\) −3260.71 318.332i −0.170909 0.0166853i
\(715\) 14676.2 576.496i 0.767637 0.0301535i
\(716\) −1940.92 + 9845.78i −0.101307 + 0.513902i
\(717\) 20990.1 1.09329
\(718\) −2478.40 + 25386.5i −0.128820 + 1.31952i
\(719\) −21369.6 −1.10842 −0.554208 0.832378i \(-0.686979\pi\)
−0.554208 + 0.832378i \(0.686979\pi\)
\(720\) 4644.20 + 1905.07i 0.240387 + 0.0986082i
\(721\) 1354.97i 0.0699884i
\(722\) 16735.8 + 1633.86i 0.862662 + 0.0842188i
\(723\) 11948.0 0.614596
\(724\) 899.432 4562.59i 0.0461701 0.234209i
\(725\) 5882.73i 0.301351i
\(726\) −31.4464 + 322.109i −0.00160755 + 0.0164663i
\(727\) 6216.16 0.317118 0.158559 0.987350i \(-0.449315\pi\)
0.158559 + 0.987350i \(0.449315\pi\)
\(728\) −4419.61 + 17116.1i −0.225002 + 0.871381i
\(729\) −729.000 −0.0370370
\(730\) −1827.99 + 18724.3i −0.0926810 + 0.949341i
\(731\) 160.689i 0.00813035i
\(732\) −12676.5 2498.95i −0.640080 0.126180i
\(733\) 18224.5 0.918333 0.459166 0.888350i \(-0.348148\pi\)
0.459166 + 0.888350i \(0.348148\pi\)
\(734\) 699.589 + 68.2985i 0.0351802 + 0.00343453i
\(735\) 1704.46i 0.0855373i
\(736\) −11664.9 6170.91i −0.584201 0.309053i
\(737\) −17436.1 −0.871462
\(738\) 149.136 1527.62i 0.00743873 0.0761957i
\(739\) 2355.87 0.117269 0.0586346 0.998280i \(-0.481325\pi\)
0.0586346 + 0.998280i \(0.481325\pi\)
\(740\) 2300.42 + 453.486i 0.114277 + 0.0225277i
\(741\) 166.850 + 4247.61i 0.00827177 + 0.210580i
\(742\) −14463.1 1411.98i −0.715575 0.0698591i
\(743\) 16897.0i 0.834306i −0.908836 0.417153i \(-0.863028\pi\)
0.908836 0.417153i \(-0.136972\pi\)
\(744\) 6261.21 + 1881.76i 0.308531 + 0.0927268i
\(745\) −15786.0 −0.776312
\(746\) 1582.18 16206.4i 0.0776511 0.795389i
\(747\) 2096.61 0.102692
\(748\) −6537.65 1288.78i −0.319572 0.0629980i
\(749\) −22165.8 −1.08134
\(750\) 1250.58 12809.8i 0.0608864 0.623666i
\(751\) 6055.22 0.294218 0.147109 0.989120i \(-0.453003\pi\)
0.147109 + 0.989120i \(0.453003\pi\)
\(752\) −10979.1 + 26764.8i −0.532401 + 1.29789i
\(753\) 3860.91 0.186852
\(754\) 922.572 15872.8i 0.0445598 0.766649i
\(755\) 2975.02i 0.143407i
\(756\) −3532.21 696.311i −0.169927 0.0334981i
\(757\) 14120.5i 0.677965i 0.940793 + 0.338982i \(0.110083\pi\)
−0.940793 + 0.338982i \(0.889917\pi\)
\(758\) 19217.3 + 1876.12i 0.920848 + 0.0898993i
\(759\) 7863.80i 0.376071i
\(760\) 5708.99 + 1715.80i 0.272483 + 0.0818927i
\(761\) 5880.45i 0.280113i 0.990143 + 0.140057i \(0.0447285\pi\)
−0.990143 + 0.140057i \(0.955272\pi\)
\(762\) 469.094 4804.98i 0.0223012 0.228433i
\(763\) 4868.15i 0.230982i
\(764\) −25877.8 5101.35i −1.22543 0.241571i
\(765\) 1816.92 0.0858706
\(766\) −433.557 + 4440.97i −0.0204505 + 0.209476i
\(767\) 4351.79 170.942i 0.204868 0.00804741i
\(768\) −8629.19 + 8748.26i −0.405441 + 0.411036i
\(769\) 36398.3i 1.70683i −0.521229 0.853417i \(-0.674526\pi\)
0.521229 0.853417i \(-0.325474\pi\)
\(770\) −1435.35 + 14702.5i −0.0671774 + 0.688105i
\(771\) 18706.7i 0.873806i
\(772\) −697.246 + 3536.95i −0.0325057 + 0.164893i
\(773\) −7579.44 −0.352669