Properties

Label 312.4.m.a.181.28
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.28
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61542 + 2.32173i) q^{2} +3.00000i q^{3} +(-2.78086 - 7.50112i) q^{4} +1.96149 q^{5} +(-6.96519 - 4.84625i) q^{6} +7.12715i q^{7} +(21.9078 + 5.66102i) q^{8} -9.00000 q^{9} +(-3.16863 + 4.55406i) q^{10} -39.6233 q^{11} +(22.5034 - 8.34259i) q^{12} +(14.7839 - 44.4796i) q^{13} +(-16.5473 - 11.5133i) q^{14} +5.88448i q^{15} +(-48.5336 + 41.7192i) q^{16} -20.3979 q^{17} +(14.5387 - 20.8956i) q^{18} +78.7892 q^{19} +(-5.45464 - 14.7134i) q^{20} -21.3814 q^{21} +(64.0081 - 91.9946i) q^{22} -108.309 q^{23} +(-16.9831 + 65.7235i) q^{24} -121.153 q^{25} +(79.3875 + 106.177i) q^{26} -27.0000i q^{27} +(53.4616 - 19.8196i) q^{28} -306.234i q^{29} +(-13.6622 - 9.50588i) q^{30} -122.283i q^{31} +(-18.4587 - 180.076i) q^{32} -118.870i q^{33} +(32.9512 - 47.3585i) q^{34} +13.9798i q^{35} +(25.0278 + 67.5101i) q^{36} +238.381 q^{37} +(-127.277 + 182.927i) q^{38} +(133.439 + 44.3517i) q^{39} +(42.9720 + 11.1040i) q^{40} -113.600i q^{41} +(34.5399 - 49.6419i) q^{42} -443.229i q^{43} +(110.187 + 297.219i) q^{44} -17.6534 q^{45} +(174.964 - 251.464i) q^{46} +435.239i q^{47} +(-125.157 - 145.601i) q^{48} +292.204 q^{49} +(195.712 - 281.284i) q^{50} -61.1938i q^{51} +(-374.759 + 12.7958i) q^{52} +496.774i q^{53} +(62.6867 + 43.6162i) q^{54} -77.7208 q^{55} +(-40.3469 + 156.140i) q^{56} +236.368i q^{57} +(710.993 + 494.696i) q^{58} +868.043 q^{59} +(44.1402 - 16.3639i) q^{60} -355.574i q^{61} +(283.909 + 197.538i) q^{62} -64.1443i q^{63} +(447.906 + 248.041i) q^{64} +(28.9985 - 87.2464i) q^{65} +(275.984 + 192.024i) q^{66} -792.201 q^{67} +(56.7239 + 153.007i) q^{68} -324.927i q^{69} +(-32.4574 - 22.5833i) q^{70} +208.138i q^{71} +(-197.170 - 50.9492i) q^{72} -1075.25i q^{73} +(-385.085 + 553.457i) q^{74} -363.458i q^{75} +(-219.102 - 591.007i) q^{76} -282.401i q^{77} +(-318.532 + 238.163i) q^{78} +1229.23 q^{79} +(-95.1983 + 81.8318i) q^{80} +81.0000 q^{81} +(263.749 + 183.511i) q^{82} -701.173 q^{83} +(59.4588 + 160.385i) q^{84} -40.0104 q^{85} +(1029.06 + 715.999i) q^{86} +918.703 q^{87} +(-868.061 - 224.308i) q^{88} -14.2857i q^{89} +(28.5176 - 40.9865i) q^{90} +(317.013 + 105.367i) q^{91} +(301.192 + 812.438i) q^{92} +366.850 q^{93} +(-1010.51 - 703.092i) q^{94} +154.544 q^{95} +(540.227 - 55.3760i) q^{96} -1169.53i q^{97} +(-472.031 + 678.418i) q^{98} +356.610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61542 + 2.32173i −0.571136 + 0.820856i
\(3\) 3.00000i 0.577350i
\(4\) −2.78086 7.50112i −0.347608 0.937640i
\(5\) 1.96149 0.175441 0.0877206 0.996145i \(-0.472042\pi\)
0.0877206 + 0.996145i \(0.472042\pi\)
\(6\) −6.96519 4.84625i −0.473921 0.329745i
\(7\) 7.12715i 0.384830i 0.981314 + 0.192415i \(0.0616319\pi\)
−0.981314 + 0.192415i \(0.938368\pi\)
\(8\) 21.9078 + 5.66102i 0.968198 + 0.250184i
\(9\) −9.00000 −0.333333
\(10\) −3.16863 + 4.55406i −0.100201 + 0.144012i
\(11\) −39.6233 −1.08608 −0.543040 0.839707i \(-0.682727\pi\)
−0.543040 + 0.839707i \(0.682727\pi\)
\(12\) 22.5034 8.34259i 0.541347 0.200691i
\(13\) 14.7839 44.4796i 0.315409 0.948956i
\(14\) −16.5473 11.5133i −0.315890 0.219790i
\(15\) 5.88448i 0.101291i
\(16\) −48.5336 + 41.7192i −0.758338 + 0.651862i
\(17\) −20.3979 −0.291013 −0.145507 0.989357i \(-0.546481\pi\)
−0.145507 + 0.989357i \(0.546481\pi\)
\(18\) 14.5387 20.8956i 0.190379 0.273619i
\(19\) 78.7892 0.951341 0.475671 0.879623i \(-0.342205\pi\)
0.475671 + 0.879623i \(0.342205\pi\)
\(20\) −5.45464 14.7134i −0.0609847 0.164501i
\(21\) −21.3814 −0.222182
\(22\) 64.0081 91.9946i 0.620299 0.891515i
\(23\) −108.309 −0.981912 −0.490956 0.871184i \(-0.663352\pi\)
−0.490956 + 0.871184i \(0.663352\pi\)
\(24\) −16.9831 + 65.7235i −0.144444 + 0.558990i
\(25\) −121.153 −0.969220
\(26\) 79.3875 + 106.177i 0.598814 + 0.800888i
\(27\) 27.0000i 0.192450i
\(28\) 53.4616 19.8196i 0.360832 0.133770i
\(29\) 306.234i 1.96091i −0.196753 0.980453i \(-0.563040\pi\)
0.196753 0.980453i \(-0.436960\pi\)
\(30\) −13.6622 9.50588i −0.0831453 0.0578509i
\(31\) 122.283i 0.708475i −0.935156 0.354237i \(-0.884740\pi\)
0.935156 0.354237i \(-0.115260\pi\)
\(32\) −18.4587 180.076i −0.101971 0.994787i
\(33\) 118.870i 0.627048i
\(34\) 32.9512 47.3585i 0.166208 0.238880i
\(35\) 13.9798i 0.0675150i
\(36\) 25.0278 + 67.5101i 0.115869 + 0.312547i
\(37\) 238.381 1.05918 0.529590 0.848254i \(-0.322346\pi\)
0.529590 + 0.848254i \(0.322346\pi\)
\(38\) −127.277 + 182.927i −0.543345 + 0.780914i
\(39\) 133.439 + 44.3517i 0.547880 + 0.182101i
\(40\) 42.9720 + 11.1040i 0.169862 + 0.0438926i
\(41\) 113.600i 0.432716i −0.976314 0.216358i \(-0.930582\pi\)
0.976314 0.216358i \(-0.0694178\pi\)
\(42\) 34.5399 49.6419i 0.126896 0.182379i
\(43\) 443.229i 1.57190i −0.618289 0.785951i \(-0.712174\pi\)
0.618289 0.785951i \(-0.287826\pi\)
\(44\) 110.187 + 297.219i 0.377530 + 1.01835i
\(45\) −17.6534 −0.0584804
\(46\) 174.964 251.464i 0.560805 0.806008i
\(47\) 435.239i 1.35077i 0.737466 + 0.675384i \(0.236022\pi\)
−0.737466 + 0.675384i \(0.763978\pi\)
\(48\) −125.157 145.601i −0.376353 0.437826i
\(49\) 292.204 0.851906
\(50\) 195.712 281.284i 0.553556 0.795590i
\(51\) 61.1938i 0.168017i
\(52\) −374.759 + 12.7958i −0.999418 + 0.0341243i
\(53\) 496.774i 1.28749i 0.765238 + 0.643747i \(0.222621\pi\)
−0.765238 + 0.643747i \(0.777379\pi\)
\(54\) 62.6867 + 43.6162i 0.157974 + 0.109915i
\(55\) −77.7208 −0.190543
\(56\) −40.3469 + 156.140i −0.0962783 + 0.372591i
\(57\) 236.368i 0.549257i
\(58\) 710.993 + 494.696i 1.60962 + 1.11994i
\(59\) 868.043 1.91542 0.957708 0.287741i \(-0.0929042\pi\)
0.957708 + 0.287741i \(0.0929042\pi\)
\(60\) 44.1402 16.3639i 0.0949745 0.0352096i
\(61\) 355.574i 0.746338i −0.927763 0.373169i \(-0.878271\pi\)
0.927763 0.373169i \(-0.121729\pi\)
\(62\) 283.909 + 197.538i 0.581556 + 0.404635i
\(63\) 64.1443i 0.128277i
\(64\) 447.906 + 248.041i 0.874816 + 0.484456i
\(65\) 28.9985 87.2464i 0.0553357 0.166486i
\(66\) 275.984 + 192.024i 0.514716 + 0.358130i
\(67\) −792.201 −1.44452 −0.722260 0.691622i \(-0.756896\pi\)
−0.722260 + 0.691622i \(0.756896\pi\)
\(68\) 56.7239 + 153.007i 0.101159 + 0.272866i
\(69\) 324.927i 0.566907i
\(70\) −32.4574 22.5833i −0.0554201 0.0385602i
\(71\) 208.138i 0.347907i 0.984754 + 0.173954i \(0.0556542\pi\)
−0.984754 + 0.173954i \(0.944346\pi\)
\(72\) −197.170 50.9492i −0.322733 0.0833947i
\(73\) 1075.25i 1.72394i −0.506956 0.861972i \(-0.669229\pi\)
0.506956 0.861972i \(-0.330771\pi\)
\(74\) −385.085 + 553.457i −0.604936 + 0.869434i
\(75\) 363.458i 0.559580i
\(76\) −219.102 591.007i −0.330694 0.892016i
\(77\) 282.401i 0.417956i
\(78\) −318.532 + 238.163i −0.462393 + 0.345726i
\(79\) 1229.23 1.75062 0.875312 0.483559i \(-0.160656\pi\)
0.875312 + 0.483559i \(0.160656\pi\)
\(80\) −95.1983 + 81.8318i −0.133044 + 0.114363i
\(81\) 81.0000 0.111111
\(82\) 263.749 + 183.511i 0.355197 + 0.247140i
\(83\) −701.173 −0.927274 −0.463637 0.886025i \(-0.653456\pi\)
−0.463637 + 0.886025i \(0.653456\pi\)
\(84\) 59.4588 + 160.385i 0.0772320 + 0.208326i
\(85\) −40.0104 −0.0510558
\(86\) 1029.06 + 715.999i 1.29030 + 0.897769i
\(87\) 918.703 1.13213
\(88\) −868.061 224.308i −1.05154 0.271720i
\(89\) 14.2857i 0.0170144i −0.999964 0.00850718i \(-0.997292\pi\)
0.999964 0.00850718i \(-0.00270795\pi\)
\(90\) 28.5176 40.9865i 0.0334003 0.0480040i
\(91\) 317.013 + 105.367i 0.365186 + 0.121379i
\(92\) 301.192 + 812.438i 0.341320 + 0.920680i
\(93\) 366.850 0.409038
\(94\) −1010.51 703.092i −1.10879 0.771472i
\(95\) 154.544 0.166905
\(96\) 540.227 55.3760i 0.574341 0.0588728i
\(97\) 1169.53i 1.22420i −0.790779 0.612102i \(-0.790324\pi\)
0.790779 0.612102i \(-0.209676\pi\)
\(98\) −472.031 + 678.418i −0.486554 + 0.699292i
\(99\) 356.610 0.362027
\(100\) 336.909 + 908.780i 0.336909 + 0.908780i
\(101\) 1116.09i 1.09956i −0.835311 0.549778i \(-0.814712\pi\)
0.835311 0.549778i \(-0.185288\pi\)
\(102\) 142.076 + 98.8535i 0.137917 + 0.0959604i
\(103\) −843.767 −0.807173 −0.403586 0.914942i \(-0.632237\pi\)
−0.403586 + 0.914942i \(0.632237\pi\)
\(104\) 575.683 890.760i 0.542792 0.839867i
\(105\) −41.9395 −0.0389798
\(106\) −1153.38 802.497i −1.05685 0.735334i
\(107\) 159.431i 0.144045i −0.997403 0.0720224i \(-0.977055\pi\)
0.997403 0.0720224i \(-0.0229453\pi\)
\(108\) −202.530 + 75.0833i −0.180449 + 0.0668971i
\(109\) −2228.83 −1.95856 −0.979282 0.202499i \(-0.935094\pi\)
−0.979282 + 0.202499i \(0.935094\pi\)
\(110\) 125.551 180.447i 0.108826 0.156408i
\(111\) 715.144i 0.611518i
\(112\) −297.339 345.906i −0.250856 0.291831i
\(113\) −1136.08 −0.945778 −0.472889 0.881122i \(-0.656789\pi\)
−0.472889 + 0.881122i \(0.656789\pi\)
\(114\) −548.782 381.832i −0.450861 0.313700i
\(115\) −212.447 −0.172268
\(116\) −2297.10 + 851.595i −1.83862 + 0.681626i
\(117\) −133.055 + 400.317i −0.105136 + 0.316319i
\(118\) −1402.25 + 2015.36i −1.09396 + 1.57228i
\(119\) 145.379i 0.111991i
\(120\) −33.3121 + 128.916i −0.0253414 + 0.0980698i
\(121\) 239.007 0.179569
\(122\) 825.547 + 574.400i 0.612636 + 0.426260i
\(123\) 340.800 0.249829
\(124\) −917.261 + 340.053i −0.664294 + 0.246271i
\(125\) −482.826 −0.345482
\(126\) 148.926 + 103.620i 0.105297 + 0.0732633i
\(127\) 528.851 0.369512 0.184756 0.982784i \(-0.440851\pi\)
0.184756 + 0.982784i \(0.440851\pi\)
\(128\) −1299.44 + 639.227i −0.897307 + 0.441408i
\(129\) 1329.69 0.907538
\(130\) 155.718 + 208.266i 0.105057 + 0.140509i
\(131\) 2158.33i 1.43950i −0.694233 0.719750i \(-0.744256\pi\)
0.694233 0.719750i \(-0.255744\pi\)
\(132\) −891.658 + 330.561i −0.587946 + 0.217967i
\(133\) 561.542i 0.366104i
\(134\) 1279.73 1839.28i 0.825017 1.18574i
\(135\) 52.9603i 0.0337637i
\(136\) −446.875 115.473i −0.281759 0.0728069i
\(137\) 744.898i 0.464532i 0.972652 + 0.232266i \(0.0746140\pi\)
−0.972652 + 0.232266i \(0.925386\pi\)
\(138\) 754.392 + 524.892i 0.465349 + 0.323781i
\(139\) 1667.91i 1.01777i −0.860834 0.508885i \(-0.830058\pi\)
0.860834 0.508885i \(-0.169942\pi\)
\(140\) 104.864 38.8760i 0.0633048 0.0234687i
\(141\) −1305.72 −0.779866
\(142\) −483.240 336.229i −0.285581 0.198702i
\(143\) −585.787 + 1762.43i −0.342559 + 1.03064i
\(144\) 436.803 375.472i 0.252779 0.217287i
\(145\) 600.676i 0.344024i
\(146\) 2496.43 + 1736.97i 1.41511 + 0.984606i
\(147\) 876.611i 0.491848i
\(148\) −662.906 1788.13i −0.368179 0.993129i
\(149\) −1913.47 −1.05207 −0.526033 0.850464i \(-0.676321\pi\)
−0.526033 + 0.850464i \(0.676321\pi\)
\(150\) 843.851 + 587.135i 0.459334 + 0.319596i
\(151\) 1642.21i 0.885043i 0.896758 + 0.442522i \(0.145916\pi\)
−0.896758 + 0.442522i \(0.854084\pi\)
\(152\) 1726.10 + 446.027i 0.921087 + 0.238010i
\(153\) 183.582 0.0970045
\(154\) 655.659 + 456.195i 0.343081 + 0.238710i
\(155\) 239.858i 0.124296i
\(156\) −38.3875 1124.28i −0.0197017 0.577014i
\(157\) 352.705i 0.179293i −0.995974 0.0896463i \(-0.971426\pi\)
0.995974 0.0896463i \(-0.0285737\pi\)
\(158\) −1985.72 + 2853.94i −0.999844 + 1.43701i
\(159\) −1490.32 −0.743335
\(160\) −36.2065 353.217i −0.0178899 0.174527i
\(161\) 771.933i 0.377869i
\(162\) −130.849 + 188.060i −0.0634595 + 0.0912062i
\(163\) 702.565 0.337602 0.168801 0.985650i \(-0.446010\pi\)
0.168801 + 0.985650i \(0.446010\pi\)
\(164\) −852.128 + 315.906i −0.405732 + 0.150415i
\(165\) 233.162i 0.110010i
\(166\) 1132.69 1627.93i 0.529599 0.761158i
\(167\) 2150.91i 0.996663i 0.866987 + 0.498332i \(0.166054\pi\)
−0.866987 + 0.498332i \(0.833946\pi\)
\(168\) −468.421 121.041i −0.215116 0.0555863i
\(169\) −1759.87 1315.16i −0.801034 0.598618i
\(170\) 64.6335 92.8934i 0.0291598 0.0419094i
\(171\) −709.103 −0.317114
\(172\) −3324.71 + 1232.56i −1.47388 + 0.546405i
\(173\) 863.589i 0.379523i 0.981830 + 0.189761i \(0.0607715\pi\)
−0.981830 + 0.189761i \(0.939229\pi\)
\(174\) −1484.09 + 2132.98i −0.646600 + 0.929315i
\(175\) 863.472i 0.372985i
\(176\) 1923.06 1653.05i 0.823615 0.707974i
\(177\) 2604.13i 1.10587i
\(178\) 33.1675 + 23.0773i 0.0139663 + 0.00971751i
\(179\) 71.4411i 0.0298310i 0.999889 + 0.0149155i \(0.00474793\pi\)
−0.999889 + 0.0149155i \(0.995252\pi\)
\(180\) 49.0918 + 132.421i 0.0203282 + 0.0548336i
\(181\) 1287.38i 0.528676i 0.964430 + 0.264338i \(0.0851534\pi\)
−0.964430 + 0.264338i \(0.914847\pi\)
\(182\) −756.741 + 565.806i −0.308205 + 0.230442i
\(183\) 1066.72 0.430898
\(184\) −2372.81 613.139i −0.950685 0.245659i
\(185\) 467.583 0.185824
\(186\) −592.615 + 851.726i −0.233616 + 0.335761i
\(187\) 808.234 0.316064
\(188\) 3264.78 1210.34i 1.26653 0.469537i
\(189\) 192.433 0.0740605
\(190\) −249.654 + 358.811i −0.0953251 + 0.137004i
\(191\) −891.876 −0.337874 −0.168937 0.985627i \(-0.554033\pi\)
−0.168937 + 0.985627i \(0.554033\pi\)
\(192\) −744.124 + 1343.72i −0.279701 + 0.505075i
\(193\) 2859.21i 1.06638i −0.845997 0.533188i \(-0.820994\pi\)
0.845997 0.533188i \(-0.179006\pi\)
\(194\) 2715.33 + 1889.28i 1.00490 + 0.699187i
\(195\) 261.739 + 86.9956i 0.0961207 + 0.0319481i
\(196\) −812.578 2191.86i −0.296129 0.798781i
\(197\) −4253.86 −1.53845 −0.769226 0.638977i \(-0.779358\pi\)
−0.769226 + 0.638977i \(0.779358\pi\)
\(198\) −576.073 + 827.952i −0.206766 + 0.297172i
\(199\) 1669.44 0.594690 0.297345 0.954770i \(-0.403899\pi\)
0.297345 + 0.954770i \(0.403899\pi\)
\(200\) −2654.19 685.847i −0.938398 0.242483i
\(201\) 2376.60i 0.833993i
\(202\) 2591.26 + 1802.95i 0.902577 + 0.627996i
\(203\) 2182.58 0.754615
\(204\) −459.022 + 170.172i −0.157539 + 0.0584039i
\(205\) 222.826i 0.0759162i
\(206\) 1363.03 1959.00i 0.461005 0.662572i
\(207\) 974.780 0.327304
\(208\) 1138.14 + 2775.53i 0.379402 + 0.925232i
\(209\) −3121.89 −1.03323
\(210\) 67.7498 97.3723i 0.0222628 0.0319968i
\(211\) 4935.05i 1.61016i 0.593169 + 0.805078i \(0.297876\pi\)
−0.593169 + 0.805078i \(0.702124\pi\)
\(212\) 3726.36 1381.46i 1.20721 0.447543i
\(213\) −624.413 −0.200864
\(214\) 370.156 + 257.548i 0.118240 + 0.0822691i
\(215\) 869.390i 0.275776i
\(216\) 152.847 591.511i 0.0481479 0.186330i
\(217\) 871.531 0.272642
\(218\) 3600.49 5174.75i 1.11861 1.60770i
\(219\) 3225.74 0.995320
\(220\) 216.131 + 582.993i 0.0662343 + 0.178661i
\(221\) −301.561 + 907.293i −0.0917883 + 0.276159i
\(222\) −1660.37 1155.26i −0.501968 0.349260i
\(223\) 4519.69i 1.35722i 0.734498 + 0.678611i \(0.237418\pi\)
−0.734498 + 0.678611i \(0.762582\pi\)
\(224\) 1283.43 131.558i 0.382824 0.0392414i
\(225\) 1090.37 0.323073
\(226\) 1835.23 2637.66i 0.540168 0.776347i
\(227\) 3561.18 1.04125 0.520626 0.853785i \(-0.325699\pi\)
0.520626 + 0.853785i \(0.325699\pi\)
\(228\) 1773.02 657.306i 0.515006 0.190926i
\(229\) 1225.27 0.353573 0.176786 0.984249i \(-0.443430\pi\)
0.176786 + 0.984249i \(0.443430\pi\)
\(230\) 343.190 493.245i 0.0983883 0.141407i
\(231\) 847.203 0.241307
\(232\) 1733.60 6708.93i 0.490587 1.89855i
\(233\) −5389.72 −1.51542 −0.757709 0.652593i \(-0.773681\pi\)
−0.757709 + 0.652593i \(0.773681\pi\)
\(234\) −714.488 955.596i −0.199605 0.266963i
\(235\) 853.718i 0.236980i
\(236\) −2413.91 6511.29i −0.665814 1.79597i
\(237\) 3687.69i 1.01072i
\(238\) 337.531 + 234.848i 0.0919281 + 0.0639619i
\(239\) 1979.91i 0.535856i 0.963439 + 0.267928i \(0.0863389\pi\)
−0.963439 + 0.267928i \(0.913661\pi\)
\(240\) −245.495 285.595i −0.0660278 0.0768128i
\(241\) 3797.63i 1.01505i −0.861637 0.507525i \(-0.830561\pi\)
0.861637 0.507525i \(-0.169439\pi\)
\(242\) −386.095 + 554.909i −0.102558 + 0.147400i
\(243\) 243.000i 0.0641500i
\(244\) −2667.20 + 988.803i −0.699796 + 0.259433i
\(245\) 573.156 0.149459
\(246\) −550.534 + 791.246i −0.142686 + 0.205073i
\(247\) 1164.81 3504.51i 0.300062 0.902781i
\(248\) 692.248 2678.96i 0.177249 0.685944i
\(249\) 2103.52i 0.535362i
\(250\) 779.965 1120.99i 0.197317 0.283591i
\(251\) 4440.20i 1.11658i −0.829644 0.558292i \(-0.811457\pi\)
0.829644 0.558292i \(-0.188543\pi\)
\(252\) −481.154 + 178.377i −0.120277 + 0.0445899i
\(253\) 4291.56 1.06643
\(254\) −854.315 + 1227.85i −0.211041 + 0.303316i
\(255\) 120.031i 0.0294771i
\(256\) 615.023 4049.56i 0.150152 0.988663i
\(257\) 4237.67 1.02856 0.514278 0.857624i \(-0.328060\pi\)
0.514278 + 0.857624i \(0.328060\pi\)
\(258\) −2148.00 + 3087.17i −0.518327 + 0.744957i
\(259\) 1698.98i 0.407604i
\(260\) −735.087 + 25.0989i −0.175339 + 0.00598681i
\(261\) 2756.11i 0.653635i
\(262\) 5011.07 + 3486.61i 1.18162 + 0.822150i
\(263\) −1562.99 −0.366457 −0.183228 0.983070i \(-0.558655\pi\)
−0.183228 + 0.983070i \(0.558655\pi\)
\(264\) 672.925 2604.18i 0.156878 0.607107i
\(265\) 974.419i 0.225880i
\(266\) −1303.75 907.124i −0.300519 0.209095i
\(267\) 42.8570 0.00982324
\(268\) 2203.00 + 5942.40i 0.502126 + 1.35444i
\(269\) 1057.42i 0.239673i −0.992794 0.119837i \(-0.961763\pi\)
0.992794 0.119837i \(-0.0382371\pi\)
\(270\) 122.960 + 85.5529i 0.0277151 + 0.0192836i
\(271\) 3139.09i 0.703638i −0.936068 0.351819i \(-0.885563\pi\)
0.936068 0.351819i \(-0.114437\pi\)
\(272\) 989.986 850.985i 0.220686 0.189701i
\(273\) −316.101 + 951.038i −0.0700781 + 0.210840i
\(274\) −1729.45 1203.32i −0.381314 0.265311i
\(275\) 4800.46 1.05265
\(276\) −2437.31 + 903.576i −0.531555 + 0.197061i
\(277\) 1799.10i 0.390242i 0.980779 + 0.195121i \(0.0625100\pi\)
−0.980779 + 0.195121i \(0.937490\pi\)
\(278\) 3872.43 + 2694.36i 0.835442 + 0.581285i
\(279\) 1100.55i 0.236158i
\(280\) −79.1402 + 306.268i −0.0168912 + 0.0653679i
\(281\) 2289.86i 0.486126i 0.970010 + 0.243063i \(0.0781522\pi\)
−0.970010 + 0.243063i \(0.921848\pi\)
\(282\) 2109.27 3031.52i 0.445410 0.640158i
\(283\) 2069.31i 0.434655i 0.976099 + 0.217328i \(0.0697340\pi\)
−0.976099 + 0.217328i \(0.930266\pi\)
\(284\) 1561.27 578.802i 0.326212 0.120935i
\(285\) 463.633i 0.0963624i
\(286\) −3145.60 4207.10i −0.650360 0.869828i
\(287\) 809.645 0.166522
\(288\) 166.128 + 1620.68i 0.0339902 + 0.331596i
\(289\) −4496.92 −0.915311
\(290\) 1394.61 + 970.342i 0.282394 + 0.196484i
\(291\) 3508.59 0.706795
\(292\) −8065.54 + 2990.11i −1.61644 + 0.599256i
\(293\) 3205.38 0.639114 0.319557 0.947567i \(-0.396466\pi\)
0.319557 + 0.947567i \(0.396466\pi\)
\(294\) −2035.26 1416.09i −0.403736 0.280912i
\(295\) 1702.66 0.336043
\(296\) 5222.42 + 1349.48i 1.02550 + 0.264990i
\(297\) 1069.83i 0.209016i
\(298\) 3091.06 4442.57i 0.600873 0.863594i
\(299\) −1601.23 + 4817.54i −0.309704 + 0.931791i
\(300\) −2726.34 + 1010.73i −0.524684 + 0.194514i
\(301\) 3158.96 0.604914
\(302\) −3812.78 2652.86i −0.726493 0.505480i
\(303\) 3348.27 0.634829
\(304\) −3823.93 + 3287.02i −0.721438 + 0.620143i
\(305\) 697.456i 0.130938i
\(306\) −296.561 + 426.227i −0.0554027 + 0.0796267i
\(307\) 3977.40 0.739420 0.369710 0.929147i \(-0.379457\pi\)
0.369710 + 0.929147i \(0.379457\pi\)
\(308\) −2118.32 + 785.319i −0.391892 + 0.145285i
\(309\) 2531.30i 0.466021i
\(310\) 556.885 + 387.470i 0.102029 + 0.0709897i
\(311\) −9844.30 −1.79492 −0.897458 0.441100i \(-0.854588\pi\)
−0.897458 + 0.441100i \(0.854588\pi\)
\(312\) 2672.28 + 1727.05i 0.484898 + 0.313381i
\(313\) 1209.11 0.218349 0.109174 0.994023i \(-0.465179\pi\)
0.109174 + 0.994023i \(0.465179\pi\)
\(314\) 818.886 + 569.766i 0.147173 + 0.102400i
\(315\) 125.819i 0.0225050i
\(316\) −3418.32 9220.61i −0.608531 1.64146i
\(317\) 29.0546 0.00514784 0.00257392 0.999997i \(-0.499181\pi\)
0.00257392 + 0.999997i \(0.499181\pi\)
\(318\) 2407.49 3460.13i 0.424545 0.610171i
\(319\) 12134.0i 2.12970i
\(320\) 878.564 + 486.531i 0.153479 + 0.0849935i
\(321\) 478.293 0.0831643
\(322\) 1792.22 + 1246.99i 0.310176 + 0.215814i
\(323\) −1607.14 −0.276853
\(324\) −225.250 607.591i −0.0386231 0.104182i
\(325\) −1791.11 + 5388.82i −0.305701 + 0.919747i
\(326\) −1134.94 + 1631.17i −0.192817 + 0.277123i
\(327\) 6686.50i 1.13078i
\(328\) 643.092 2488.73i 0.108259 0.418955i
\(329\) −3102.01 −0.519816
\(330\) 541.340 + 376.654i 0.0903024 + 0.0628307i
\(331\) −5174.18 −0.859210 −0.429605 0.903017i \(-0.641347\pi\)
−0.429605 + 0.903017i \(0.641347\pi\)
\(332\) 1949.86 + 5259.58i 0.322328 + 0.869449i
\(333\) −2145.43 −0.353060
\(334\) −4993.84 3474.62i −0.818117 0.569230i
\(335\) −1553.90 −0.253428
\(336\) 1037.72 892.016i 0.168489 0.144832i
\(337\) 6593.59 1.06580 0.532901 0.846177i \(-0.321102\pi\)
0.532901 + 0.846177i \(0.321102\pi\)
\(338\) 5896.38 1961.41i 0.948879 0.315641i
\(339\) 3408.23i 0.546045i
\(340\) 111.263 + 300.123i 0.0177474 + 0.0478719i
\(341\) 4845.27i 0.769460i
\(342\) 1145.50 1646.35i 0.181115 0.260305i
\(343\) 4527.19i 0.712669i
\(344\) 2509.13 9710.18i 0.393265 1.52191i
\(345\) 637.341i 0.0994588i
\(346\) −2005.02 1395.06i −0.311533 0.216759i
\(347\) 1471.21i 0.227604i −0.993503 0.113802i \(-0.963697\pi\)
0.993503 0.113802i \(-0.0363030\pi\)
\(348\) −2554.79 6891.30i −0.393537 1.06153i
\(349\) 2830.48 0.434132 0.217066 0.976157i \(-0.430351\pi\)
0.217066 + 0.976157i \(0.430351\pi\)
\(350\) 2004.75 + 1394.87i 0.306167 + 0.213025i
\(351\) −1200.95 399.165i −0.182627 0.0607005i
\(352\) 731.393 + 7135.20i 0.110748 + 1.08042i
\(353\) 2140.98i 0.322813i −0.986888 0.161407i \(-0.948397\pi\)
0.986888 0.161407i \(-0.0516031\pi\)
\(354\) −6046.08 4206.75i −0.907756 0.631600i
\(355\) 408.261i 0.0610372i
\(356\) −107.158 + 39.7265i −0.0159533 + 0.00591432i
\(357\) 436.137 0.0646578
\(358\) −165.867 115.407i −0.0244870 0.0170376i
\(359\) 8556.42i 1.25791i 0.777441 + 0.628956i \(0.216517\pi\)
−0.777441 + 0.628956i \(0.783483\pi\)
\(360\) −386.748 99.9364i −0.0566206 0.0146309i
\(361\) −651.259 −0.0949496
\(362\) −2988.95 2079.66i −0.433967 0.301946i
\(363\) 717.020i 0.103674i
\(364\) −91.1978 2670.96i −0.0131320 0.384606i
\(365\) 2109.09i 0.302451i
\(366\) −1723.20 + 2476.64i −0.246101 + 0.353705i
\(367\) 3384.19 0.481344 0.240672 0.970606i \(-0.422632\pi\)
0.240672 + 0.970606i \(0.422632\pi\)
\(368\) 5256.62 4518.56i 0.744621 0.640071i
\(369\) 1022.40i 0.144239i
\(370\) −755.341 + 1085.60i −0.106131 + 0.152535i
\(371\) −3540.58 −0.495466
\(372\) −1020.16 2751.78i −0.142185 0.383531i
\(373\) 8794.40i 1.22080i −0.792095 0.610398i \(-0.791009\pi\)
0.792095 0.610398i \(-0.208991\pi\)
\(374\) −1305.63 + 1876.50i −0.180515 + 0.259443i
\(375\) 1448.48i 0.199464i
\(376\) −2463.89 + 9535.13i −0.337941 + 1.30781i
\(377\) −13621.2 4527.34i −1.86081 0.618487i
\(378\) −310.859 + 446.777i −0.0422986 + 0.0607930i
\(379\) −12072.7 −1.63623 −0.818117 0.575052i \(-0.804982\pi\)
−0.818117 + 0.575052i \(0.804982\pi\)
\(380\) −429.767 1159.26i −0.0580173 0.156496i
\(381\) 1586.55i 0.213338i
\(382\) 1440.75 2070.70i 0.192972 0.277346i
\(383\) 10016.6i 1.33636i −0.744001 0.668178i \(-0.767074\pi\)
0.744001 0.668178i \(-0.232926\pi\)
\(384\) −1917.68 3898.32i −0.254847 0.518060i
\(385\) 553.928i 0.0733267i
\(386\) 6638.31 + 4618.81i 0.875340 + 0.609045i
\(387\) 3989.06i 0.523967i
\(388\) −8772.79 + 3252.30i −1.14786 + 0.425543i
\(389\) 3792.53i 0.494316i −0.968975 0.247158i \(-0.920503\pi\)
0.968975 0.247158i \(-0.0794967\pi\)
\(390\) −624.798 + 467.154i −0.0811228 + 0.0606545i
\(391\) 2209.28 0.285750
\(392\) 6401.55 + 1654.17i 0.824814 + 0.213133i
\(393\) 6475.00 0.831096
\(394\) 6871.76 9876.32i 0.878665 1.26285i
\(395\) 2411.13 0.307132
\(396\) −991.683 2674.97i −0.125843 0.339451i
\(397\) 3697.88 0.467484 0.233742 0.972299i \(-0.424903\pi\)
0.233742 + 0.972299i \(0.424903\pi\)
\(398\) −2696.84 + 3875.99i −0.339649 + 0.488155i
\(399\) −1684.63 −0.211370
\(400\) 5879.97 5054.38i 0.734996 0.631798i
\(401\) 625.662i 0.0779154i 0.999241 + 0.0389577i \(0.0124038\pi\)
−0.999241 + 0.0389577i \(0.987596\pi\)
\(402\) 5517.83 + 3839.20i 0.684588 + 0.476324i
\(403\) −5439.11 1807.82i −0.672311 0.223459i
\(404\) −8371.93 + 3103.69i −1.03099 + 0.382214i
\(405\) 158.881 0.0194935
\(406\) −3525.77 + 5067.35i −0.430988 + 0.619430i
\(407\) −9445.46 −1.15035
\(408\) 346.419 1340.62i 0.0420351 0.162673i
\(409\) 5895.18i 0.712709i −0.934351 0.356354i \(-0.884020\pi\)
0.934351 0.356354i \(-0.115980\pi\)
\(410\) 517.341 + 359.956i 0.0623163 + 0.0433585i
\(411\) −2234.69 −0.268198
\(412\) 2346.40 + 6329.20i 0.280580 + 0.756838i
\(413\) 6186.67i 0.737109i
\(414\) −1574.68 + 2263.18i −0.186935 + 0.268669i
\(415\) −1375.35 −0.162682
\(416\) −8282.59 1841.19i −0.976172 0.216999i
\(417\) 5003.72 0.587610
\(418\) 5043.15 7248.19i 0.590116 0.848135i
\(419\) 11124.1i 1.29701i 0.761209 + 0.648506i \(0.224606\pi\)
−0.761209 + 0.648506i \(0.775394\pi\)
\(420\) 116.628 + 314.593i 0.0135497 + 0.0365490i
\(421\) 13498.0 1.56260 0.781299 0.624157i \(-0.214557\pi\)
0.781299 + 0.624157i \(0.214557\pi\)
\(422\) −11457.9 7972.16i −1.32171 0.919617i
\(423\) 3917.15i 0.450256i
\(424\) −2812.25 + 10883.2i −0.322111 + 1.24655i
\(425\) 2471.26 0.282056
\(426\) 1008.69 1449.72i 0.114721 0.164881i
\(427\) 2534.23 0.287213
\(428\) −1195.91 + 443.356i −0.135062 + 0.0500711i
\(429\) −5287.29 1757.36i −0.595041 0.197777i
\(430\) 2018.49 + 1404.43i 0.226373 + 0.157506i
\(431\) 6562.32i 0.733401i −0.930339 0.366701i \(-0.880487\pi\)
0.930339 0.366701i \(-0.119513\pi\)
\(432\) 1126.42 + 1310.41i 0.125451 + 0.145942i
\(433\) 2471.18 0.274266 0.137133 0.990553i \(-0.456211\pi\)
0.137133 + 0.990553i \(0.456211\pi\)
\(434\) −1407.88 + 2023.46i −0.155716 + 0.223800i
\(435\) 1802.03 0.198622
\(436\) 6198.08 + 16718.8i 0.680812 + 1.83643i
\(437\) −8533.57 −0.934133
\(438\) −5210.90 + 7489.29i −0.568463 + 0.817014i
\(439\) 10095.1 1.09753 0.548764 0.835977i \(-0.315098\pi\)
0.548764 + 0.835977i \(0.315098\pi\)
\(440\) −1702.69 439.979i −0.184484 0.0476709i
\(441\) −2629.83 −0.283969
\(442\) −1619.34 2165.80i −0.174263 0.233069i
\(443\) 3059.12i 0.328088i −0.986453 0.164044i \(-0.947546\pi\)
0.986453 0.164044i \(-0.0524539\pi\)
\(444\) 5364.38 1988.72i 0.573384 0.212568i
\(445\) 28.0212i 0.00298502i
\(446\) −10493.5 7301.17i −1.11408 0.775158i
\(447\) 5740.42i 0.607411i
\(448\) −1767.83 + 3192.29i −0.186433 + 0.336655i
\(449\) 14487.4i 1.52273i 0.648325 + 0.761364i \(0.275470\pi\)
−0.648325 + 0.761364i \(0.724530\pi\)
\(450\) −1761.41 + 2531.55i −0.184519 + 0.265197i
\(451\) 4501.21i 0.469964i
\(452\) 3159.27 + 8521.84i 0.328760 + 0.886800i
\(453\) −4926.64 −0.510980
\(454\) −5752.79 + 8268.11i −0.594696 + 0.854717i
\(455\) 621.818 + 206.677i 0.0640688 + 0.0212948i
\(456\) −1338.08 + 5178.30i −0.137415 + 0.531790i
\(457\) 17435.8i 1.78471i 0.451332 + 0.892356i \(0.350949\pi\)
−0.451332 + 0.892356i \(0.649051\pi\)
\(458\) −1979.32 + 2844.75i −0.201938 + 0.290232i
\(459\) 550.745i 0.0560056i
\(460\) 590.786 + 1593.59i 0.0598816 + 0.161525i
\(461\) −11637.1 −1.17569 −0.587843 0.808975i \(-0.700023\pi\)
−0.587843 + 0.808975i \(0.700023\pi\)
\(462\) −1368.59 + 1966.98i −0.137819 + 0.198078i
\(463\) 7443.25i 0.747122i 0.927606 + 0.373561i \(0.121863\pi\)
−0.927606 + 0.373561i \(0.878137\pi\)
\(464\) 12775.8 + 14862.7i 1.27824 + 1.48703i
\(465\) 719.573 0.0717622
\(466\) 8706.64 12513.5i 0.865509 1.24394i
\(467\) 1670.75i 0.165553i −0.996568 0.0827763i \(-0.973621\pi\)
0.996568 0.0827763i \(-0.0263787\pi\)
\(468\) 3372.83 115.163i 0.333139 0.0113748i
\(469\) 5646.13i 0.555894i
\(470\) −1982.10 1379.11i −0.194527 0.135348i
\(471\) 1058.12 0.103515
\(472\) 19016.9 + 4914.01i 1.85450 + 0.479207i
\(473\) 17562.2i 1.70721i
\(474\) −8561.83 5957.16i −0.829658 0.577260i
\(475\) −9545.51 −0.922059
\(476\) −1090.51 + 404.279i −0.105007 + 0.0389288i
\(477\) 4470.97i 0.429165i
\(478\) −4596.81 3198.37i −0.439860 0.306046i
\(479\) 15019.1i 1.43265i −0.697764 0.716327i \(-0.745822\pi\)
0.697764 0.716327i \(-0.254178\pi\)
\(480\) 1059.65 108.620i 0.100763 0.0103287i
\(481\) 3524.21 10603.1i 0.334075 1.00511i
\(482\) 8817.07 + 6134.75i 0.833209 + 0.579731i
\(483\) 2315.80 0.218163
\(484\) −664.644 1792.82i −0.0624196 0.168371i
\(485\) 2294.03i 0.214776i
\(486\) −564.180 392.546i −0.0526579 0.0366384i
\(487\) 10089.1i 0.938773i 0.882993 + 0.469386i \(0.155525\pi\)
−0.882993 + 0.469386i \(0.844475\pi\)
\(488\) 2012.91 7789.86i 0.186722 0.722603i
\(489\) 2107.70i 0.194915i
\(490\) −925.885 + 1330.71i −0.0853616 + 0.122685i
\(491\) 12881.4i 1.18397i −0.805949 0.591985i \(-0.798344\pi\)
0.805949 0.591985i \(-0.201656\pi\)
\(492\) −947.719 2556.38i −0.0868424 0.234249i
\(493\) 6246.55i 0.570650i
\(494\) 6254.88 + 8365.63i 0.569677 + 0.761918i
\(495\) 699.487 0.0635144
\(496\) 5101.56 + 5934.85i 0.461828 + 0.537263i
\(497\) −1483.43 −0.133885
\(498\) 4883.80 + 3398.06i 0.439455 + 0.305764i
\(499\) −13395.7 −1.20175 −0.600874 0.799344i \(-0.705181\pi\)
−0.600874 + 0.799344i \(0.705181\pi\)
\(500\) 1342.67 + 3621.74i 0.120092 + 0.323938i
\(501\) −6452.74 −0.575424
\(502\) 10308.9 + 7172.76i 0.916555 + 0.637721i
\(503\) 3123.84 0.276909 0.138454 0.990369i \(-0.455787\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(504\) 363.122 1405.26i 0.0320928 0.124197i
\(505\) 2189.20i 0.192907i
\(506\) −6932.65 + 9963.84i −0.609079 + 0.875389i
\(507\) 3945.49 5279.62i 0.345613 0.462477i
\(508\) −1470.66 3966.98i −0.128445 0.346469i
\(509\) 18899.4 1.64578 0.822888 0.568203i \(-0.192361\pi\)
0.822888 + 0.568203i \(0.192361\pi\)
\(510\) 278.680 + 193.900i 0.0241964 + 0.0168354i
\(511\) 7663.43 0.663425
\(512\) 8408.48 + 7969.65i 0.725792 + 0.687914i
\(513\) 2127.31i 0.183086i
\(514\) −6845.60 + 9838.73i −0.587445 + 0.844295i
\(515\) −1655.04 −0.141611
\(516\) −3697.67 9974.14i −0.315467 0.850944i
\(517\) 17245.6i 1.46704i
\(518\) −3944.57 2744.56i −0.334584 0.232797i
\(519\) −2590.77 −0.219118
\(520\) 1129.20 1747.22i 0.0952281 0.147347i
\(521\) 16479.0 1.38571 0.692857 0.721075i \(-0.256352\pi\)
0.692857 + 0.721075i \(0.256352\pi\)
\(522\) −6398.94 4452.26i −0.536540 0.373315i
\(523\) 1172.62i 0.0980401i −0.998798 0.0490200i \(-0.984390\pi\)
0.998798 0.0490200i \(-0.0156098\pi\)
\(524\) −16189.9 + 6002.03i −1.34973 + 0.500382i
\(525\) 2590.42 0.215343
\(526\) 2524.88 3628.84i 0.209297 0.300808i
\(527\) 2494.33i 0.206176i
\(528\) 4959.15 + 5769.19i 0.408749 + 0.475514i
\(529\) −436.182 −0.0358496
\(530\) −2262.34 1574.09i −0.185415 0.129008i
\(531\) −7812.39 −0.638472
\(532\) 4212.20 1561.57i 0.343274 0.127261i
\(533\) −5052.89 1679.45i −0.410628 0.136483i
\(534\) −69.2319 + 99.5024i −0.00561040 + 0.00806346i
\(535\) 312.723i 0.0252714i
\(536\) −17355.4 4484.67i −1.39858 0.361396i
\(537\) −214.323 −0.0172230
\(538\) 2455.05 + 1708.18i 0.196737 + 0.136886i
\(539\) −11578.1 −0.925238
\(540\) −397.262 + 147.275i −0.0316582 + 0.0117365i
\(541\) 12163.0 0.966594 0.483297 0.875456i \(-0.339439\pi\)
0.483297 + 0.875456i \(0.339439\pi\)
\(542\) 7288.11 + 5070.93i 0.577585 + 0.401873i
\(543\) −3862.15 −0.305231
\(544\) 376.519 + 3673.18i 0.0296748 + 0.289497i
\(545\) −4371.84 −0.343613
\(546\) −1697.42 2270.22i −0.133045 0.177943i
\(547\) 7645.69i 0.597635i 0.954310 + 0.298817i \(0.0965922\pi\)
−0.954310 + 0.298817i \(0.903408\pi\)
\(548\) 5587.57 2071.46i 0.435564 0.161475i
\(549\) 3200.17i 0.248779i
\(550\) −7754.75 + 11145.4i −0.601206 + 0.864074i
\(551\) 24128.0i 1.86549i
\(552\) 1839.42 7118.44i 0.141831 0.548878i
\(553\) 8760.91i 0.673692i
\(554\) −4177.01 2906.29i −0.320333 0.222881i
\(555\) 1402.75i 0.107285i
\(556\) −12511.2 + 4638.22i −0.954302 + 0.353785i
\(557\) −7827.70 −0.595459 −0.297729 0.954650i \(-0.596229\pi\)
−0.297729 + 0.954650i \(0.596229\pi\)
\(558\) −2555.18 1777.85i −0.193852 0.134878i
\(559\) −19714.6 6552.65i −1.49166 0.495792i
\(560\) −583.227 678.492i −0.0440105 0.0511992i
\(561\) 2424.70i 0.182480i
\(562\) −5316.43 3699.07i −0.399039 0.277644i
\(563\) 10807.8i 0.809050i −0.914527 0.404525i \(-0.867437\pi\)
0.914527 0.404525i \(-0.132563\pi\)
\(564\) 3631.02 + 9794.33i 0.271088 + 0.731234i
\(565\) −2228.40 −0.165929
\(566\) −4804.37 3342.79i −0.356789 0.248247i
\(567\) 577.299i 0.0427589i
\(568\) −1178.27 + 4559.84i −0.0870408 + 0.336843i
\(569\) 1092.63 0.0805015 0.0402508 0.999190i \(-0.487184\pi\)
0.0402508 + 0.999190i \(0.487184\pi\)
\(570\) −1076.43 748.961i −0.0790996 0.0550360i
\(571\) 25324.4i 1.85603i −0.372540 0.928016i \(-0.621513\pi\)
0.372540 0.928016i \(-0.378487\pi\)
\(572\) 14849.2 507.013i 1.08545 0.0370617i
\(573\) 2675.63i 0.195072i
\(574\) −1307.91 + 1879.78i −0.0951067 + 0.136691i
\(575\) 13121.9 0.951689
\(576\) −4031.15 2232.37i −0.291605 0.161485i
\(577\) 5334.07i 0.384853i 0.981311 + 0.192427i \(0.0616357\pi\)
−0.981311 + 0.192427i \(0.938364\pi\)
\(578\) 7264.40 10440.6i 0.522767 0.751338i
\(579\) 8577.63 0.615672
\(580\) −4505.74 + 1670.40i −0.322570 + 0.119585i
\(581\) 4997.36i 0.356842i
\(582\) −5667.84 + 8146.00i −0.403676 + 0.580177i
\(583\) 19683.8i 1.39832i
\(584\) 6086.98 23556.3i 0.431303 1.66912i
\(585\) −260.987 + 785.218i −0.0184452 + 0.0554953i
\(586\) −5178.03 + 7442.04i −0.365021 + 0.524621i
\(587\) −9169.90 −0.644774 −0.322387 0.946608i \(-0.604485\pi\)
−0.322387 + 0.946608i \(0.604485\pi\)
\(588\) 6575.57 2437.74i 0.461177 0.170970i
\(589\) 9634.60i 0.674001i
\(590\) −2750.50 + 3953.12i −0.191926 + 0.275843i
\(591\) 12761.6i 0.888226i
\(592\) −11569.5 + 9945.07i −0.803216 + 0.690439i
\(593\) 11447.3i 0.792719i 0.918095 + 0.396359i \(0.129727\pi\)
−0.918095 + 0.396359i \(0.870273\pi\)
\(594\) −2483.86 1728.22i −0.171572 0.119377i
\(595\) 285.160i 0.0196478i
\(596\) 5321.11 + 14353.2i 0.365706 + 0.986459i
\(597\) 5008.32i 0.343345i
\(598\) −8598.37 11499.9i −0.587983 0.786401i
\(599\) 133.223 0.00908740 0.00454370 0.999990i \(-0.498554\pi\)
0.00454370 + 0.999990i \(0.498554\pi\)
\(600\) 2057.54 7962.57i 0.139998 0.541784i
\(601\) 22130.3 1.50202 0.751009 0.660292i \(-0.229567\pi\)
0.751009 + 0.660292i \(0.229567\pi\)
\(602\) −5103.03 + 7334.24i −0.345488 + 0.496547i
\(603\) 7129.81 0.481506
\(604\) 12318.4 4566.77i 0.829852 0.307648i
\(605\) 468.810 0.0315038
\(606\) −5408.85 + 7773.78i −0.362574 + 0.521103i
\(607\) −17566.5 −1.17463 −0.587316 0.809357i \(-0.699816\pi\)
−0.587316 + 0.809357i \(0.699816\pi\)
\(608\) −1454.34 14188.0i −0.0970089 0.946382i
\(609\) 6547.73i 0.435677i
\(610\) 1619.31 + 1126.68i 0.107482 + 0.0747836i
\(611\) 19359.3 + 6434.53i 1.28182 + 0.426044i
\(612\) −510.515 1377.07i −0.0337195 0.0909553i
\(613\) 26186.1 1.72536 0.862681 0.505748i \(-0.168783\pi\)
0.862681 + 0.505748i \(0.168783\pi\)
\(614\) −6425.15 + 9234.44i −0.422309 + 0.606957i
\(615\) 668.477 0.0438303
\(616\) 1598.68 6186.79i 0.104566 0.404664i
\(617\) 23951.0i 1.56278i −0.624046 0.781388i \(-0.714512\pi\)
0.624046 0.781388i \(-0.285488\pi\)
\(618\) 5877.00 + 4089.10i 0.382536 + 0.266162i
\(619\) −5760.47 −0.374044 −0.187022 0.982356i \(-0.559883\pi\)
−0.187022 + 0.982356i \(0.559883\pi\)
\(620\) −1799.20 + 667.011i −0.116545 + 0.0432062i
\(621\) 2924.34i 0.188969i
\(622\) 15902.6 22855.8i 1.02514 1.47337i
\(623\) 101.816 0.00654763
\(624\) −8326.59 + 3414.41i −0.534183 + 0.219048i
\(625\) 14197.0 0.908609
\(626\) −1953.22 + 2807.24i −0.124707 + 0.179233i
\(627\) 9365.67i 0.596537i
\(628\) −2645.68 + 980.825i −0.168112 + 0.0623235i
\(629\) −4862.49 −0.308236
\(630\) 292.117 + 203.249i 0.0184734 + 0.0128534i
\(631\) 1160.57i 0.0732194i 0.999330 + 0.0366097i \(0.0116558\pi\)
−0.999330 + 0.0366097i \(0.988344\pi\)
\(632\) 26929.8 + 6958.70i 1.69495 + 0.437978i
\(633\) −14805.1 −0.929624
\(634\) −46.9352 + 67.4569i −0.00294012 + 0.00422564i
\(635\) 1037.34 0.0648276
\(636\) 4144.38 + 11179.1i 0.258389 + 0.696981i
\(637\) 4319.91 12997.1i 0.268699 0.808421i
\(638\) −28171.9 19601.5i −1.74818 1.21635i
\(639\) 1873.24i 0.115969i
\(640\) −2548.84 + 1253.84i −0.157425 + 0.0774411i
\(641\) 17057.7 1.05108 0.525538 0.850770i \(-0.323864\pi\)
0.525538 + 0.850770i \(0.323864\pi\)
\(642\) −772.643 + 1110.47i −0.0474981 + 0.0682659i
\(643\) −14838.5 −0.910066 −0.455033 0.890475i \(-0.650373\pi\)
−0.455033 + 0.890475i \(0.650373\pi\)
\(644\) −5790.37 + 2146.64i −0.354305 + 0.131350i
\(645\) 2608.17 0.159220
\(646\) 2596.20 3731.34i 0.158121 0.227256i
\(647\) 12658.0 0.769144 0.384572 0.923095i \(-0.374349\pi\)
0.384572 + 0.923095i \(0.374349\pi\)
\(648\) 1774.53 + 458.542i 0.107578 + 0.0277982i
\(649\) −34394.7 −2.08030
\(650\) −9618.00 12863.7i −0.580383 0.776237i
\(651\) 2614.59i 0.157410i
\(652\) −1953.74 5270.03i −0.117353 0.316549i
\(653\) 16485.5i 0.987944i −0.869478 0.493972i \(-0.835544\pi\)
0.869478 0.493972i \(-0.164456\pi\)
\(654\) 15524.3 + 10801.5i 0.928205 + 0.645828i
\(655\) 4233.56i 0.252548i
\(656\) 4739.30 + 5513.42i 0.282071 + 0.328145i
\(657\) 9677.21i 0.574648i
\(658\) 5011.04 7202.03i 0.296885 0.426694i
\(659\) 12672.0i 0.749059i −0.927215 0.374530i \(-0.877804\pi\)
0.927215 0.374530i \(-0.122196\pi\)
\(660\) −1748.98 + 648.393i −0.103150 + 0.0382404i
\(661\) 10745.0 0.632271 0.316135 0.948714i \(-0.397615\pi\)
0.316135 + 0.948714i \(0.397615\pi\)
\(662\) 8358.45 12013.0i 0.490726 0.705287i
\(663\) −2721.88 904.684i −0.159440 0.0529940i
\(664\) −15361.2 3969.35i −0.897785 0.231989i
\(665\) 1101.46i 0.0642298i
\(666\) 3465.77 4981.11i 0.201645 0.289811i
\(667\) 33167.9i 1.92544i
\(668\) 16134.3 5981.40i 0.934511 0.346448i
\(669\) −13559.1 −0.783593
\(670\) 2510.19 3607.73i 0.144742 0.208028i
\(671\) 14089.0i 0.810582i
\(672\) 394.673 + 3850.28i 0.0226560 + 0.221023i
\(673\) −18235.1 −1.04444 −0.522222 0.852810i \(-0.674897\pi\)
−0.522222 + 0.852810i \(0.674897\pi\)
\(674\) −10651.4 + 15308.5i −0.608718 + 0.874870i
\(675\) 3271.12i 0.186527i
\(676\) −4971.25 + 16858.3i −0.282843 + 0.959166i
\(677\) 3337.54i 0.189471i 0.995502 + 0.0947356i \(0.0302006\pi\)
−0.995502 + 0.0947356i \(0.969799\pi\)
\(678\) 7912.98 + 5505.70i 0.448224 + 0.311866i
\(679\) 8335.42 0.471110
\(680\) −876.541 226.500i −0.0494321 0.0127733i
\(681\) 10683.6i 0.601167i
\(682\) −11249.4 7827.12i −0.631616 0.439466i
\(683\) 20013.4 1.12122 0.560609 0.828081i \(-0.310567\pi\)
0.560609 + 0.828081i \(0.310567\pi\)
\(684\) 1971.92 + 5319.07i 0.110231 + 0.297339i
\(685\) 1461.11i 0.0814981i
\(686\) −10510.9 7313.30i −0.584998 0.407031i
\(687\) 3675.81i 0.204135i
\(688\) 18491.1 + 21511.5i 1.02466 + 1.19203i
\(689\) 22096.3 + 7344.26i 1.22178 + 0.406087i
\(690\) 1479.73 + 1029.57i 0.0816414 + 0.0568045i
\(691\) 4659.99 0.256547 0.128274 0.991739i \(-0.459056\pi\)
0.128274 + 0.991739i \(0.459056\pi\)
\(692\) 6477.89 2401.52i 0.355856 0.131925i
\(693\) 2541.61i 0.139319i
\(694\) 3415.76 + 2376.62i 0.186830 + 0.129993i
\(695\) 3271.59i 0.178559i
\(696\) 20126.8 + 5200.79i 1.09613 + 0.283241i
\(697\) 2317.21i 0.125926i
\(698\) −4572.40 + 6571.60i −0.247948 + 0.356359i
\(699\) 16169.2i 0.874927i
\(700\) −6477.01 + 2401.20i −0.349725 + 0.129652i
\(701\) 34527.6i 1.86033i −0.367146 0.930163i \(-0.619665\pi\)
0.367146 0.930163i \(-0.380335\pi\)
\(702\) 2866.79 2143.46i 0.154131 0.115242i
\(703\) 18781.9 1.00764
\(704\) −17747.5 9828.21i −0.950120 0.526157i
\(705\) −2561.15 −0.136821
\(706\) 4970.79 + 3458.58i 0.264983 + 0.184370i
\(707\) 7954.54 0.423142
\(708\) 19533.9 7241.72i 1.03690 0.384408i
\(709\) −89.4916 −0.00474038 −0.00237019 0.999997i \(-0.500754\pi\)
−0.00237019 + 0.999997i \(0.500754\pi\)
\(710\) −947.871 659.511i −0.0501028 0.0348605i
\(711\) −11063.1 −0.583541
\(712\) 80.8714 312.968i 0.00425672 0.0164733i
\(713\) 13244.4i 0.695660i
\(714\) −704.544 + 1012.59i −0.0369284 + 0.0530747i
\(715\) −1149.02 + 3456.99i −0.0600990 + 0.180817i
\(716\) 535.888 198.668i 0.0279708 0.0103695i
\(717\) −5939.72 −0.309377
\(718\) −19865.7 13822.2i −1.03256 0.718439i
\(719\) −26608.2 −1.38013 −0.690067 0.723745i \(-0.742419\pi\)
−0.690067 + 0.723745i \(0.742419\pi\)
\(720\) 856.785 736.486i 0.0443479 0.0381212i
\(721\) 6013.65i 0.310624i
\(722\) 1052.05 1512.05i 0.0542291 0.0779399i
\(723\) 11392.9 0.586039
\(724\) 9656.81 3580.03i 0.495708 0.183772i
\(725\) 37101.1i 1.90055i
\(726\) −1664.73 1158.29i −0.0851016 0.0592121i
\(727\) −7882.87 −0.402145 −0.201073 0.979576i \(-0.564443\pi\)
−0.201073 + 0.979576i \(0.564443\pi\)
\(728\) 6348.58 + 4102.98i 0.323206 + 0.208883i
\(729\) −729.000 −0.0370370
\(730\) 4896.73 + 3407.05i 0.248268 + 0.172741i
\(731\) 9040.96i 0.457445i
\(732\) −2966.41 8001.61i −0.149784 0.404028i
\(733\) −11514.6 −0.580219 −0.290110 0.956993i \(-0.593692\pi\)
−0.290110 + 0.956993i \(0.593692\pi\)
\(734\) −5466.88 + 7857.18i −0.274913 + 0.395114i
\(735\) 1719.47i 0.0862905i
\(736\) 1999.24 + 19503.8i 0.100126 + 0.976793i
\(737\) 31389.6 1.56886
\(738\) −2373.74 1651.60i −0.118399 0.0823799i
\(739\) −12266.7 −0.610607 −0.305304 0.952255i \(-0.598758\pi\)
−0.305304 + 0.952255i \(0.598758\pi\)
\(740\) −1300.28 3507.40i −0.0645938 0.174236i
\(741\) 10513.5 + 3494.44i 0.521221 + 0.173241i
\(742\) 5719.51 8220.28i 0.282978 0.406706i
\(743\) 9024.07i 0.445573i −0.974867 0.222787i \(-0.928485\pi\)
0.974867 0.222787i \(-0.0715153\pi\)
\(744\) 8036.88 + 2076.74i 0.396030 + 0.102335i
\(745\) −3753.26 −0.184576
\(746\) 20418.2 + 14206.6i 1.00210 + 0.697240i
\(747\) 6310.56 0.309091
\(748\) −2247.59 6062.66i −0.109866 0.296354i
\(749\) 1136.29 0.0554327
\(750\) 3362.98 + 2339.90i 0.163731 + 0.113921i
\(751\) 11628.6 0.565027 0.282514 0.959263i \(-0.408832\pi\)
0.282514 + 0.959263i \(0.408832\pi\)
\(752\) −18157.8 21123.7i −0.880514 1.02434i
\(753\) 13320.6 0.644660
\(754\) 32515.1 24311.2i 1.57047 1.17422i
\(755\) 3221.19i 0.155273i
\(756\) −535.130 1443.46i −0.0257440 0.0694421i
\(757\) 20413.1i 0.980090i 0.871697 + 0.490045i \(0.163020\pi\)
−0.871697 + 0.490045i \(0.836980\pi\)
\(758\) 19502.4 28029.5i 0.934512 1.34311i
\(759\) 12874.7i 0.615706i
\(760\) 3385.73 + 874.879i 0.161597 + 0.0417568i
\(761\) 7463.82i 0.355537i 0.984072 + 0.177768i \(0.0568878\pi\)
−0.984072 + 0.177768i \(0.943112\pi\)
\(762\) −3683.55 2562.94i −0.175119 0.121845i
\(763\) 15885.2i 0.753714i
\(764\) 2480.19 + 6690.07i 0.117448 + 0.316804i
\(765\) 360.094 0.0170186
\(766\) 23255.9 + 16181.0i 1.09696 + 0.763241i
\(767\) 12833.1 38610.2i 0.604140 1.81765i
\(768\) 12148.7 + 1845.07i 0.570805 + 0.0866903i
\(769\) 24780.4i 1.16203i −0.813892 0.581016i \(-0.802655\pi\)
0.813892 0.581016i \(-0.197345\pi\)
\(770\) 1286.07 + 894.824i 0.0601906 + 0.0418795i
\(771\) 12713.0i 0.593837i
\(772\) −21447.3 + 7951.07i −0.999876 + 0.370680i
\(773\) 37842.9 1.76082 0.880410 0.474213i \(-0.157267\pi\)
0.880410 + 0.474213i \(0.157267\pi\)
\(774\) −9261.52 6443.99i −0.430101 0.299256i