Properties

Label 312.4.m.a.181.27
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.27
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.28

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61542 - 2.32173i) q^{2} -3.00000i q^{3} +(-2.78086 + 7.50112i) q^{4} +1.96149 q^{5} +(-6.96519 + 4.84625i) q^{6} -7.12715i q^{7} +(21.9078 - 5.66102i) q^{8} -9.00000 q^{9} +(-3.16863 - 4.55406i) q^{10} -39.6233 q^{11} +(22.5034 + 8.34259i) q^{12} +(14.7839 + 44.4796i) q^{13} +(-16.5473 + 11.5133i) q^{14} -5.88448i q^{15} +(-48.5336 - 41.7192i) q^{16} -20.3979 q^{17} +(14.5387 + 20.8956i) q^{18} +78.7892 q^{19} +(-5.45464 + 14.7134i) q^{20} -21.3814 q^{21} +(64.0081 + 91.9946i) q^{22} -108.309 q^{23} +(-16.9831 - 65.7235i) q^{24} -121.153 q^{25} +(79.3875 - 106.177i) q^{26} +27.0000i q^{27} +(53.4616 + 19.8196i) q^{28} +306.234i q^{29} +(-13.6622 + 9.50588i) q^{30} +122.283i q^{31} +(-18.4587 + 180.076i) q^{32} +118.870i q^{33} +(32.9512 + 47.3585i) q^{34} -13.9798i q^{35} +(25.0278 - 67.5101i) q^{36} +238.381 q^{37} +(-127.277 - 182.927i) q^{38} +(133.439 - 44.3517i) q^{39} +(42.9720 - 11.1040i) q^{40} +113.600i q^{41} +(34.5399 + 49.6419i) q^{42} +443.229i q^{43} +(110.187 - 297.219i) q^{44} -17.6534 q^{45} +(174.964 + 251.464i) q^{46} -435.239i q^{47} +(-125.157 + 145.601i) q^{48} +292.204 q^{49} +(195.712 + 281.284i) q^{50} +61.1938i q^{51} +(-374.759 - 12.7958i) q^{52} -496.774i q^{53} +(62.6867 - 43.6162i) q^{54} -77.7208 q^{55} +(-40.3469 - 156.140i) q^{56} -236.368i q^{57} +(710.993 - 494.696i) q^{58} +868.043 q^{59} +(44.1402 + 16.3639i) q^{60} +355.574i q^{61} +(283.909 - 197.538i) q^{62} +64.1443i q^{63} +(447.906 - 248.041i) q^{64} +(28.9985 + 87.2464i) q^{65} +(275.984 - 192.024i) q^{66} -792.201 q^{67} +(56.7239 - 153.007i) q^{68} +324.927i q^{69} +(-32.4574 + 22.5833i) q^{70} -208.138i q^{71} +(-197.170 + 50.9492i) q^{72} +1075.25i q^{73} +(-385.085 - 553.457i) q^{74} +363.458i q^{75} +(-219.102 + 591.007i) q^{76} +282.401i q^{77} +(-318.532 - 238.163i) q^{78} +1229.23 q^{79} +(-95.1983 - 81.8318i) q^{80} +81.0000 q^{81} +(263.749 - 183.511i) q^{82} -701.173 q^{83} +(59.4588 - 160.385i) q^{84} -40.0104 q^{85} +(1029.06 - 715.999i) q^{86} +918.703 q^{87} +(-868.061 + 224.308i) q^{88} +14.2857i q^{89} +(28.5176 + 40.9865i) q^{90} +(317.013 - 105.367i) q^{91} +(301.192 - 812.438i) q^{92} +366.850 q^{93} +(-1010.51 + 703.092i) q^{94} +154.544 q^{95} +(540.227 + 55.3760i) q^{96} +1169.53i q^{97} +(-472.031 - 678.418i) q^{98} +356.610 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61542 2.32173i −0.571136 0.820856i
\(3\) 3.00000i 0.577350i
\(4\) −2.78086 + 7.50112i −0.347608 + 0.937640i
\(5\) 1.96149 0.175441 0.0877206 0.996145i \(-0.472042\pi\)
0.0877206 + 0.996145i \(0.472042\pi\)
\(6\) −6.96519 + 4.84625i −0.473921 + 0.329745i
\(7\) 7.12715i 0.384830i −0.981314 0.192415i \(-0.938368\pi\)
0.981314 0.192415i \(-0.0616319\pi\)
\(8\) 21.9078 5.66102i 0.968198 0.250184i
\(9\) −9.00000 −0.333333
\(10\) −3.16863 4.55406i −0.100201 0.144012i
\(11\) −39.6233 −1.08608 −0.543040 0.839707i \(-0.682727\pi\)
−0.543040 + 0.839707i \(0.682727\pi\)
\(12\) 22.5034 + 8.34259i 0.541347 + 0.200691i
\(13\) 14.7839 + 44.4796i 0.315409 + 0.948956i
\(14\) −16.5473 + 11.5133i −0.315890 + 0.219790i
\(15\) 5.88448i 0.101291i
\(16\) −48.5336 41.7192i −0.758338 0.651862i
\(17\) −20.3979 −0.291013 −0.145507 0.989357i \(-0.546481\pi\)
−0.145507 + 0.989357i \(0.546481\pi\)
\(18\) 14.5387 + 20.8956i 0.190379 + 0.273619i
\(19\) 78.7892 0.951341 0.475671 0.879623i \(-0.342205\pi\)
0.475671 + 0.879623i \(0.342205\pi\)
\(20\) −5.45464 + 14.7134i −0.0609847 + 0.164501i
\(21\) −21.3814 −0.222182
\(22\) 64.0081 + 91.9946i 0.620299 + 0.891515i
\(23\) −108.309 −0.981912 −0.490956 0.871184i \(-0.663352\pi\)
−0.490956 + 0.871184i \(0.663352\pi\)
\(24\) −16.9831 65.7235i −0.144444 0.558990i
\(25\) −121.153 −0.969220
\(26\) 79.3875 106.177i 0.598814 0.800888i
\(27\) 27.0000i 0.192450i
\(28\) 53.4616 + 19.8196i 0.360832 + 0.133770i
\(29\) 306.234i 1.96091i 0.196753 + 0.980453i \(0.436960\pi\)
−0.196753 + 0.980453i \(0.563040\pi\)
\(30\) −13.6622 + 9.50588i −0.0831453 + 0.0578509i
\(31\) 122.283i 0.708475i 0.935156 + 0.354237i \(0.115260\pi\)
−0.935156 + 0.354237i \(0.884740\pi\)
\(32\) −18.4587 + 180.076i −0.101971 + 0.994787i
\(33\) 118.870i 0.627048i
\(34\) 32.9512 + 47.3585i 0.166208 + 0.238880i
\(35\) 13.9798i 0.0675150i
\(36\) 25.0278 67.5101i 0.115869 0.312547i
\(37\) 238.381 1.05918 0.529590 0.848254i \(-0.322346\pi\)
0.529590 + 0.848254i \(0.322346\pi\)
\(38\) −127.277 182.927i −0.543345 0.780914i
\(39\) 133.439 44.3517i 0.547880 0.182101i
\(40\) 42.9720 11.1040i 0.169862 0.0438926i
\(41\) 113.600i 0.432716i 0.976314 + 0.216358i \(0.0694178\pi\)
−0.976314 + 0.216358i \(0.930582\pi\)
\(42\) 34.5399 + 49.6419i 0.126896 + 0.182379i
\(43\) 443.229i 1.57190i 0.618289 + 0.785951i \(0.287826\pi\)
−0.618289 + 0.785951i \(0.712174\pi\)
\(44\) 110.187 297.219i 0.377530 1.01835i
\(45\) −17.6534 −0.0584804
\(46\) 174.964 + 251.464i 0.560805 + 0.806008i
\(47\) 435.239i 1.35077i −0.737466 0.675384i \(-0.763978\pi\)
0.737466 0.675384i \(-0.236022\pi\)
\(48\) −125.157 + 145.601i −0.376353 + 0.437826i
\(49\) 292.204 0.851906
\(50\) 195.712 + 281.284i 0.553556 + 0.795590i
\(51\) 61.1938i 0.168017i
\(52\) −374.759 12.7958i −0.999418 0.0341243i
\(53\) 496.774i 1.28749i −0.765238 0.643747i \(-0.777379\pi\)
0.765238 0.643747i \(-0.222621\pi\)
\(54\) 62.6867 43.6162i 0.157974 0.109915i
\(55\) −77.7208 −0.190543
\(56\) −40.3469 156.140i −0.0962783 0.372591i
\(57\) 236.368i 0.549257i
\(58\) 710.993 494.696i 1.60962 1.11994i
\(59\) 868.043 1.91542 0.957708 0.287741i \(-0.0929042\pi\)
0.957708 + 0.287741i \(0.0929042\pi\)
\(60\) 44.1402 + 16.3639i 0.0949745 + 0.0352096i
\(61\) 355.574i 0.746338i 0.927763 + 0.373169i \(0.121729\pi\)
−0.927763 + 0.373169i \(0.878271\pi\)
\(62\) 283.909 197.538i 0.581556 0.404635i
\(63\) 64.1443i 0.128277i
\(64\) 447.906 248.041i 0.874816 0.484456i
\(65\) 28.9985 + 87.2464i 0.0553357 + 0.166486i
\(66\) 275.984 192.024i 0.514716 0.358130i
\(67\) −792.201 −1.44452 −0.722260 0.691622i \(-0.756896\pi\)
−0.722260 + 0.691622i \(0.756896\pi\)
\(68\) 56.7239 153.007i 0.101159 0.272866i
\(69\) 324.927i 0.566907i
\(70\) −32.4574 + 22.5833i −0.0554201 + 0.0385602i
\(71\) 208.138i 0.347907i −0.984754 0.173954i \(-0.944346\pi\)
0.984754 0.173954i \(-0.0556542\pi\)
\(72\) −197.170 + 50.9492i −0.322733 + 0.0833947i
\(73\) 1075.25i 1.72394i 0.506956 + 0.861972i \(0.330771\pi\)
−0.506956 + 0.861972i \(0.669229\pi\)
\(74\) −385.085 553.457i −0.604936 0.869434i
\(75\) 363.458i 0.559580i
\(76\) −219.102 + 591.007i −0.330694 + 0.892016i
\(77\) 282.401i 0.417956i
\(78\) −318.532 238.163i −0.462393 0.345726i
\(79\) 1229.23 1.75062 0.875312 0.483559i \(-0.160656\pi\)
0.875312 + 0.483559i \(0.160656\pi\)
\(80\) −95.1983 81.8318i −0.133044 0.114363i
\(81\) 81.0000 0.111111
\(82\) 263.749 183.511i 0.355197 0.247140i
\(83\) −701.173 −0.927274 −0.463637 0.886025i \(-0.653456\pi\)
−0.463637 + 0.886025i \(0.653456\pi\)
\(84\) 59.4588 160.385i 0.0772320 0.208326i
\(85\) −40.0104 −0.0510558
\(86\) 1029.06 715.999i 1.29030 0.897769i
\(87\) 918.703 1.13213
\(88\) −868.061 + 224.308i −1.05154 + 0.271720i
\(89\) 14.2857i 0.0170144i 0.999964 + 0.00850718i \(0.00270795\pi\)
−0.999964 + 0.00850718i \(0.997292\pi\)
\(90\) 28.5176 + 40.9865i 0.0334003 + 0.0480040i
\(91\) 317.013 105.367i 0.365186 0.121379i
\(92\) 301.192 812.438i 0.341320 0.920680i
\(93\) 366.850 0.409038
\(94\) −1010.51 + 703.092i −1.10879 + 0.771472i
\(95\) 154.544 0.166905
\(96\) 540.227 + 55.3760i 0.574341 + 0.0588728i
\(97\) 1169.53i 1.22420i 0.790779 + 0.612102i \(0.209676\pi\)
−0.790779 + 0.612102i \(0.790324\pi\)
\(98\) −472.031 678.418i −0.486554 0.699292i
\(99\) 356.610 0.362027
\(100\) 336.909 908.780i 0.336909 0.908780i
\(101\) 1116.09i 1.09956i 0.835311 + 0.549778i \(0.185288\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(102\) 142.076 98.8535i 0.137917 0.0959604i
\(103\) −843.767 −0.807173 −0.403586 0.914942i \(-0.632237\pi\)
−0.403586 + 0.914942i \(0.632237\pi\)
\(104\) 575.683 + 890.760i 0.542792 + 0.839867i
\(105\) −41.9395 −0.0389798
\(106\) −1153.38 + 802.497i −1.05685 + 0.735334i
\(107\) 159.431i 0.144045i 0.997403 + 0.0720224i \(0.0229453\pi\)
−0.997403 + 0.0720224i \(0.977055\pi\)
\(108\) −202.530 75.0833i −0.180449 0.0668971i
\(109\) −2228.83 −1.95856 −0.979282 0.202499i \(-0.935094\pi\)
−0.979282 + 0.202499i \(0.935094\pi\)
\(110\) 125.551 + 180.447i 0.108826 + 0.156408i
\(111\) 715.144i 0.611518i
\(112\) −297.339 + 345.906i −0.250856 + 0.291831i
\(113\) −1136.08 −0.945778 −0.472889 0.881122i \(-0.656789\pi\)
−0.472889 + 0.881122i \(0.656789\pi\)
\(114\) −548.782 + 381.832i −0.450861 + 0.313700i
\(115\) −212.447 −0.172268
\(116\) −2297.10 851.595i −1.83862 0.681626i
\(117\) −133.055 400.317i −0.105136 0.316319i
\(118\) −1402.25 2015.36i −1.09396 1.57228i
\(119\) 145.379i 0.111991i
\(120\) −33.3121 128.916i −0.0253414 0.0980698i
\(121\) 239.007 0.179569
\(122\) 825.547 574.400i 0.612636 0.426260i
\(123\) 340.800 0.249829
\(124\) −917.261 340.053i −0.664294 0.246271i
\(125\) −482.826 −0.345482
\(126\) 148.926 103.620i 0.105297 0.0732633i
\(127\) 528.851 0.369512 0.184756 0.982784i \(-0.440851\pi\)
0.184756 + 0.982784i \(0.440851\pi\)
\(128\) −1299.44 639.227i −0.897307 0.441408i
\(129\) 1329.69 0.907538
\(130\) 155.718 208.266i 0.105057 0.140509i
\(131\) 2158.33i 1.43950i 0.694233 + 0.719750i \(0.255744\pi\)
−0.694233 + 0.719750i \(0.744256\pi\)
\(132\) −891.658 330.561i −0.587946 0.217967i
\(133\) 561.542i 0.366104i
\(134\) 1279.73 + 1839.28i 0.825017 + 1.18574i
\(135\) 52.9603i 0.0337637i
\(136\) −446.875 + 115.473i −0.281759 + 0.0728069i
\(137\) 744.898i 0.464532i −0.972652 0.232266i \(-0.925386\pi\)
0.972652 0.232266i \(-0.0746140\pi\)
\(138\) 754.392 524.892i 0.465349 0.323781i
\(139\) 1667.91i 1.01777i 0.860834 + 0.508885i \(0.169942\pi\)
−0.860834 + 0.508885i \(0.830058\pi\)
\(140\) 104.864 + 38.8760i 0.0633048 + 0.0234687i
\(141\) −1305.72 −0.779866
\(142\) −483.240 + 336.229i −0.285581 + 0.198702i
\(143\) −585.787 1762.43i −0.342559 1.03064i
\(144\) 436.803 + 375.472i 0.252779 + 0.217287i
\(145\) 600.676i 0.344024i
\(146\) 2496.43 1736.97i 1.41511 0.984606i
\(147\) 876.611i 0.491848i
\(148\) −662.906 + 1788.13i −0.368179 + 0.993129i
\(149\) −1913.47 −1.05207 −0.526033 0.850464i \(-0.676321\pi\)
−0.526033 + 0.850464i \(0.676321\pi\)
\(150\) 843.851 587.135i 0.459334 0.319596i
\(151\) 1642.21i 0.885043i −0.896758 0.442522i \(-0.854084\pi\)
0.896758 0.442522i \(-0.145916\pi\)
\(152\) 1726.10 446.027i 0.921087 0.238010i
\(153\) 183.582 0.0970045
\(154\) 655.659 456.195i 0.343081 0.238710i
\(155\) 239.858i 0.124296i
\(156\) −38.3875 + 1124.28i −0.0197017 + 0.577014i
\(157\) 352.705i 0.179293i 0.995974 + 0.0896463i \(0.0285737\pi\)
−0.995974 + 0.0896463i \(0.971426\pi\)
\(158\) −1985.72 2853.94i −0.999844 1.43701i
\(159\) −1490.32 −0.743335
\(160\) −36.2065 + 353.217i −0.0178899 + 0.174527i
\(161\) 771.933i 0.377869i
\(162\) −130.849 188.060i −0.0634595 0.0912062i
\(163\) 702.565 0.337602 0.168801 0.985650i \(-0.446010\pi\)
0.168801 + 0.985650i \(0.446010\pi\)
\(164\) −852.128 315.906i −0.405732 0.150415i
\(165\) 233.162i 0.110010i
\(166\) 1132.69 + 1627.93i 0.529599 + 0.761158i
\(167\) 2150.91i 0.996663i −0.866987 0.498332i \(-0.833946\pi\)
0.866987 0.498332i \(-0.166054\pi\)
\(168\) −468.421 + 121.041i −0.215116 + 0.0555863i
\(169\) −1759.87 + 1315.16i −0.801034 + 0.598618i
\(170\) 64.6335 + 92.8934i 0.0291598 + 0.0419094i
\(171\) −709.103 −0.317114
\(172\) −3324.71 1232.56i −1.47388 0.546405i
\(173\) 863.589i 0.379523i −0.981830 0.189761i \(-0.939229\pi\)
0.981830 0.189761i \(-0.0607715\pi\)
\(174\) −1484.09 2132.98i −0.646600 0.929315i
\(175\) 863.472i 0.372985i
\(176\) 1923.06 + 1653.05i 0.823615 + 0.707974i
\(177\) 2604.13i 1.10587i
\(178\) 33.1675 23.0773i 0.0139663 0.00971751i
\(179\) 71.4411i 0.0298310i −0.999889 0.0149155i \(-0.995252\pi\)
0.999889 0.0149155i \(-0.00474793\pi\)
\(180\) 49.0918 132.421i 0.0203282 0.0548336i
\(181\) 1287.38i 0.528676i −0.964430 0.264338i \(-0.914847\pi\)
0.964430 0.264338i \(-0.0851534\pi\)
\(182\) −756.741 565.806i −0.308205 0.230442i
\(183\) 1066.72 0.430898
\(184\) −2372.81 + 613.139i −0.950685 + 0.245659i
\(185\) 467.583 0.185824
\(186\) −592.615 851.726i −0.233616 0.335761i
\(187\) 808.234 0.316064
\(188\) 3264.78 + 1210.34i 1.26653 + 0.469537i
\(189\) 192.433 0.0740605
\(190\) −249.654 358.811i −0.0953251 0.137004i
\(191\) −891.876 −0.337874 −0.168937 0.985627i \(-0.554033\pi\)
−0.168937 + 0.985627i \(0.554033\pi\)
\(192\) −744.124 1343.72i −0.279701 0.505075i
\(193\) 2859.21i 1.06638i 0.845997 + 0.533188i \(0.179006\pi\)
−0.845997 + 0.533188i \(0.820994\pi\)
\(194\) 2715.33 1889.28i 1.00490 0.699187i
\(195\) 261.739 86.9956i 0.0961207 0.0319481i
\(196\) −812.578 + 2191.86i −0.296129 + 0.798781i
\(197\) −4253.86 −1.53845 −0.769226 0.638977i \(-0.779358\pi\)
−0.769226 + 0.638977i \(0.779358\pi\)
\(198\) −576.073 827.952i −0.206766 0.297172i
\(199\) 1669.44 0.594690 0.297345 0.954770i \(-0.403899\pi\)
0.297345 + 0.954770i \(0.403899\pi\)
\(200\) −2654.19 + 685.847i −0.938398 + 0.242483i
\(201\) 2376.60i 0.833993i
\(202\) 2591.26 1802.95i 0.902577 0.627996i
\(203\) 2182.58 0.754615
\(204\) −459.022 170.172i −0.157539 0.0584039i
\(205\) 222.826i 0.0759162i
\(206\) 1363.03 + 1959.00i 0.461005 + 0.662572i
\(207\) 974.780 0.327304
\(208\) 1138.14 2775.53i 0.379402 0.925232i
\(209\) −3121.89 −1.03323
\(210\) 67.7498 + 97.3723i 0.0222628 + 0.0319968i
\(211\) 4935.05i 1.61016i −0.593169 0.805078i \(-0.702124\pi\)
0.593169 0.805078i \(-0.297876\pi\)
\(212\) 3726.36 + 1381.46i 1.20721 + 0.447543i
\(213\) −624.413 −0.200864
\(214\) 370.156 257.548i 0.118240 0.0822691i
\(215\) 869.390i 0.275776i
\(216\) 152.847 + 591.511i 0.0481479 + 0.186330i
\(217\) 871.531 0.272642
\(218\) 3600.49 + 5174.75i 1.11861 + 1.60770i
\(219\) 3225.74 0.995320
\(220\) 216.131 582.993i 0.0662343 0.178661i
\(221\) −301.561 907.293i −0.0917883 0.276159i
\(222\) −1660.37 + 1155.26i −0.501968 + 0.349260i
\(223\) 4519.69i 1.35722i −0.734498 0.678611i \(-0.762582\pi\)
0.734498 0.678611i \(-0.237418\pi\)
\(224\) 1283.43 + 131.558i 0.382824 + 0.0392414i
\(225\) 1090.37 0.323073
\(226\) 1835.23 + 2637.66i 0.540168 + 0.776347i
\(227\) 3561.18 1.04125 0.520626 0.853785i \(-0.325699\pi\)
0.520626 + 0.853785i \(0.325699\pi\)
\(228\) 1773.02 + 657.306i 0.515006 + 0.190926i
\(229\) 1225.27 0.353573 0.176786 0.984249i \(-0.443430\pi\)
0.176786 + 0.984249i \(0.443430\pi\)
\(230\) 343.190 + 493.245i 0.0983883 + 0.141407i
\(231\) 847.203 0.241307
\(232\) 1733.60 + 6708.93i 0.490587 + 1.89855i
\(233\) −5389.72 −1.51542 −0.757709 0.652593i \(-0.773681\pi\)
−0.757709 + 0.652593i \(0.773681\pi\)
\(234\) −714.488 + 955.596i −0.199605 + 0.266963i
\(235\) 853.718i 0.236980i
\(236\) −2413.91 + 6511.29i −0.665814 + 1.79597i
\(237\) 3687.69i 1.01072i
\(238\) 337.531 234.848i 0.0919281 0.0639619i
\(239\) 1979.91i 0.535856i −0.963439 0.267928i \(-0.913661\pi\)
0.963439 0.267928i \(-0.0863389\pi\)
\(240\) −245.495 + 285.595i −0.0660278 + 0.0768128i
\(241\) 3797.63i 1.01505i 0.861637 + 0.507525i \(0.169439\pi\)
−0.861637 + 0.507525i \(0.830561\pi\)
\(242\) −386.095 554.909i −0.102558 0.147400i
\(243\) 243.000i 0.0641500i
\(244\) −2667.20 988.803i −0.699796 0.259433i
\(245\) 573.156 0.149459
\(246\) −550.534 791.246i −0.142686 0.205073i
\(247\) 1164.81 + 3504.51i 0.300062 + 0.902781i
\(248\) 692.248 + 2678.96i 0.177249 + 0.685944i
\(249\) 2103.52i 0.535362i
\(250\) 779.965 + 1120.99i 0.197317 + 0.283591i
\(251\) 4440.20i 1.11658i 0.829644 + 0.558292i \(0.188543\pi\)
−0.829644 + 0.558292i \(0.811457\pi\)
\(252\) −481.154 178.377i −0.120277 0.0445899i
\(253\) 4291.56 1.06643
\(254\) −854.315 1227.85i −0.211041 0.303316i
\(255\) 120.031i 0.0294771i
\(256\) 615.023 + 4049.56i 0.150152 + 0.988663i
\(257\) 4237.67 1.02856 0.514278 0.857624i \(-0.328060\pi\)
0.514278 + 0.857624i \(0.328060\pi\)
\(258\) −2148.00 3087.17i −0.518327 0.744957i
\(259\) 1698.98i 0.407604i
\(260\) −735.087 25.0989i −0.175339 0.00598681i
\(261\) 2756.11i 0.653635i
\(262\) 5011.07 3486.61i 1.18162 0.822150i
\(263\) −1562.99 −0.366457 −0.183228 0.983070i \(-0.558655\pi\)
−0.183228 + 0.983070i \(0.558655\pi\)
\(264\) 672.925 + 2604.18i 0.156878 + 0.607107i
\(265\) 974.419i 0.225880i
\(266\) −1303.75 + 907.124i −0.300519 + 0.209095i
\(267\) 42.8570 0.00982324
\(268\) 2203.00 5942.40i 0.502126 1.35444i
\(269\) 1057.42i 0.239673i 0.992794 + 0.119837i \(0.0382371\pi\)
−0.992794 + 0.119837i \(0.961763\pi\)
\(270\) 122.960 85.5529i 0.0277151 0.0192836i
\(271\) 3139.09i 0.703638i 0.936068 + 0.351819i \(0.114437\pi\)
−0.936068 + 0.351819i \(0.885563\pi\)
\(272\) 989.986 + 850.985i 0.220686 + 0.189701i
\(273\) −316.101 951.038i −0.0700781 0.210840i
\(274\) −1729.45 + 1203.32i −0.381314 + 0.265311i
\(275\) 4800.46 1.05265
\(276\) −2437.31 903.576i −0.531555 0.197061i
\(277\) 1799.10i 0.390242i −0.980779 0.195121i \(-0.937490\pi\)
0.980779 0.195121i \(-0.0625100\pi\)
\(278\) 3872.43 2694.36i 0.835442 0.581285i
\(279\) 1100.55i 0.236158i
\(280\) −79.1402 306.268i −0.0168912 0.0653679i
\(281\) 2289.86i 0.486126i −0.970010 0.243063i \(-0.921848\pi\)
0.970010 0.243063i \(-0.0781522\pi\)
\(282\) 2109.27 + 3031.52i 0.445410 + 0.640158i
\(283\) 2069.31i 0.434655i −0.976099 0.217328i \(-0.930266\pi\)
0.976099 0.217328i \(-0.0697340\pi\)
\(284\) 1561.27 + 578.802i 0.326212 + 0.120935i
\(285\) 463.633i 0.0963624i
\(286\) −3145.60 + 4207.10i −0.650360 + 0.869828i
\(287\) 809.645 0.166522
\(288\) 166.128 1620.68i 0.0339902 0.331596i
\(289\) −4496.92 −0.915311
\(290\) 1394.61 970.342i 0.282394 0.196484i
\(291\) 3508.59 0.706795
\(292\) −8065.54 2990.11i −1.61644 0.599256i
\(293\) 3205.38 0.639114 0.319557 0.947567i \(-0.396466\pi\)
0.319557 + 0.947567i \(0.396466\pi\)
\(294\) −2035.26 + 1416.09i −0.403736 + 0.280912i
\(295\) 1702.66 0.336043
\(296\) 5222.42 1349.48i 1.02550 0.264990i
\(297\) 1069.83i 0.209016i
\(298\) 3091.06 + 4442.57i 0.600873 + 0.863594i
\(299\) −1601.23 4817.54i −0.309704 0.931791i
\(300\) −2726.34 1010.73i −0.524684 0.194514i
\(301\) 3158.96 0.604914
\(302\) −3812.78 + 2652.86i −0.726493 + 0.505480i
\(303\) 3348.27 0.634829
\(304\) −3823.93 3287.02i −0.721438 0.620143i
\(305\) 697.456i 0.130938i
\(306\) −296.561 426.227i −0.0554027 0.0796267i
\(307\) 3977.40 0.739420 0.369710 0.929147i \(-0.379457\pi\)
0.369710 + 0.929147i \(0.379457\pi\)
\(308\) −2118.32 785.319i −0.391892 0.145285i
\(309\) 2531.30i 0.466021i
\(310\) 556.885 387.470i 0.102029 0.0709897i
\(311\) −9844.30 −1.79492 −0.897458 0.441100i \(-0.854588\pi\)
−0.897458 + 0.441100i \(0.854588\pi\)
\(312\) 2672.28 1727.05i 0.484898 0.313381i
\(313\) 1209.11 0.218349 0.109174 0.994023i \(-0.465179\pi\)
0.109174 + 0.994023i \(0.465179\pi\)
\(314\) 818.886 569.766i 0.147173 0.102400i
\(315\) 125.819i 0.0225050i
\(316\) −3418.32 + 9220.61i −0.608531 + 1.64146i
\(317\) 29.0546 0.00514784 0.00257392 0.999997i \(-0.499181\pi\)
0.00257392 + 0.999997i \(0.499181\pi\)
\(318\) 2407.49 + 3460.13i 0.424545 + 0.610171i
\(319\) 12134.0i 2.12970i
\(320\) 878.564 486.531i 0.153479 0.0849935i
\(321\) 478.293 0.0831643
\(322\) 1792.22 1246.99i 0.310176 0.215814i
\(323\) −1607.14 −0.276853
\(324\) −225.250 + 607.591i −0.0386231 + 0.104182i
\(325\) −1791.11 5388.82i −0.305701 0.919747i
\(326\) −1134.94 1631.17i −0.192817 0.277123i
\(327\) 6686.50i 1.13078i
\(328\) 643.092 + 2488.73i 0.108259 + 0.418955i
\(329\) −3102.01 −0.519816
\(330\) 541.340 376.654i 0.0903024 0.0628307i
\(331\) −5174.18 −0.859210 −0.429605 0.903017i \(-0.641347\pi\)
−0.429605 + 0.903017i \(0.641347\pi\)
\(332\) 1949.86 5259.58i 0.322328 0.869449i
\(333\) −2145.43 −0.353060
\(334\) −4993.84 + 3474.62i −0.818117 + 0.569230i
\(335\) −1553.90 −0.253428
\(336\) 1037.72 + 892.016i 0.168489 + 0.144832i
\(337\) 6593.59 1.06580 0.532901 0.846177i \(-0.321102\pi\)
0.532901 + 0.846177i \(0.321102\pi\)
\(338\) 5896.38 + 1961.41i 0.948879 + 0.315641i
\(339\) 3408.23i 0.546045i
\(340\) 111.263 300.123i 0.0177474 0.0478719i
\(341\) 4845.27i 0.769460i
\(342\) 1145.50 + 1646.35i 0.181115 + 0.260305i
\(343\) 4527.19i 0.712669i
\(344\) 2509.13 + 9710.18i 0.393265 + 1.52191i
\(345\) 637.341i 0.0994588i
\(346\) −2005.02 + 1395.06i −0.311533 + 0.216759i
\(347\) 1471.21i 0.227604i 0.993503 + 0.113802i \(0.0363030\pi\)
−0.993503 + 0.113802i \(0.963697\pi\)
\(348\) −2554.79 + 6891.30i −0.393537 + 1.06153i
\(349\) 2830.48 0.434132 0.217066 0.976157i \(-0.430351\pi\)
0.217066 + 0.976157i \(0.430351\pi\)
\(350\) 2004.75 1394.87i 0.306167 0.213025i
\(351\) −1200.95 + 399.165i −0.182627 + 0.0607005i
\(352\) 731.393 7135.20i 0.110748 1.08042i
\(353\) 2140.98i 0.322813i 0.986888 + 0.161407i \(0.0516031\pi\)
−0.986888 + 0.161407i \(0.948397\pi\)
\(354\) −6046.08 + 4206.75i −0.907756 + 0.631600i
\(355\) 408.261i 0.0610372i
\(356\) −107.158 39.7265i −0.0159533 0.00591432i
\(357\) 436.137 0.0646578
\(358\) −165.867 + 115.407i −0.0244870 + 0.0170376i
\(359\) 8556.42i 1.25791i −0.777441 0.628956i \(-0.783483\pi\)
0.777441 0.628956i \(-0.216517\pi\)
\(360\) −386.748 + 99.9364i −0.0566206 + 0.0146309i
\(361\) −651.259 −0.0949496
\(362\) −2988.95 + 2079.66i −0.433967 + 0.301946i
\(363\) 717.020i 0.103674i
\(364\) −91.1978 + 2670.96i −0.0131320 + 0.384606i
\(365\) 2109.09i 0.302451i
\(366\) −1723.20 2476.64i −0.246101 0.353705i
\(367\) 3384.19 0.481344 0.240672 0.970606i \(-0.422632\pi\)
0.240672 + 0.970606i \(0.422632\pi\)
\(368\) 5256.62 + 4518.56i 0.744621 + 0.640071i
\(369\) 1022.40i 0.144239i
\(370\) −755.341 1085.60i −0.106131 0.152535i
\(371\) −3540.58 −0.495466
\(372\) −1020.16 + 2751.78i −0.142185 + 0.383531i
\(373\) 8794.40i 1.22080i 0.792095 + 0.610398i \(0.208991\pi\)
−0.792095 + 0.610398i \(0.791009\pi\)
\(374\) −1305.63 1876.50i −0.180515 0.259443i
\(375\) 1448.48i 0.199464i
\(376\) −2463.89 9535.13i −0.337941 1.30781i
\(377\) −13621.2 + 4527.34i −1.86081 + 0.618487i
\(378\) −310.859 446.777i −0.0422986 0.0607930i
\(379\) −12072.7 −1.63623 −0.818117 0.575052i \(-0.804982\pi\)
−0.818117 + 0.575052i \(0.804982\pi\)
\(380\) −429.767 + 1159.26i −0.0580173 + 0.156496i
\(381\) 1586.55i 0.213338i
\(382\) 1440.75 + 2070.70i 0.192972 + 0.277346i
\(383\) 10016.6i 1.33636i 0.744001 + 0.668178i \(0.232926\pi\)
−0.744001 + 0.668178i \(0.767074\pi\)
\(384\) −1917.68 + 3898.32i −0.254847 + 0.518060i
\(385\) 553.928i 0.0733267i
\(386\) 6638.31 4618.81i 0.875340 0.609045i
\(387\) 3989.06i 0.523967i
\(388\) −8772.79 3252.30i −1.14786 0.425543i
\(389\) 3792.53i 0.494316i 0.968975 + 0.247158i \(0.0794967\pi\)
−0.968975 + 0.247158i \(0.920503\pi\)
\(390\) −624.798 467.154i −0.0811228 0.0606545i
\(391\) 2209.28 0.285750
\(392\) 6401.55 1654.17i 0.824814 0.213133i
\(393\) 6475.00 0.831096
\(394\) 6871.76 + 9876.32i 0.878665 + 1.26285i
\(395\) 2411.13 0.307132
\(396\) −991.683 + 2674.97i −0.125843 + 0.339451i
\(397\) 3697.88 0.467484 0.233742 0.972299i \(-0.424903\pi\)
0.233742 + 0.972299i \(0.424903\pi\)
\(398\) −2696.84 3875.99i −0.339649 0.488155i
\(399\) −1684.63 −0.211370
\(400\) 5879.97 + 5054.38i 0.734996 + 0.631798i
\(401\) 625.662i 0.0779154i −0.999241 0.0389577i \(-0.987596\pi\)
0.999241 0.0389577i \(-0.0124038\pi\)
\(402\) 5517.83 3839.20i 0.684588 0.476324i
\(403\) −5439.11 + 1807.82i −0.672311 + 0.223459i
\(404\) −8371.93 3103.69i −1.03099 0.382214i
\(405\) 158.881 0.0194935
\(406\) −3525.77 5067.35i −0.430988 0.619430i
\(407\) −9445.46 −1.15035
\(408\) 346.419 + 1340.62i 0.0420351 + 0.162673i
\(409\) 5895.18i 0.712709i 0.934351 + 0.356354i \(0.115980\pi\)
−0.934351 + 0.356354i \(0.884020\pi\)
\(410\) 517.341 359.956i 0.0623163 0.0433585i
\(411\) −2234.69 −0.268198
\(412\) 2346.40 6329.20i 0.280580 0.756838i
\(413\) 6186.67i 0.737109i
\(414\) −1574.68 2263.18i −0.186935 0.268669i
\(415\) −1375.35 −0.162682
\(416\) −8282.59 + 1841.19i −0.976172 + 0.216999i
\(417\) 5003.72 0.587610
\(418\) 5043.15 + 7248.19i 0.590116 + 0.848135i
\(419\) 11124.1i 1.29701i −0.761209 0.648506i \(-0.775394\pi\)
0.761209 0.648506i \(-0.224606\pi\)
\(420\) 116.628 314.593i 0.0135497 0.0365490i
\(421\) 13498.0 1.56260 0.781299 0.624157i \(-0.214557\pi\)
0.781299 + 0.624157i \(0.214557\pi\)
\(422\) −11457.9 + 7972.16i −1.32171 + 0.919617i
\(423\) 3917.15i 0.450256i
\(424\) −2812.25 10883.2i −0.322111 1.24655i
\(425\) 2471.26 0.282056
\(426\) 1008.69 + 1449.72i 0.114721 + 0.164881i
\(427\) 2534.23 0.287213
\(428\) −1195.91 443.356i −0.135062 0.0500711i
\(429\) −5287.29 + 1757.36i −0.595041 + 0.197777i
\(430\) 2018.49 1404.43i 0.226373 0.157506i
\(431\) 6562.32i 0.733401i 0.930339 + 0.366701i \(0.119513\pi\)
−0.930339 + 0.366701i \(0.880487\pi\)
\(432\) 1126.42 1310.41i 0.125451 0.145942i
\(433\) 2471.18 0.274266 0.137133 0.990553i \(-0.456211\pi\)
0.137133 + 0.990553i \(0.456211\pi\)
\(434\) −1407.88 2023.46i −0.155716 0.223800i
\(435\) 1802.03 0.198622
\(436\) 6198.08 16718.8i 0.680812 1.83643i
\(437\) −8533.57 −0.934133
\(438\) −5210.90 7489.29i −0.568463 0.817014i
\(439\) 10095.1 1.09753 0.548764 0.835977i \(-0.315098\pi\)
0.548764 + 0.835977i \(0.315098\pi\)
\(440\) −1702.69 + 439.979i −0.184484 + 0.0476709i
\(441\) −2629.83 −0.283969
\(442\) −1619.34 + 2165.80i −0.174263 + 0.233069i
\(443\) 3059.12i 0.328088i 0.986453 + 0.164044i \(0.0524539\pi\)
−0.986453 + 0.164044i \(0.947546\pi\)
\(444\) 5364.38 + 1988.72i 0.573384 + 0.212568i
\(445\) 28.0212i 0.00298502i
\(446\) −10493.5 + 7301.17i −1.11408 + 0.775158i
\(447\) 5740.42i 0.607411i
\(448\) −1767.83 3192.29i −0.186433 0.336655i
\(449\) 14487.4i 1.52273i −0.648325 0.761364i \(-0.724530\pi\)
0.648325 0.761364i \(-0.275470\pi\)
\(450\) −1761.41 2531.55i −0.184519 0.265197i
\(451\) 4501.21i 0.469964i
\(452\) 3159.27 8521.84i 0.328760 0.886800i
\(453\) −4926.64 −0.510980
\(454\) −5752.79 8268.11i −0.594696 0.854717i
\(455\) 621.818 206.677i 0.0640688 0.0212948i
\(456\) −1338.08 5178.30i −0.137415 0.531790i
\(457\) 17435.8i 1.78471i −0.451332 0.892356i \(-0.649051\pi\)
0.451332 0.892356i \(-0.350949\pi\)
\(458\) −1979.32 2844.75i −0.201938 0.290232i
\(459\) 550.745i 0.0560056i
\(460\) 590.786 1593.59i 0.0598816 0.161525i
\(461\) −11637.1 −1.17569 −0.587843 0.808975i \(-0.700023\pi\)
−0.587843 + 0.808975i \(0.700023\pi\)
\(462\) −1368.59 1966.98i −0.137819 0.198078i
\(463\) 7443.25i 0.747122i −0.927606 0.373561i \(-0.878137\pi\)
0.927606 0.373561i \(-0.121863\pi\)
\(464\) 12775.8 14862.7i 1.27824 1.48703i
\(465\) 719.573 0.0717622
\(466\) 8706.64 + 12513.5i 0.865509 + 1.24394i
\(467\) 1670.75i 0.165553i 0.996568 + 0.0827763i \(0.0263787\pi\)
−0.996568 + 0.0827763i \(0.973621\pi\)
\(468\) 3372.83 + 115.163i 0.333139 + 0.0113748i
\(469\) 5646.13i 0.555894i
\(470\) −1982.10 + 1379.11i −0.194527 + 0.135348i
\(471\) 1058.12 0.103515
\(472\) 19016.9 4914.01i 1.85450 0.479207i
\(473\) 17562.2i 1.70721i
\(474\) −8561.83 + 5957.16i −0.829658 + 0.577260i
\(475\) −9545.51 −0.922059
\(476\) −1090.51 404.279i −0.105007 0.0389288i
\(477\) 4470.97i 0.429165i
\(478\) −4596.81 + 3198.37i −0.439860 + 0.306046i
\(479\) 15019.1i 1.43265i 0.697764 + 0.716327i \(0.254178\pi\)
−0.697764 + 0.716327i \(0.745822\pi\)
\(480\) 1059.65 + 108.620i 0.100763 + 0.0103287i
\(481\) 3524.21 + 10603.1i 0.334075 + 1.00511i
\(482\) 8817.07 6134.75i 0.833209 0.579731i
\(483\) 2315.80 0.218163
\(484\) −664.644 + 1792.82i −0.0624196 + 0.168371i
\(485\) 2294.03i 0.214776i
\(486\) −564.180 + 392.546i −0.0526579 + 0.0366384i
\(487\) 10089.1i 0.938773i −0.882993 0.469386i \(-0.844475\pi\)
0.882993 0.469386i \(-0.155525\pi\)
\(488\) 2012.91 + 7789.86i 0.186722 + 0.722603i
\(489\) 2107.70i 0.194915i
\(490\) −925.885 1330.71i −0.0853616 0.122685i
\(491\) 12881.4i 1.18397i 0.805949 + 0.591985i \(0.201656\pi\)
−0.805949 + 0.591985i \(0.798344\pi\)
\(492\) −947.719 + 2556.38i −0.0868424 + 0.234249i
\(493\) 6246.55i 0.570650i
\(494\) 6254.88 8365.63i 0.569677 0.761918i
\(495\) 699.487 0.0635144
\(496\) 5101.56 5934.85i 0.461828 0.537263i
\(497\) −1483.43 −0.133885
\(498\) 4883.80 3398.06i 0.439455 0.305764i
\(499\) −13395.7 −1.20175 −0.600874 0.799344i \(-0.705181\pi\)
−0.600874 + 0.799344i \(0.705181\pi\)
\(500\) 1342.67 3621.74i 0.120092 0.323938i
\(501\) −6452.74 −0.575424
\(502\) 10308.9 7172.76i 0.916555 0.637721i
\(503\) 3123.84 0.276909 0.138454 0.990369i \(-0.455787\pi\)
0.138454 + 0.990369i \(0.455787\pi\)
\(504\) 363.122 + 1405.26i 0.0320928 + 0.124197i
\(505\) 2189.20i 0.192907i
\(506\) −6932.65 9963.84i −0.609079 0.875389i
\(507\) 3945.49 + 5279.62i 0.345613 + 0.462477i
\(508\) −1470.66 + 3966.98i −0.128445 + 0.346469i
\(509\) 18899.4 1.64578 0.822888 0.568203i \(-0.192361\pi\)
0.822888 + 0.568203i \(0.192361\pi\)
\(510\) 278.680 193.900i 0.0241964 0.0168354i
\(511\) 7663.43 0.663425
\(512\) 8408.48 7969.65i 0.725792 0.687914i
\(513\) 2127.31i 0.183086i
\(514\) −6845.60 9838.73i −0.587445 0.844295i
\(515\) −1655.04 −0.141611
\(516\) −3697.67 + 9974.14i −0.315467 + 0.850944i
\(517\) 17245.6i 1.46704i
\(518\) −3944.57 + 2744.56i −0.334584 + 0.232797i
\(519\) −2590.77 −0.219118
\(520\) 1129.20 + 1747.22i 0.0952281 + 0.147347i
\(521\) 16479.0 1.38571 0.692857 0.721075i \(-0.256352\pi\)
0.692857 + 0.721075i \(0.256352\pi\)
\(522\) −6398.94 + 4452.26i −0.536540 + 0.373315i
\(523\) 1172.62i 0.0980401i 0.998798 + 0.0490200i \(0.0156098\pi\)
−0.998798 + 0.0490200i \(0.984390\pi\)
\(524\) −16189.9 6002.03i −1.34973 0.500382i
\(525\) 2590.42 0.215343
\(526\) 2524.88 + 3628.84i 0.209297 + 0.300808i
\(527\) 2494.33i 0.206176i
\(528\) 4959.15 5769.19i 0.408749 0.475514i
\(529\) −436.182 −0.0358496
\(530\) −2262.34 + 1574.09i −0.185415 + 0.129008i
\(531\) −7812.39 −0.638472
\(532\) 4212.20 + 1561.57i 0.343274 + 0.127261i
\(533\) −5052.89 + 1679.45i −0.410628 + 0.136483i
\(534\) −69.2319 99.5024i −0.00561040 0.00806346i
\(535\) 312.723i 0.0252714i
\(536\) −17355.4 + 4484.67i −1.39858 + 0.361396i
\(537\) −214.323 −0.0172230
\(538\) 2455.05 1708.18i 0.196737 0.136886i
\(539\) −11578.1 −0.925238
\(540\) −397.262 147.275i −0.0316582 0.0117365i
\(541\) 12163.0 0.966594 0.483297 0.875456i \(-0.339439\pi\)
0.483297 + 0.875456i \(0.339439\pi\)
\(542\) 7288.11 5070.93i 0.577585 0.401873i
\(543\) −3862.15 −0.305231
\(544\) 376.519 3673.18i 0.0296748 0.289497i
\(545\) −4371.84 −0.343613
\(546\) −1697.42 + 2270.22i −0.133045 + 0.177943i
\(547\) 7645.69i 0.597635i −0.954310 0.298817i \(-0.903408\pi\)
0.954310 0.298817i \(-0.0965922\pi\)
\(548\) 5587.57 + 2071.46i 0.435564 + 0.161475i
\(549\) 3200.17i 0.248779i
\(550\) −7754.75 11145.4i −0.601206 0.864074i
\(551\) 24128.0i 1.86549i
\(552\) 1839.42 + 7118.44i 0.141831 + 0.548878i
\(553\) 8760.91i 0.673692i
\(554\) −4177.01 + 2906.29i −0.320333 + 0.222881i
\(555\) 1402.75i 0.107285i
\(556\) −12511.2 4638.22i −0.954302 0.353785i
\(557\) −7827.70 −0.595459 −0.297729 0.954650i \(-0.596229\pi\)
−0.297729 + 0.954650i \(0.596229\pi\)
\(558\) −2555.18 + 1777.85i −0.193852 + 0.134878i
\(559\) −19714.6 + 6552.65i −1.49166 + 0.495792i
\(560\) −583.227 + 678.492i −0.0440105 + 0.0511992i
\(561\) 2424.70i 0.182480i
\(562\) −5316.43 + 3699.07i −0.399039 + 0.277644i
\(563\) 10807.8i 0.809050i 0.914527 + 0.404525i \(0.132563\pi\)
−0.914527 + 0.404525i \(0.867437\pi\)
\(564\) 3631.02 9794.33i 0.271088 0.731234i
\(565\) −2228.40 −0.165929
\(566\) −4804.37 + 3342.79i −0.356789 + 0.248247i
\(567\) 577.299i 0.0427589i
\(568\) −1178.27 4559.84i −0.0870408 0.336843i
\(569\) 1092.63 0.0805015 0.0402508 0.999190i \(-0.487184\pi\)
0.0402508 + 0.999190i \(0.487184\pi\)
\(570\) −1076.43 + 748.961i −0.0790996 + 0.0550360i
\(571\) 25324.4i 1.85603i 0.372540 + 0.928016i \(0.378487\pi\)
−0.372540 + 0.928016i \(0.621513\pi\)
\(572\) 14849.2 + 507.013i 1.08545 + 0.0370617i
\(573\) 2675.63i 0.195072i
\(574\) −1307.91 1879.78i −0.0951067 0.136691i
\(575\) 13121.9 0.951689
\(576\) −4031.15 + 2232.37i −0.291605 + 0.161485i
\(577\) 5334.07i 0.384853i −0.981311 0.192427i \(-0.938364\pi\)
0.981311 0.192427i \(-0.0616357\pi\)
\(578\) 7264.40 + 10440.6i 0.522767 + 0.751338i
\(579\) 8577.63 0.615672
\(580\) −4505.74 1670.40i −0.322570 0.119585i
\(581\) 4997.36i 0.356842i
\(582\) −5667.84 8146.00i −0.403676 0.580177i
\(583\) 19683.8i 1.39832i
\(584\) 6086.98 + 23556.3i 0.431303 + 1.66912i
\(585\) −260.987 785.218i −0.0184452 0.0554953i
\(586\) −5178.03 7442.04i −0.365021 0.524621i
\(587\) −9169.90 −0.644774 −0.322387 0.946608i \(-0.604485\pi\)
−0.322387 + 0.946608i \(0.604485\pi\)
\(588\) 6575.57 + 2437.74i 0.461177 + 0.170970i
\(589\) 9634.60i 0.674001i
\(590\) −2750.50 3953.12i −0.191926 0.275843i
\(591\) 12761.6i 0.888226i
\(592\) −11569.5 9945.07i −0.803216 0.690439i
\(593\) 11447.3i 0.792719i −0.918095 0.396359i \(-0.870273\pi\)
0.918095 0.396359i \(-0.129727\pi\)
\(594\) −2483.86 + 1728.22i −0.171572 + 0.119377i
\(595\) 285.160i 0.0196478i
\(596\) 5321.11 14353.2i 0.365706 0.986459i
\(597\) 5008.32i 0.343345i
\(598\) −8598.37 + 11499.9i −0.587983 + 0.786401i
\(599\) 133.223 0.00908740 0.00454370 0.999990i \(-0.498554\pi\)
0.00454370 + 0.999990i \(0.498554\pi\)
\(600\) 2057.54 + 7962.57i 0.139998 + 0.541784i
\(601\) 22130.3 1.50202 0.751009 0.660292i \(-0.229567\pi\)
0.751009 + 0.660292i \(0.229567\pi\)
\(602\) −5103.03 7334.24i −0.345488 0.496547i
\(603\) 7129.81 0.481506
\(604\) 12318.4 + 4566.77i 0.829852 + 0.307648i
\(605\) 468.810 0.0315038
\(606\) −5408.85 7773.78i −0.362574 0.521103i
\(607\) −17566.5 −1.17463 −0.587316 0.809357i \(-0.699816\pi\)
−0.587316 + 0.809357i \(0.699816\pi\)
\(608\) −1454.34 + 14188.0i −0.0970089 + 0.946382i
\(609\) 6547.73i 0.435677i
\(610\) 1619.31 1126.68i 0.107482 0.0747836i
\(611\) 19359.3 6434.53i 1.28182 0.426044i
\(612\) −510.515 + 1377.07i −0.0337195 + 0.0909553i
\(613\) 26186.1 1.72536 0.862681 0.505748i \(-0.168783\pi\)
0.862681 + 0.505748i \(0.168783\pi\)
\(614\) −6425.15 9234.44i −0.422309 0.606957i
\(615\) 668.477 0.0438303
\(616\) 1598.68 + 6186.79i 0.104566 + 0.404664i
\(617\) 23951.0i 1.56278i 0.624046 + 0.781388i \(0.285488\pi\)
−0.624046 + 0.781388i \(0.714512\pi\)
\(618\) 5877.00 4089.10i 0.382536 0.266162i
\(619\) −5760.47 −0.374044 −0.187022 0.982356i \(-0.559883\pi\)
−0.187022 + 0.982356i \(0.559883\pi\)
\(620\) −1799.20 667.011i −0.116545 0.0432062i
\(621\) 2924.34i 0.188969i
\(622\) 15902.6 + 22855.8i 1.02514 + 1.47337i
\(623\) 101.816 0.00654763
\(624\) −8326.59 3414.41i −0.534183 0.219048i
\(625\) 14197.0 0.908609
\(626\) −1953.22 2807.24i −0.124707 0.179233i
\(627\) 9365.67i 0.596537i
\(628\) −2645.68 980.825i −0.168112 0.0623235i
\(629\) −4862.49 −0.308236
\(630\) 292.117 203.249i 0.0184734 0.0128534i
\(631\) 1160.57i 0.0732194i −0.999330 0.0366097i \(-0.988344\pi\)
0.999330 0.0366097i \(-0.0116558\pi\)
\(632\) 26929.8 6958.70i 1.69495 0.437978i
\(633\) −14805.1 −0.929624
\(634\) −46.9352 67.4569i −0.00294012 0.00422564i
\(635\) 1037.34 0.0648276
\(636\) 4144.38 11179.1i 0.258389 0.696981i
\(637\) 4319.91 + 12997.1i 0.268699 + 0.808421i
\(638\) −28171.9 + 19601.5i −1.74818 + 1.21635i
\(639\) 1873.24i 0.115969i
\(640\) −2548.84 1253.84i −0.157425 0.0774411i
\(641\) 17057.7 1.05108 0.525538 0.850770i \(-0.323864\pi\)
0.525538 + 0.850770i \(0.323864\pi\)
\(642\) −772.643 1110.47i −0.0474981 0.0682659i
\(643\) −14838.5 −0.910066 −0.455033 0.890475i \(-0.650373\pi\)
−0.455033 + 0.890475i \(0.650373\pi\)
\(644\) −5790.37 2146.64i −0.354305 0.131350i
\(645\) 2608.17 0.159220
\(646\) 2596.20 + 3731.34i 0.158121 + 0.227256i
\(647\) 12658.0 0.769144 0.384572 0.923095i \(-0.374349\pi\)
0.384572 + 0.923095i \(0.374349\pi\)
\(648\) 1774.53 458.542i 0.107578 0.0277982i
\(649\) −34394.7 −2.08030
\(650\) −9618.00 + 12863.7i −0.580383 + 0.776237i
\(651\) 2614.59i 0.157410i
\(652\) −1953.74 + 5270.03i −0.117353 + 0.316549i
\(653\) 16485.5i 0.987944i 0.869478 + 0.493972i \(0.164456\pi\)
−0.869478 + 0.493972i \(0.835544\pi\)
\(654\) 15524.3 10801.5i 0.928205 0.645828i
\(655\) 4233.56i 0.252548i
\(656\) 4739.30 5513.42i 0.282071 0.328145i
\(657\) 9677.21i 0.574648i
\(658\) 5011.04 + 7202.03i 0.296885 + 0.426694i
\(659\) 12672.0i 0.749059i 0.927215 + 0.374530i \(0.122196\pi\)
−0.927215 + 0.374530i \(0.877804\pi\)
\(660\) −1748.98 648.393i −0.103150 0.0382404i
\(661\) 10745.0 0.632271 0.316135 0.948714i \(-0.397615\pi\)
0.316135 + 0.948714i \(0.397615\pi\)
\(662\) 8358.45 + 12013.0i 0.490726 + 0.705287i
\(663\) −2721.88 + 904.684i −0.159440 + 0.0529940i
\(664\) −15361.2 + 3969.35i −0.897785 + 0.231989i
\(665\) 1101.46i 0.0642298i
\(666\) 3465.77 + 4981.11i 0.201645 + 0.289811i
\(667\) 33167.9i 1.92544i
\(668\) 16134.3 + 5981.40i 0.934511 + 0.346448i
\(669\) −13559.1 −0.783593
\(670\) 2510.19 + 3607.73i 0.144742 + 0.208028i
\(671\) 14089.0i 0.810582i
\(672\) 394.673 3850.28i 0.0226560 0.221023i
\(673\) −18235.1 −1.04444 −0.522222 0.852810i \(-0.674897\pi\)
−0.522222 + 0.852810i \(0.674897\pi\)
\(674\) −10651.4 15308.5i −0.608718 0.874870i
\(675\) 3271.12i 0.186527i
\(676\) −4971.25 16858.3i −0.282843 0.959166i
\(677\) 3337.54i 0.189471i −0.995502 0.0947356i \(-0.969799\pi\)
0.995502 0.0947356i \(-0.0302006\pi\)
\(678\) 7912.98 5505.70i 0.448224 0.311866i
\(679\) 8335.42 0.471110
\(680\) −876.541 + 226.500i −0.0494321 + 0.0127733i
\(681\) 10683.6i 0.601167i
\(682\) −11249.4 + 7827.12i −0.631616 + 0.439466i
\(683\) 20013.4 1.12122 0.560609 0.828081i \(-0.310567\pi\)
0.560609 + 0.828081i \(0.310567\pi\)
\(684\) 1971.92 5319.07i 0.110231 0.297339i
\(685\) 1461.11i 0.0814981i
\(686\) −10510.9 + 7313.30i −0.584998 + 0.407031i
\(687\) 3675.81i 0.204135i
\(688\) 18491.1 21511.5i 1.02466 1.19203i
\(689\) 22096.3 7344.26i 1.22178 0.406087i
\(690\) 1479.73 1029.57i 0.0816414 0.0568045i
\(691\) 4659.99 0.256547 0.128274 0.991739i \(-0.459056\pi\)
0.128274 + 0.991739i \(0.459056\pi\)
\(692\) 6477.89 + 2401.52i 0.355856 + 0.131925i
\(693\) 2541.61i 0.139319i
\(694\) 3415.76 2376.62i 0.186830 0.129993i
\(695\) 3271.59i 0.178559i
\(696\) 20126.8 5200.79i 1.09613 0.283241i
\(697\) 2317.21i 0.125926i
\(698\) −4572.40 6571.60i −0.247948 0.356359i
\(699\) 16169.2i 0.874927i
\(700\) −6477.01 2401.20i −0.349725 0.129652i
\(701\) 34527.6i 1.86033i 0.367146 + 0.930163i \(0.380335\pi\)
−0.367146 + 0.930163i \(0.619665\pi\)
\(702\) 2866.79 + 2143.46i 0.154131 + 0.115242i
\(703\) 18781.9 1.00764
\(704\) −17747.5 + 9828.21i −0.950120 + 0.526157i
\(705\) −2561.15 −0.136821
\(706\) 4970.79 3458.58i 0.264983 0.184370i
\(707\) 7954.54 0.423142
\(708\) 19533.9 + 7241.72i 1.03690 + 0.384408i
\(709\) −89.4916 −0.00474038 −0.00237019 0.999997i \(-0.500754\pi\)
−0.00237019 + 0.999997i \(0.500754\pi\)
\(710\) −947.871 + 659.511i −0.0501028 + 0.0348605i
\(711\) −11063.1 −0.583541
\(712\) 80.8714 + 312.968i 0.00425672 + 0.0164733i
\(713\) 13244.4i 0.695660i
\(714\) −704.544 1012.59i −0.0369284 0.0530747i
\(715\) −1149.02 3456.99i −0.0600990 0.180817i
\(716\) 535.888 + 198.668i 0.0279708 + 0.0103695i
\(717\) −5939.72 −0.309377
\(718\) −19865.7 + 13822.2i −1.03256 + 0.718439i
\(719\) −26608.2 −1.38013 −0.690067 0.723745i \(-0.742419\pi\)
−0.690067 + 0.723745i \(0.742419\pi\)
\(720\) 856.785 + 736.486i 0.0443479 + 0.0381212i
\(721\) 6013.65i 0.310624i
\(722\) 1052.05 + 1512.05i 0.0542291 + 0.0779399i
\(723\) 11392.9 0.586039
\(724\) 9656.81 + 3580.03i 0.495708 + 0.183772i
\(725\) 37101.1i 1.90055i
\(726\) −1664.73 + 1158.29i −0.0851016 + 0.0592121i
\(727\) −7882.87 −0.402145 −0.201073 0.979576i \(-0.564443\pi\)
−0.201073 + 0.979576i \(0.564443\pi\)
\(728\) 6348.58 4102.98i 0.323206 0.208883i
\(729\) −729.000 −0.0370370
\(730\) 4896.73 3407.05i 0.248268 0.172741i
\(731\) 9040.96i 0.457445i
\(732\) −2966.41 + 8001.61i −0.149784 + 0.404028i
\(733\) −11514.6 −0.580219 −0.290110 0.956993i \(-0.593692\pi\)
−0.290110 + 0.956993i \(0.593692\pi\)
\(734\) −5466.88 7857.18i −0.274913 0.395114i
\(735\) 1719.47i 0.0862905i
\(736\) 1999.24 19503.8i 0.100126 0.976793i
\(737\) 31389.6 1.56886
\(738\) −2373.74 + 1651.60i −0.118399 + 0.0823799i
\(739\) −12266.7 −0.610607 −0.305304 0.952255i \(-0.598758\pi\)
−0.305304 + 0.952255i \(0.598758\pi\)
\(740\) −1300.28 + 3507.40i −0.0645938 + 0.174236i
\(741\) 10513.5 3494.44i 0.521221 0.173241i
\(742\) 5719.51 + 8220.28i 0.282978 + 0.406706i
\(743\) 9024.07i 0.445573i 0.974867 + 0.222787i \(0.0715153\pi\)
−0.974867 + 0.222787i \(0.928485\pi\)
\(744\) 8036.88 2076.74i 0.396030 0.102335i
\(745\) −3753.26 −0.184576
\(746\) 20418.2 14206.6i 1.00210 0.697240i
\(747\) 6310.56 0.309091
\(748\) −2247.59 + 6062.66i −0.109866 + 0.296354i
\(749\) 1136.29 0.0554327
\(750\) 3362.98 2339.90i 0.163731 0.113921i
\(751\) 11628.6 0.565027 0.282514 0.959263i \(-0.408832\pi\)
0.282514 + 0.959263i \(0.408832\pi\)
\(752\) −18157.8 + 21123.7i −0.880514 + 1.02434i
\(753\) 13320.6 0.644660
\(754\) 32515.1 + 24311.2i 1.57047 + 1.17422i
\(755\) 3221.19i 0.155273i
\(756\) −535.130 + 1443.46i −0.0257440 + 0.0694421i
\(757\) 20413.1i 0.980090i −0.871697 0.490045i \(-0.836980\pi\)
0.871697 0.490045i \(-0.163020\pi\)
\(758\) 19502.4 + 28029.5i 0.934512 + 1.34311i
\(759\) 12874.7i 0.615706i
\(760\) 3385.73 874.879i 0.161597 0.0417568i
\(761\) 7463.82i 0.355537i −0.984072 0.177768i \(-0.943112\pi\)
0.984072 0.177768i \(-0.0568878\pi\)
\(762\) −3683.55 + 2562.94i −0.175119 + 0.121845i
\(763\) 15885.2i 0.753714i
\(764\) 2480.19 6690.07i 0.117448 0.316804i
\(765\) 360.094 0.0170186
\(766\) 23255.9 16181.0i 1.09696 0.763241i
\(767\) 12833.1 + 38610.2i 0.604140 + 1.81765i
\(768\) 12148.7 1845.07i 0.570805 0.0866903i
\(769\) 24780.4i 1.16203i 0.813892 + 0.581016i \(0.197345\pi\)
−0.813892 + 0.581016i \(0.802655\pi\)
\(770\) 1286.07 894.824i 0.0601906 0.0418795i
\(771\) 12713.0i 0.593837i
\(772\) −21447.3 7951.07i −0.999876 0.370680i
\(773\) 37842.9 1.76082 0.880410 0.474213i \(-0.157267\pi\)
0.880410 + 0.474213i \(0.157267\pi\)
\(774\) −9261.52 + 6443.99i −0.430101 + 0.299256i