Properties

Label 312.4.m.a.181.26
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.26
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62508 + 2.31498i) q^{2} -3.00000i q^{3} +(-2.71825 - 7.52404i) q^{4} -20.0591 q^{5} +(6.94494 + 4.87523i) q^{6} +33.1512i q^{7} +(21.8353 + 5.93444i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(-1.62508 + 2.31498i) q^{2} -3.00000i q^{3} +(-2.71825 - 7.52404i) q^{4} -20.0591 q^{5} +(6.94494 + 4.87523i) q^{6} +33.1512i q^{7} +(21.8353 + 5.93444i) q^{8} -9.00000 q^{9} +(32.5975 - 46.4363i) q^{10} +7.50344 q^{11} +(-22.5721 + 8.15476i) q^{12} +(-29.7031 + 36.2591i) q^{13} +(-76.7443 - 53.8732i) q^{14} +60.1772i q^{15} +(-49.2222 + 40.9045i) q^{16} +88.2549 q^{17} +(14.6257 - 20.8348i) q^{18} -43.0888 q^{19} +(54.5256 + 150.925i) q^{20} +99.4536 q^{21} +(-12.1937 + 17.3703i) q^{22} -192.337 q^{23} +(17.8033 - 65.5060i) q^{24} +277.366 q^{25} +(-35.6692 - 127.686i) q^{26} +27.0000i q^{27} +(249.431 - 90.1133i) q^{28} -133.095i q^{29} +(-139.309 - 97.7926i) q^{30} -114.640i q^{31} +(-14.7031 - 180.421i) q^{32} -22.5103i q^{33} +(-143.421 + 204.308i) q^{34} -664.982i q^{35} +(24.4643 + 67.7163i) q^{36} -59.6385 q^{37} +(70.0226 - 99.7496i) q^{38} +(108.777 + 89.1094i) q^{39} +(-437.997 - 119.039i) q^{40} -505.647i q^{41} +(-161.620 + 230.233i) q^{42} +142.605i q^{43} +(-20.3962 - 56.4562i) q^{44} +180.532 q^{45} +(312.563 - 445.257i) q^{46} +97.2263i q^{47} +(122.713 + 147.667i) q^{48} -756.001 q^{49} +(-450.742 + 642.097i) q^{50} -264.765i q^{51} +(353.556 + 124.926i) q^{52} -141.817i q^{53} +(-62.5044 - 43.8771i) q^{54} -150.512 q^{55} +(-196.734 + 723.868i) q^{56} +129.266i q^{57} +(308.112 + 216.289i) q^{58} +794.776 q^{59} +(452.775 - 163.577i) q^{60} -124.888i q^{61} +(265.390 + 186.299i) q^{62} -298.361i q^{63} +(441.565 + 259.161i) q^{64} +(595.817 - 727.324i) q^{65} +(52.1109 + 36.5810i) q^{66} +174.687 q^{67} +(-239.899 - 664.033i) q^{68} +577.012i q^{69} +(1539.42 + 1080.65i) q^{70} -519.031i q^{71} +(-196.518 - 53.4099i) q^{72} +616.082i q^{73} +(96.9171 - 138.062i) q^{74} -832.099i q^{75} +(117.126 + 324.202i) q^{76} +248.748i q^{77} +(-383.058 + 107.008i) q^{78} +937.405 q^{79} +(987.352 - 820.505i) q^{80} +81.0000 q^{81} +(1170.56 + 821.716i) q^{82} -1140.50 q^{83} +(-270.340 - 748.292i) q^{84} -1770.31 q^{85} +(-330.128 - 231.744i) q^{86} -399.285 q^{87} +(163.840 + 44.5287i) q^{88} -15.8988i q^{89} +(-293.378 + 417.927i) q^{90} +(-1202.03 - 984.694i) q^{91} +(522.821 + 1447.15i) q^{92} -343.921 q^{93} +(-225.077 - 158.000i) q^{94} +864.321 q^{95} +(-541.264 + 44.1093i) q^{96} +481.395i q^{97} +(1228.56 - 1750.13i) q^{98} -67.5310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62508 + 2.31498i −0.574551 + 0.818469i
\(3\) 3.00000i 0.577350i
\(4\) −2.71825 7.52404i −0.339782 0.940504i
\(5\) −20.0591 −1.79414 −0.897069 0.441891i \(-0.854308\pi\)
−0.897069 + 0.441891i \(0.854308\pi\)
\(6\) 6.94494 + 4.87523i 0.472543 + 0.331717i
\(7\) 33.1512i 1.79000i 0.446070 + 0.894998i \(0.352823\pi\)
−0.446070 + 0.894998i \(0.647177\pi\)
\(8\) 21.8353 + 5.93444i 0.964995 + 0.262267i
\(9\) −9.00000 −0.333333
\(10\) 32.5975 46.4363i 1.03082 1.46845i
\(11\) 7.50344 0.205670 0.102835 0.994698i \(-0.467209\pi\)
0.102835 + 0.994698i \(0.467209\pi\)
\(12\) −22.5721 + 8.15476i −0.543000 + 0.196173i
\(13\) −29.7031 + 36.2591i −0.633705 + 0.773575i
\(14\) −76.7443 53.8732i −1.46506 1.02844i
\(15\) 60.1772i 1.03585i
\(16\) −49.2222 + 40.9045i −0.769097 + 0.639132i
\(17\) 88.2549 1.25912 0.629558 0.776954i \(-0.283236\pi\)
0.629558 + 0.776954i \(0.283236\pi\)
\(18\) 14.6257 20.8348i 0.191517 0.272823i
\(19\) −43.0888 −0.520276 −0.260138 0.965571i \(-0.583768\pi\)
−0.260138 + 0.965571i \(0.583768\pi\)
\(20\) 54.5256 + 150.925i 0.609615 + 1.68739i
\(21\) 99.4536 1.03345
\(22\) −12.1937 + 17.3703i −0.118168 + 0.168335i
\(23\) −192.337 −1.74370 −0.871850 0.489773i \(-0.837080\pi\)
−0.871850 + 0.489773i \(0.837080\pi\)
\(24\) 17.8033 65.5060i 0.151420 0.557140i
\(25\) 277.366 2.21893
\(26\) −35.6692 127.686i −0.269050 0.963126i
\(27\) 27.0000i 0.192450i
\(28\) 249.431 90.1133i 1.68350 0.608208i
\(29\) 133.095i 0.852245i −0.904665 0.426123i \(-0.859879\pi\)
0.904665 0.426123i \(-0.140121\pi\)
\(30\) −139.309 97.7926i −0.847807 0.595147i
\(31\) 114.640i 0.664194i −0.943245 0.332097i \(-0.892244\pi\)
0.943245 0.332097i \(-0.107756\pi\)
\(32\) −14.7031 180.421i −0.0812239 0.996696i
\(33\) 22.5103i 0.118744i
\(34\) −143.421 + 204.308i −0.723426 + 1.03055i
\(35\) 664.982i 3.21150i
\(36\) 24.4643 + 67.7163i 0.113261 + 0.313501i
\(37\) −59.6385 −0.264987 −0.132493 0.991184i \(-0.542298\pi\)
−0.132493 + 0.991184i \(0.542298\pi\)
\(38\) 70.0226 99.7496i 0.298925 0.425830i
\(39\) 108.777 + 89.1094i 0.446624 + 0.365870i
\(40\) −437.997 119.039i −1.73133 0.470544i
\(41\) 505.647i 1.92607i −0.269377 0.963035i \(-0.586818\pi\)
0.269377 0.963035i \(-0.413182\pi\)
\(42\) −161.620 + 230.233i −0.593773 + 0.845850i
\(43\) 142.605i 0.505746i 0.967499 + 0.252873i \(0.0813755\pi\)
−0.967499 + 0.252873i \(0.918624\pi\)
\(44\) −20.3962 56.4562i −0.0698830 0.193434i
\(45\) 180.532 0.598046
\(46\) 312.563 445.257i 1.00184 1.42716i
\(47\) 97.2263i 0.301743i 0.988553 + 0.150871i \(0.0482079\pi\)
−0.988553 + 0.150871i \(0.951792\pi\)
\(48\) 122.713 + 147.667i 0.369003 + 0.444038i
\(49\) −756.001 −2.20409
\(50\) −450.742 + 642.097i −1.27489 + 1.81613i
\(51\) 264.765i 0.726951i
\(52\) 353.556 + 124.926i 0.942872 + 0.333156i
\(53\) 141.817i 0.367548i −0.982968 0.183774i \(-0.941168\pi\)
0.982968 0.183774i \(-0.0588315\pi\)
\(54\) −62.5044 43.8771i −0.157514 0.110572i
\(55\) −150.512 −0.369001
\(56\) −196.734 + 723.868i −0.469458 + 1.72734i
\(57\) 129.266i 0.300382i
\(58\) 308.112 + 216.289i 0.697536 + 0.489659i
\(59\) 794.776 1.75375 0.876873 0.480722i \(-0.159625\pi\)
0.876873 + 0.480722i \(0.159625\pi\)
\(60\) 452.775 163.577i 0.974218 0.351961i
\(61\) 124.888i 0.262137i −0.991373 0.131068i \(-0.958159\pi\)
0.991373 0.131068i \(-0.0418407\pi\)
\(62\) 265.390 + 186.299i 0.543622 + 0.381613i
\(63\) 298.361i 0.596665i
\(64\) 441.565 + 259.161i 0.862432 + 0.506174i
\(65\) 595.817 727.324i 1.13695 1.38790i
\(66\) 52.1109 + 36.5810i 0.0971880 + 0.0682244i
\(67\) 174.687 0.318528 0.159264 0.987236i \(-0.449088\pi\)
0.159264 + 0.987236i \(0.449088\pi\)
\(68\) −239.899 664.033i −0.427824 1.18420i
\(69\) 577.012i 1.00673i
\(70\) 1539.42 + 1080.65i 2.62851 + 1.84517i
\(71\) 519.031i 0.867573i −0.901016 0.433786i \(-0.857177\pi\)
0.901016 0.433786i \(-0.142823\pi\)
\(72\) −196.518 53.4099i −0.321665 0.0874225i
\(73\) 616.082i 0.987766i 0.869528 + 0.493883i \(0.164423\pi\)
−0.869528 + 0.493883i \(0.835577\pi\)
\(74\) 96.9171 138.062i 0.152248 0.216883i
\(75\) 832.099i 1.28110i
\(76\) 117.126 + 324.202i 0.176780 + 0.489322i
\(77\) 248.748i 0.368149i
\(78\) −383.058 + 107.008i −0.556061 + 0.155336i
\(79\) 937.405 1.33502 0.667508 0.744602i \(-0.267361\pi\)
0.667508 + 0.744602i \(0.267361\pi\)
\(80\) 987.352 820.505i 1.37987 1.14669i
\(81\) 81.0000 0.111111
\(82\) 1170.56 + 821.716i 1.57643 + 1.10663i
\(83\) −1140.50 −1.50826 −0.754132 0.656723i \(-0.771942\pi\)
−0.754132 + 0.656723i \(0.771942\pi\)
\(84\) −270.340 748.292i −0.351149 0.971969i
\(85\) −1770.31 −2.25903
\(86\) −330.128 231.744i −0.413937 0.290577i
\(87\) −399.285 −0.492044
\(88\) 163.840 + 44.5287i 0.198471 + 0.0539406i
\(89\) 15.8988i 0.0189356i −0.999955 0.00946780i \(-0.996986\pi\)
0.999955 0.00946780i \(-0.00301374\pi\)
\(90\) −293.378 + 417.927i −0.343608 + 0.489482i
\(91\) −1202.03 984.694i −1.38470 1.13433i
\(92\) 522.821 + 1447.15i 0.592477 + 1.63996i
\(93\) −343.921 −0.383472
\(94\) −225.077 158.000i −0.246967 0.173367i
\(95\) 864.321 0.933447
\(96\) −541.264 + 44.1093i −0.575443 + 0.0468946i
\(97\) 481.395i 0.503899i 0.967740 + 0.251950i \(0.0810717\pi\)
−0.967740 + 0.251950i \(0.918928\pi\)
\(98\) 1228.56 1750.13i 1.26636 1.80397i
\(99\) −67.5310 −0.0685567
\(100\) −753.952 2086.91i −0.753952 2.08691i
\(101\) 1081.34i 1.06532i −0.846330 0.532659i \(-0.821193\pi\)
0.846330 0.532659i \(-0.178807\pi\)
\(102\) 612.925 + 430.263i 0.594986 + 0.417670i
\(103\) 1371.79 1.31230 0.656150 0.754631i \(-0.272184\pi\)
0.656150 + 0.754631i \(0.272184\pi\)
\(104\) −863.756 + 615.459i −0.814406 + 0.580296i
\(105\) −1994.95 −1.85416
\(106\) 328.303 + 230.464i 0.300827 + 0.211175i
\(107\) 983.266i 0.888373i 0.895934 + 0.444187i \(0.146507\pi\)
−0.895934 + 0.444187i \(0.853493\pi\)
\(108\) 203.149 73.3928i 0.181000 0.0653910i
\(109\) 22.1146 0.0194330 0.00971651 0.999953i \(-0.496907\pi\)
0.00971651 + 0.999953i \(0.496907\pi\)
\(110\) 244.594 348.432i 0.212010 0.302016i
\(111\) 178.915i 0.152990i
\(112\) −1356.03 1631.77i −1.14404 1.37668i
\(113\) 815.087 0.678557 0.339279 0.940686i \(-0.389817\pi\)
0.339279 + 0.940686i \(0.389817\pi\)
\(114\) −299.249 210.068i −0.245853 0.172585i
\(115\) 3858.11 3.12844
\(116\) −1001.41 + 361.786i −0.801540 + 0.289577i
\(117\) 267.328 326.332i 0.211235 0.257858i
\(118\) −1291.57 + 1839.89i −1.00762 + 1.43539i
\(119\) 2925.76i 2.25381i
\(120\) −357.118 + 1313.99i −0.271669 + 0.999586i
\(121\) −1274.70 −0.957700
\(122\) 289.114 + 202.953i 0.214551 + 0.150611i
\(123\) −1516.94 −1.11202
\(124\) −862.557 + 311.621i −0.624677 + 0.225681i
\(125\) −3056.33 −2.18693
\(126\) 690.699 + 484.859i 0.488352 + 0.342815i
\(127\) 781.793 0.546244 0.273122 0.961979i \(-0.411944\pi\)
0.273122 + 0.961979i \(0.411944\pi\)
\(128\) −1317.53 + 601.057i −0.909798 + 0.415050i
\(129\) 427.816 0.291993
\(130\) 715.492 + 2561.26i 0.482714 + 1.72798i
\(131\) 105.610i 0.0704369i −0.999380 0.0352184i \(-0.988787\pi\)
0.999380 0.0352184i \(-0.0112127\pi\)
\(132\) −169.368 + 61.1887i −0.111679 + 0.0403469i
\(133\) 1428.44i 0.931292i
\(134\) −283.879 + 404.396i −0.183011 + 0.260705i
\(135\) 541.595i 0.345282i
\(136\) 1927.08 + 523.743i 1.21504 + 0.330225i
\(137\) 276.985i 0.172733i −0.996263 0.0863666i \(-0.972474\pi\)
0.996263 0.0863666i \(-0.0275256\pi\)
\(138\) −1335.77 937.688i −0.823973 0.578415i
\(139\) 1775.32i 1.08332i −0.840599 0.541658i \(-0.817797\pi\)
0.840599 0.541658i \(-0.182203\pi\)
\(140\) −5003.35 + 1807.59i −3.02043 + 1.09121i
\(141\) 291.679 0.174211
\(142\) 1201.55 + 843.465i 0.710081 + 0.498465i
\(143\) −222.876 + 272.068i −0.130334 + 0.159101i
\(144\) 443.000 368.140i 0.256366 0.213044i
\(145\) 2669.76i 1.52905i
\(146\) −1426.22 1001.18i −0.808455 0.567522i
\(147\) 2268.00i 1.27253i
\(148\) 162.112 + 448.722i 0.0900375 + 0.249221i
\(149\) −2088.89 −1.14852 −0.574258 0.818674i \(-0.694709\pi\)
−0.574258 + 0.818674i \(0.694709\pi\)
\(150\) 1926.29 + 1352.22i 1.04854 + 0.736058i
\(151\) 1583.70i 0.853506i −0.904368 0.426753i \(-0.859657\pi\)
0.904368 0.426753i \(-0.140343\pi\)
\(152\) −940.859 255.708i −0.502064 0.136452i
\(153\) −794.294 −0.419705
\(154\) −575.846 404.235i −0.301318 0.211520i
\(155\) 2299.58i 1.19165i
\(156\) 374.778 1060.67i 0.192348 0.544367i
\(157\) 209.534i 0.106514i −0.998581 0.0532569i \(-0.983040\pi\)
0.998581 0.0532569i \(-0.0169602\pi\)
\(158\) −1523.35 + 2170.07i −0.767035 + 1.09267i
\(159\) −425.451 −0.212204
\(160\) 294.930 + 3619.08i 0.145727 + 1.78821i
\(161\) 6376.21i 3.12122i
\(162\) −131.631 + 187.513i −0.0638390 + 0.0909410i
\(163\) −1946.15 −0.935182 −0.467591 0.883945i \(-0.654878\pi\)
−0.467591 + 0.883945i \(0.654878\pi\)
\(164\) −3804.51 + 1374.48i −1.81148 + 0.654443i
\(165\) 451.536i 0.213043i
\(166\) 1853.40 2640.23i 0.866575 1.23447i
\(167\) 1358.13i 0.629311i −0.949206 0.314656i \(-0.898111\pi\)
0.949206 0.314656i \(-0.101889\pi\)
\(168\) 2171.60 + 590.201i 0.997279 + 0.271042i
\(169\) −432.448 2154.02i −0.196836 0.980437i
\(170\) 2876.89 4098.23i 1.29793 1.84894i
\(171\) 387.799 0.173425
\(172\) 1072.97 387.637i 0.475656 0.171843i
\(173\) 1327.81i 0.583534i 0.956489 + 0.291767i \(0.0942431\pi\)
−0.956489 + 0.291767i \(0.905757\pi\)
\(174\) 648.868 924.336i 0.282705 0.402723i
\(175\) 9195.02i 3.97188i
\(176\) −369.336 + 306.924i −0.158180 + 0.131450i
\(177\) 2384.33i 1.01253i
\(178\) 36.8053 + 25.8367i 0.0154982 + 0.0108795i
\(179\) 1483.95i 0.619641i −0.950795 0.309820i \(-0.899731\pi\)
0.950795 0.309820i \(-0.100269\pi\)
\(180\) −490.731 1358.33i −0.203205 0.562465i
\(181\) 1399.61i 0.574763i −0.957816 0.287381i \(-0.907215\pi\)
0.957816 0.287381i \(-0.0927847\pi\)
\(182\) 4232.94 1182.48i 1.72399 0.481599i
\(183\) −374.665 −0.151345
\(184\) −4199.75 1141.41i −1.68266 0.457316i
\(185\) 1196.29 0.475422
\(186\) 558.898 796.169i 0.220325 0.313860i
\(187\) 662.216 0.258963
\(188\) 731.534 264.286i 0.283790 0.102527i
\(189\) −895.082 −0.344485
\(190\) −1404.59 + 2000.89i −0.536313 + 0.763997i
\(191\) 876.182 0.331928 0.165964 0.986132i \(-0.446926\pi\)
0.165964 + 0.986132i \(0.446926\pi\)
\(192\) 777.483 1324.69i 0.292240 0.497925i
\(193\) 2926.75i 1.09156i −0.837927 0.545782i \(-0.816233\pi\)
0.837927 0.545782i \(-0.183767\pi\)
\(194\) −1114.42 782.303i −0.412426 0.289516i
\(195\) −2181.97 1787.45i −0.801304 0.656421i
\(196\) 2055.00 + 5688.18i 0.748908 + 2.07295i
\(197\) 2802.49 1.01355 0.506775 0.862079i \(-0.330838\pi\)
0.506775 + 0.862079i \(0.330838\pi\)
\(198\) 109.743 156.333i 0.0393894 0.0561115i
\(199\) −411.646 −0.146637 −0.0733187 0.997309i \(-0.523359\pi\)
−0.0733187 + 0.997309i \(0.523359\pi\)
\(200\) 6056.39 + 1646.01i 2.14126 + 0.581953i
\(201\) 524.060i 0.183902i
\(202\) 2503.28 + 1757.26i 0.871930 + 0.612080i
\(203\) 4412.26 1.52552
\(204\) −1992.10 + 719.697i −0.683700 + 0.247004i
\(205\) 10142.8i 3.45563i
\(206\) −2229.27 + 3175.67i −0.753984 + 1.07408i
\(207\) 1731.04 0.581233
\(208\) −21.1058 2999.74i −0.00703569 0.999975i
\(209\) −323.314 −0.107005
\(210\) 3241.94 4618.26i 1.06531 1.51757i
\(211\) 3033.68i 0.989798i −0.868950 0.494899i \(-0.835205\pi\)
0.868950 0.494899i \(-0.164795\pi\)
\(212\) −1067.04 + 385.495i −0.345681 + 0.124886i
\(213\) −1557.09 −0.500893
\(214\) −2276.24 1597.88i −0.727106 0.510416i
\(215\) 2860.53i 0.907378i
\(216\) −160.230 + 589.554i −0.0504734 + 0.185713i
\(217\) 3800.46 1.18890
\(218\) −35.9380 + 51.1949i −0.0111653 + 0.0159053i
\(219\) 1848.25 0.570287
\(220\) 409.130 + 1132.46i 0.125380 + 0.347047i
\(221\) −2621.45 + 3200.05i −0.797908 + 0.974020i
\(222\) −414.185 290.751i −0.125218 0.0879006i
\(223\) 2017.39i 0.605805i −0.953022 0.302903i \(-0.902044\pi\)
0.953022 0.302903i \(-0.0979557\pi\)
\(224\) 5981.18 487.425i 1.78408 0.145390i
\(225\) −2496.30 −0.739644
\(226\) −1324.58 + 1886.91i −0.389866 + 0.555378i
\(227\) −979.522 −0.286401 −0.143201 0.989694i \(-0.545739\pi\)
−0.143201 + 0.989694i \(0.545739\pi\)
\(228\) 972.605 351.379i 0.282510 0.102064i
\(229\) 4660.51 1.34487 0.672435 0.740156i \(-0.265248\pi\)
0.672435 + 0.740156i \(0.265248\pi\)
\(230\) −6269.72 + 8931.44i −1.79745 + 2.56053i
\(231\) 746.244 0.212551
\(232\) 789.843 2906.17i 0.223516 0.822413i
\(233\) −4665.89 −1.31190 −0.655950 0.754804i \(-0.727732\pi\)
−0.655950 + 0.754804i \(0.727732\pi\)
\(234\) 321.023 + 1149.17i 0.0896835 + 0.321042i
\(235\) 1950.27i 0.541368i
\(236\) −2160.40 5979.92i −0.595891 1.64941i
\(237\) 2812.21i 0.770772i
\(238\) −6773.06 4754.58i −1.84467 1.29493i
\(239\) 1143.81i 0.309569i 0.987948 + 0.154784i \(0.0494683\pi\)
−0.987948 + 0.154784i \(0.950532\pi\)
\(240\) −2461.52 2962.06i −0.662042 0.796666i
\(241\) 1212.01i 0.323952i 0.986795 + 0.161976i \(0.0517867\pi\)
−0.986795 + 0.161976i \(0.948213\pi\)
\(242\) 2071.48 2950.90i 0.550248 0.783847i
\(243\) 243.000i 0.0641500i
\(244\) −939.665 + 339.478i −0.246541 + 0.0890692i
\(245\) 15164.7 3.95443
\(246\) 2465.15 3511.69i 0.638911 0.910151i
\(247\) 1279.87 1562.36i 0.329702 0.402472i
\(248\) 680.325 2503.21i 0.174196 0.640944i
\(249\) 3421.49i 0.870796i
\(250\) 4966.77 7075.33i 1.25650 1.78993i
\(251\) 5722.02i 1.43893i 0.694530 + 0.719464i \(0.255612\pi\)
−0.694530 + 0.719464i \(0.744388\pi\)
\(252\) −2244.88 + 811.020i −0.561166 + 0.202736i
\(253\) −1443.19 −0.358627
\(254\) −1270.47 + 1809.84i −0.313845 + 0.447083i
\(255\) 5310.93i 1.30425i
\(256\) 749.651 4026.82i 0.183020 0.983109i
\(257\) −3403.03 −0.825974 −0.412987 0.910737i \(-0.635515\pi\)
−0.412987 + 0.910737i \(0.635515\pi\)
\(258\) −695.233 + 990.384i −0.167765 + 0.238987i
\(259\) 1977.09i 0.474325i
\(260\) −7092.00 2505.90i −1.69164 0.597728i
\(261\) 1197.85i 0.284082i
\(262\) 244.486 + 171.625i 0.0576504 + 0.0404696i
\(263\) 1648.64 0.386538 0.193269 0.981146i \(-0.438091\pi\)
0.193269 + 0.981146i \(0.438091\pi\)
\(264\) 133.586 491.521i 0.0311426 0.114587i
\(265\) 2844.72i 0.659433i
\(266\) 3306.82 + 2321.33i 0.762233 + 0.535075i
\(267\) −47.6964 −0.0109325
\(268\) −474.842 1314.35i −0.108230 0.299577i
\(269\) 5618.78i 1.27354i 0.771052 + 0.636772i \(0.219731\pi\)
−0.771052 + 0.636772i \(0.780269\pi\)
\(270\) 1253.78 + 880.133i 0.282602 + 0.198382i
\(271\) 7307.37i 1.63797i 0.573812 + 0.818987i \(0.305464\pi\)
−0.573812 + 0.818987i \(0.694536\pi\)
\(272\) −4344.10 + 3610.02i −0.968382 + 0.804741i
\(273\) −2954.08 + 3606.10i −0.654906 + 0.799454i
\(274\) 641.215 + 450.122i 0.141377 + 0.0992441i
\(275\) 2081.20 0.456368
\(276\) 4341.46 1568.46i 0.946830 0.342067i
\(277\) 3317.53i 0.719607i −0.933028 0.359804i \(-0.882844\pi\)
0.933028 0.359804i \(-0.117156\pi\)
\(278\) 4109.83 + 2885.04i 0.886660 + 0.622421i
\(279\) 1031.76i 0.221398i
\(280\) 3946.29 14520.1i 0.842272 3.09908i
\(281\) 4753.70i 1.00919i −0.863357 0.504594i \(-0.831642\pi\)
0.863357 0.504594i \(-0.168358\pi\)
\(282\) −474.000 + 675.230i −0.100093 + 0.142586i
\(283\) 1741.89i 0.365882i −0.983124 0.182941i \(-0.941438\pi\)
0.983124 0.182941i \(-0.0585617\pi\)
\(284\) −3905.21 + 1410.86i −0.815956 + 0.294785i
\(285\) 2592.96i 0.538926i
\(286\) −267.642 958.084i −0.0553357 0.198086i
\(287\) 16762.8 3.44766
\(288\) 132.328 + 1623.79i 0.0270746 + 0.332232i
\(289\) 2875.93 0.585371
\(290\) −6180.44 4338.57i −1.25148 0.878515i
\(291\) 1444.18 0.290926
\(292\) 4635.42 1674.67i 0.928998 0.335625i
\(293\) 2160.37 0.430752 0.215376 0.976531i \(-0.430902\pi\)
0.215376 + 0.976531i \(0.430902\pi\)
\(294\) −5250.38 3685.68i −1.04153 0.731133i
\(295\) −15942.5 −3.14646
\(296\) −1302.23 353.921i −0.255711 0.0694974i
\(297\) 202.593i 0.0395813i
\(298\) 3394.61 4835.75i 0.659881 0.940024i
\(299\) 5713.02 6973.98i 1.10499 1.34888i
\(300\) −6260.74 + 2261.86i −1.20488 + 0.435294i
\(301\) −4727.53 −0.905284
\(302\) 3666.23 + 2573.63i 0.698568 + 0.490383i
\(303\) −3244.01 −0.615062
\(304\) 2120.93 1762.52i 0.400143 0.332525i
\(305\) 2505.15i 0.470309i
\(306\) 1290.79 1838.77i 0.241142 0.343515i
\(307\) 2315.83 0.430525 0.215263 0.976556i \(-0.430939\pi\)
0.215263 + 0.976556i \(0.430939\pi\)
\(308\) 1871.59 676.160i 0.346246 0.125090i
\(309\) 4115.38i 0.757657i
\(310\) −5323.47 3736.99i −0.975332 0.684667i
\(311\) 1524.32 0.277929 0.138965 0.990297i \(-0.455623\pi\)
0.138965 + 0.990297i \(0.455623\pi\)
\(312\) 1846.38 + 2591.27i 0.335034 + 0.470197i
\(313\) −4983.63 −0.899973 −0.449987 0.893035i \(-0.648571\pi\)
−0.449987 + 0.893035i \(0.648571\pi\)
\(314\) 485.068 + 340.509i 0.0871782 + 0.0611976i
\(315\) 5984.84i 1.07050i
\(316\) −2548.10 7053.07i −0.453614 1.25559i
\(317\) −7295.94 −1.29268 −0.646342 0.763048i \(-0.723702\pi\)
−0.646342 + 0.763048i \(0.723702\pi\)
\(318\) 691.391 984.910i 0.121922 0.173682i
\(319\) 998.670i 0.175281i
\(320\) −8857.38 5198.53i −1.54732 0.908145i
\(321\) 2949.80 0.512903
\(322\) 14760.8 + 10361.8i 2.55462 + 1.79330i
\(323\) −3802.80 −0.655088
\(324\) −220.178 609.447i −0.0377535 0.104500i
\(325\) −8238.65 + 10057.1i −1.40615 + 1.71651i
\(326\) 3162.65 4505.31i 0.537310 0.765417i
\(327\) 66.3439i 0.0112197i
\(328\) 3000.73 11041.0i 0.505145 1.85865i
\(329\) −3223.17 −0.540118
\(330\) −1045.30 733.781i −0.174369 0.122404i
\(331\) 8489.50 1.40974 0.704872 0.709335i \(-0.251004\pi\)
0.704872 + 0.709335i \(0.251004\pi\)
\(332\) 3100.16 + 8581.15i 0.512480 + 1.41853i
\(333\) 536.746 0.0883288
\(334\) 3144.03 + 2207.06i 0.515072 + 0.361572i
\(335\) −3504.05 −0.571483
\(336\) −4895.32 + 4068.09i −0.794827 + 0.660514i
\(337\) −1188.31 −0.192082 −0.0960408 0.995377i \(-0.530618\pi\)
−0.0960408 + 0.995377i \(0.530618\pi\)
\(338\) 5689.27 + 2499.34i 0.915549 + 0.402207i
\(339\) 2445.26i 0.391765i
\(340\) 4812.15 + 13319.9i 0.767576 + 2.12462i
\(341\) 860.197i 0.136605i
\(342\) −630.203 + 897.747i −0.0996418 + 0.141943i
\(343\) 13691.5i 2.15531i
\(344\) −846.281 + 3113.83i −0.132641 + 0.488043i
\(345\) 11574.3i 1.80620i
\(346\) −3073.85 2157.79i −0.477604 0.335270i
\(347\) 8002.52i 1.23803i 0.785378 + 0.619017i \(0.212469\pi\)
−0.785378 + 0.619017i \(0.787531\pi\)
\(348\) 1085.36 + 3004.23i 0.167187 + 0.462770i
\(349\) −3387.46 −0.519561 −0.259781 0.965668i \(-0.583650\pi\)
−0.259781 + 0.965668i \(0.583650\pi\)
\(350\) −21286.3 14942.6i −3.25086 2.28205i
\(351\) −978.996 801.985i −0.148875 0.121957i
\(352\) −110.324 1353.78i −0.0167053 0.204991i
\(353\) 2594.71i 0.391226i 0.980681 + 0.195613i \(0.0626696\pi\)
−0.980681 + 0.195613i \(0.937330\pi\)
\(354\) 5519.67 + 3874.72i 0.828721 + 0.581748i
\(355\) 10411.3i 1.55655i
\(356\) −119.623 + 43.2169i −0.0178090 + 0.00643397i
\(357\) 8777.27 1.30124
\(358\) 3435.31 + 2411.53i 0.507156 + 0.356015i
\(359\) 513.024i 0.0754217i −0.999289 0.0377108i \(-0.987993\pi\)
0.999289 0.0377108i \(-0.0120066\pi\)
\(360\) 3941.97 + 1071.35i 0.577112 + 0.156848i
\(361\) −5002.36 −0.729313
\(362\) 3240.06 + 2274.47i 0.470425 + 0.330231i
\(363\) 3824.10i 0.552928i
\(364\) −4141.44 + 11720.8i −0.596348 + 1.68774i
\(365\) 12358.0i 1.77219i
\(366\) 608.860 867.343i 0.0869553 0.123871i
\(367\) −10393.3 −1.47828 −0.739138 0.673554i \(-0.764767\pi\)
−0.739138 + 0.673554i \(0.764767\pi\)
\(368\) 9467.26 7867.45i 1.34107 1.11445i
\(369\) 4550.83i 0.642023i
\(370\) −1944.07 + 2769.39i −0.273155 + 0.389118i
\(371\) 4701.40 0.657910
\(372\) 934.864 + 2587.67i 0.130297 + 0.360657i
\(373\) 2096.99i 0.291094i −0.989351 0.145547i \(-0.953506\pi\)
0.989351 0.145547i \(-0.0464942\pi\)
\(374\) −1076.15 + 1533.01i −0.148787 + 0.211953i
\(375\) 9168.98i 1.26262i
\(376\) −576.983 + 2122.97i −0.0791373 + 0.291180i
\(377\) 4825.91 + 3953.34i 0.659275 + 0.540072i
\(378\) 1454.58 2072.10i 0.197924 0.281950i
\(379\) 6475.00 0.877569 0.438784 0.898592i \(-0.355409\pi\)
0.438784 + 0.898592i \(0.355409\pi\)
\(380\) −2349.44 6503.18i −0.317168 0.877911i
\(381\) 2345.38i 0.315374i
\(382\) −1423.86 + 2028.34i −0.190710 + 0.271673i
\(383\) 10028.3i 1.33791i −0.743302 0.668956i \(-0.766742\pi\)
0.743302 0.668956i \(-0.233258\pi\)
\(384\) 1803.17 + 3952.59i 0.239629 + 0.525272i
\(385\) 4989.65i 0.660510i
\(386\) 6775.36 + 4756.19i 0.893412 + 0.627160i
\(387\) 1283.45i 0.168582i
\(388\) 3622.03 1308.55i 0.473920 0.171216i
\(389\) 13407.8i 1.74757i −0.486315 0.873784i \(-0.661659\pi\)
0.486315 0.873784i \(-0.338341\pi\)
\(390\) 7683.79 2146.47i 0.997650 0.278695i
\(391\) −16974.7 −2.19552
\(392\) −16507.6 4486.44i −2.12693 0.578060i
\(393\) −316.831 −0.0406667
\(394\) −4554.26 + 6487.71i −0.582336 + 0.829558i
\(395\) −18803.5 −2.39520
\(396\) 183.566 + 508.105i 0.0232943 + 0.0644779i
\(397\) −9324.59 −1.17881 −0.589405 0.807838i \(-0.700638\pi\)
−0.589405 + 0.807838i \(0.700638\pi\)
\(398\) 668.957 952.952i 0.0842507 0.120018i
\(399\) −4285.33 −0.537682
\(400\) −13652.6 + 11345.5i −1.70657 + 1.41819i
\(401\) 11606.9i 1.44544i 0.691139 + 0.722722i \(0.257109\pi\)
−0.691139 + 0.722722i \(0.742891\pi\)
\(402\) 1213.19 + 851.637i 0.150518 + 0.105661i
\(403\) 4156.76 + 3405.18i 0.513803 + 0.420903i
\(404\) −8136.03 + 2939.35i −1.00194 + 0.361976i
\(405\) −1624.78 −0.199349
\(406\) −7170.25 + 10214.3i −0.876487 + 1.24859i
\(407\) −447.494 −0.0544998
\(408\) 1571.23 5781.23i 0.190655 0.701504i
\(409\) 10381.2i 1.25505i 0.778596 + 0.627525i \(0.215932\pi\)
−0.778596 + 0.627525i \(0.784068\pi\)
\(410\) −23480.4 16482.9i −2.82833 1.98544i
\(411\) −830.956 −0.0997276
\(412\) −3728.88 10321.4i −0.445895 1.23422i
\(413\) 26347.8i 3.13920i
\(414\) −2813.06 + 4007.31i −0.333948 + 0.475721i
\(415\) 22877.3 2.70603
\(416\) 6978.64 + 4825.95i 0.822491 + 0.568779i
\(417\) −5325.97 −0.625453
\(418\) 525.410 748.466i 0.0614800 0.0875805i
\(419\) 2309.14i 0.269234i −0.990898 0.134617i \(-0.957020\pi\)
0.990898 0.134617i \(-0.0429804\pi\)
\(420\) 5422.77 + 15010.0i 0.630009 + 1.74385i
\(421\) −264.567 −0.0306276 −0.0153138 0.999883i \(-0.504875\pi\)
−0.0153138 + 0.999883i \(0.504875\pi\)
\(422\) 7022.91 + 4929.97i 0.810119 + 0.568690i
\(423\) 875.036i 0.100581i
\(424\) 841.604 3096.62i 0.0963960 0.354682i
\(425\) 24478.9 2.79389
\(426\) 2530.40 3604.64i 0.287789 0.409965i
\(427\) 4140.20 0.469223
\(428\) 7398.13 2672.77i 0.835519 0.301853i
\(429\) 816.205 + 668.627i 0.0918572 + 0.0752485i
\(430\) 6622.06 + 4648.58i 0.742661 + 0.521335i
\(431\) 5169.06i 0.577691i −0.957376 0.288846i \(-0.906729\pi\)
0.957376 0.288846i \(-0.0932714\pi\)
\(432\) −1104.42 1329.00i −0.123001 0.148013i
\(433\) −1101.65 −0.122267 −0.0611336 0.998130i \(-0.519472\pi\)
−0.0611336 + 0.998130i \(0.519472\pi\)
\(434\) −6176.04 + 8797.99i −0.683086 + 0.973080i
\(435\) 8009.28 0.882795
\(436\) −60.1132 166.391i −0.00660298 0.0182768i
\(437\) 8287.58 0.907205
\(438\) −3003.54 + 4278.65i −0.327659 + 0.466762i
\(439\) 8435.37 0.917080 0.458540 0.888674i \(-0.348373\pi\)
0.458540 + 0.888674i \(0.348373\pi\)
\(440\) −3286.48 893.204i −0.356084 0.0967769i
\(441\) 6804.01 0.734695
\(442\) −3147.98 11268.9i −0.338765 1.21269i
\(443\) 10547.0i 1.13116i −0.824695 0.565578i \(-0.808653\pi\)
0.824695 0.565578i \(-0.191347\pi\)
\(444\) 1346.17 486.337i 0.143888 0.0519832i
\(445\) 318.915i 0.0339731i
\(446\) 4670.22 + 3278.42i 0.495833 + 0.348066i
\(447\) 6266.68i 0.663096i
\(448\) −8591.49 + 14638.4i −0.906049 + 1.54375i
\(449\) 15026.4i 1.57937i −0.613510 0.789687i \(-0.710243\pi\)
0.613510 0.789687i \(-0.289757\pi\)
\(450\) 4056.67 5778.87i 0.424963 0.605375i
\(451\) 3794.09i 0.396135i
\(452\) −2215.61 6132.75i −0.230561 0.638186i
\(453\) −4751.09 −0.492772
\(454\) 1591.80 2267.57i 0.164552 0.234411i
\(455\) 24111.7 + 19752.1i 2.48433 + 2.03514i
\(456\) −767.123 + 2822.58i −0.0787803 + 0.289867i
\(457\) 9353.93i 0.957458i −0.877963 0.478729i \(-0.841098\pi\)
0.877963 0.478729i \(-0.158902\pi\)
\(458\) −7573.69 + 10789.0i −0.772697 + 1.10073i
\(459\) 2382.88i 0.242317i
\(460\) −10487.3 29028.5i −1.06299 2.94231i
\(461\) 682.098 0.0689121 0.0344560 0.999406i \(-0.489030\pi\)
0.0344560 + 0.999406i \(0.489030\pi\)
\(462\) −1212.70 + 1727.54i −0.122121 + 0.173966i
\(463\) 14480.9i 1.45353i −0.686885 0.726766i \(-0.741022\pi\)
0.686885 0.726766i \(-0.258978\pi\)
\(464\) 5444.18 + 6551.23i 0.544697 + 0.655459i
\(465\) 6898.73 0.688002
\(466\) 7582.43 10801.4i 0.753754 1.07375i
\(467\) 2055.97i 0.203724i 0.994799 + 0.101862i \(0.0324800\pi\)
−0.994799 + 0.101862i \(0.967520\pi\)
\(468\) −3182.00 1124.33i −0.314291 0.111052i
\(469\) 5791.07i 0.570164i
\(470\) 4514.83 + 3169.34i 0.443093 + 0.311044i
\(471\) −628.603 −0.0614958
\(472\) 17354.2 + 4716.55i 1.69236 + 0.459951i
\(473\) 1070.03i 0.104017i
\(474\) 6510.22 + 4570.06i 0.630853 + 0.442848i
\(475\) −11951.4 −1.15446
\(476\) 22013.5 7952.94i 2.11972 0.765804i
\(477\) 1276.35i 0.122516i
\(478\) −2647.90 1858.78i −0.253372 0.177863i
\(479\) 6724.22i 0.641414i −0.947178 0.320707i \(-0.896080\pi\)
0.947178 0.320707i \(-0.103920\pi\)
\(480\) 10857.2 884.791i 1.03242 0.0841354i
\(481\) 1771.45 2162.44i 0.167923 0.204987i
\(482\) −2805.78 1969.61i −0.265144 0.186127i
\(483\) −19128.6 −1.80203
\(484\) 3464.95 + 9590.88i 0.325409 + 0.900721i
\(485\) 9656.33i 0.904065i
\(486\) 562.540 + 394.894i 0.0525048 + 0.0368575i
\(487\) 821.946i 0.0764803i −0.999269 0.0382402i \(-0.987825\pi\)
0.999269 0.0382402i \(-0.0121752\pi\)
\(488\) 741.143 2726.98i 0.0687499 0.252961i
\(489\) 5838.46i 0.539927i
\(490\) −24643.8 + 35105.9i −2.27203 + 3.23658i
\(491\) 7804.46i 0.717332i 0.933466 + 0.358666i \(0.116768\pi\)
−0.933466 + 0.358666i \(0.883232\pi\)
\(492\) 4123.43 + 11413.5i 0.377843 + 1.04586i
\(493\) 11746.3i 1.07307i
\(494\) 1536.94 + 5501.83i 0.139981 + 0.501092i
\(495\) 1354.61 0.123000
\(496\) 4689.30 + 5642.85i 0.424507 + 0.510829i
\(497\) 17206.5 1.55295
\(498\) −7920.68 5560.19i −0.712720 0.500317i
\(499\) −9817.67 −0.880760 −0.440380 0.897812i \(-0.645156\pi\)
−0.440380 + 0.897812i \(0.645156\pi\)
\(500\) 8307.87 + 22995.9i 0.743079 + 2.05682i
\(501\) −4074.38 −0.363333
\(502\) −13246.4 9298.72i −1.17772 0.826737i
\(503\) −6789.90 −0.601882 −0.300941 0.953643i \(-0.597301\pi\)
−0.300941 + 0.953643i \(0.597301\pi\)
\(504\) 1770.60 6514.81i 0.156486 0.575779i
\(505\) 21690.6i 1.91133i
\(506\) 2345.30 3340.96i 0.206050 0.293525i
\(507\) −6462.06 + 1297.34i −0.566055 + 0.113643i
\(508\) −2125.11 5882.24i −0.185604 0.513745i
\(509\) 2193.34 0.190998 0.0954990 0.995430i \(-0.469555\pi\)
0.0954990 + 0.995430i \(0.469555\pi\)
\(510\) −12294.7 8630.68i −1.06749 0.749358i
\(511\) −20423.8 −1.76810
\(512\) 8103.75 + 8279.31i 0.699489 + 0.714643i
\(513\) 1163.40i 0.100127i
\(514\) 5530.19 7877.95i 0.474565 0.676034i
\(515\) −27516.9 −2.35445
\(516\) −1162.91 3218.90i −0.0992137 0.274620i
\(517\) 729.531i 0.0620595i
\(518\) 4576.91 + 3212.92i 0.388220 + 0.272524i
\(519\) 3983.42 0.336903
\(520\) 17326.1 12345.5i 1.46116 1.04113i
\(521\) −20816.7 −1.75047 −0.875237 0.483694i \(-0.839295\pi\)
−0.875237 + 0.483694i \(0.839295\pi\)
\(522\) −2773.01 1946.61i −0.232512 0.163220i
\(523\) 3282.67i 0.274457i −0.990539 0.137229i \(-0.956180\pi\)
0.990539 0.137229i \(-0.0438195\pi\)
\(524\) −794.617 + 287.076i −0.0662462 + 0.0239332i
\(525\) 27585.1 2.29316
\(526\) −2679.17 + 3816.57i −0.222086 + 0.316370i
\(527\) 10117.6i 0.836296i
\(528\) 920.773 + 1108.01i 0.0758930 + 0.0913255i
\(529\) 24826.6 2.04049
\(530\) −6585.46 4622.88i −0.539725 0.378878i
\(531\) −7152.98 −0.584582
\(532\) −10747.7 + 3882.87i −0.875884 + 0.316436i
\(533\) 18334.3 + 15019.3i 1.48996 + 1.22056i
\(534\) 77.5102 110.416i 0.00628126 0.00894788i
\(535\) 19723.4i 1.59386i
\(536\) 3814.34 + 1036.67i 0.307378 + 0.0835395i
\(537\) −4451.85 −0.357750
\(538\) −13007.4 9130.95i −1.04236 0.731716i
\(539\) −5672.61 −0.453315
\(540\) −4074.98 + 1472.19i −0.324739 + 0.117320i
\(541\) −6655.14 −0.528885 −0.264443 0.964401i \(-0.585188\pi\)
−0.264443 + 0.964401i \(0.585188\pi\)
\(542\) −16916.4 11875.0i −1.34063 0.941100i
\(543\) −4198.82 −0.331839
\(544\) −1297.62 15923.1i −0.102270 1.25496i
\(545\) −443.599 −0.0348655
\(546\) −3547.43 12698.8i −0.278051 0.995347i
\(547\) 5361.51i 0.419089i −0.977799 0.209545i \(-0.932802\pi\)
0.977799 0.209545i \(-0.0671981\pi\)
\(548\) −2084.05 + 752.916i −0.162456 + 0.0586916i
\(549\) 1124.00i 0.0873789i
\(550\) −3382.11 + 4817.94i −0.262207 + 0.373523i
\(551\) 5734.90i 0.443403i
\(552\) −3424.24 + 12599.3i −0.264031 + 0.971485i
\(553\) 31076.1i 2.38967i
\(554\) 7680.01 + 5391.24i 0.588976 + 0.413451i
\(555\) 3588.88i 0.274485i
\(556\) −13357.6 + 4825.78i −1.01886 + 0.368091i
\(557\) −20610.0 −1.56781 −0.783907 0.620878i \(-0.786776\pi\)
−0.783907 + 0.620878i \(0.786776\pi\)
\(558\) −2388.51 1676.69i −0.181207 0.127204i
\(559\) −5170.74 4235.82i −0.391232 0.320494i
\(560\) 27200.7 + 32731.9i 2.05257 + 2.46995i
\(561\) 1986.65i 0.149512i
\(562\) 11004.7 + 7725.12i 0.825989 + 0.579830i
\(563\) 1875.47i 0.140394i 0.997533 + 0.0701969i \(0.0223628\pi\)
−0.997533 + 0.0701969i \(0.977637\pi\)
\(564\) −792.857 2194.60i −0.0591938 0.163846i
\(565\) −16349.9 −1.21743
\(566\) 4032.43 + 2830.70i 0.299463 + 0.210218i
\(567\) 2685.25i 0.198888i
\(568\) 3080.16 11333.2i 0.227536 0.837204i
\(569\) −22280.0 −1.64152 −0.820761 0.571271i \(-0.806450\pi\)
−0.820761 + 0.571271i \(0.806450\pi\)
\(570\) 6002.66 + 4213.76i 0.441094 + 0.309641i
\(571\) 10159.6i 0.744602i 0.928112 + 0.372301i \(0.121431\pi\)
−0.928112 + 0.372301i \(0.878569\pi\)
\(572\) 2652.88 + 937.375i 0.193921 + 0.0685203i
\(573\) 2628.55i 0.191639i
\(574\) −27240.8 + 38805.5i −1.98086 + 2.82180i
\(575\) −53347.9 −3.86915
\(576\) −3974.08 2332.45i −0.287477 0.168725i
\(577\) 3444.22i 0.248501i −0.992251 0.124250i \(-0.960347\pi\)
0.992251 0.124250i \(-0.0396526\pi\)
\(578\) −4673.61 + 6657.72i −0.336326 + 0.479108i
\(579\) −8780.25 −0.630215
\(580\) 20087.4 7257.09i 1.43807 0.519541i
\(581\) 37808.9i 2.69979i
\(582\) −2346.91 + 3343.26i −0.167152 + 0.238114i
\(583\) 1064.12i 0.0755938i
\(584\) −3656.10 + 13452.4i −0.259059 + 0.953189i
\(585\) −5362.36 + 6545.92i −0.378985 + 0.462633i
\(586\) −3510.77 + 5001.21i −0.247489 + 0.352557i
\(587\) 4097.27 0.288096 0.144048 0.989571i \(-0.453988\pi\)
0.144048 + 0.989571i \(0.453988\pi\)
\(588\) 17064.5 6165.01i 1.19682 0.432382i
\(589\) 4939.71i 0.345564i
\(590\) 25907.7 36906.5i 1.80780 2.57528i
\(591\) 8407.47i 0.585173i
\(592\) 2935.54 2439.48i 0.203800 0.169361i
\(593\) 17564.2i 1.21632i −0.793815 0.608159i \(-0.791908\pi\)
0.793815 0.608159i \(-0.208092\pi\)
\(594\) −468.998 329.229i −0.0323960 0.0227415i
\(595\) 58687.9i 4.04365i
\(596\) 5678.14 + 15716.9i 0.390245 + 1.08018i
\(597\) 1234.94i 0.0846611i
\(598\) 6860.52 + 24558.8i 0.469143 + 1.67940i
\(599\) −3134.23 −0.213791 −0.106896 0.994270i \(-0.534091\pi\)
−0.106896 + 0.994270i \(0.534091\pi\)
\(600\) 4938.04 18169.2i 0.335991 1.23626i
\(601\) −6865.54 −0.465976 −0.232988 0.972480i \(-0.574850\pi\)
−0.232988 + 0.972480i \(0.574850\pi\)
\(602\) 7682.60 10944.1i 0.520132 0.740946i
\(603\) −1572.18 −0.106176
\(604\) −11915.8 + 4304.89i −0.802727 + 0.290006i
\(605\) 25569.3 1.71825
\(606\) 5271.77 7509.83i 0.353385 0.503409i
\(607\) 5911.47 0.395287 0.197643 0.980274i \(-0.436671\pi\)
0.197643 + 0.980274i \(0.436671\pi\)
\(608\) 633.538 + 7774.13i 0.0422588 + 0.518557i
\(609\) 13236.8i 0.880757i
\(610\) −5799.36 4071.06i −0.384933 0.270217i
\(611\) −3525.34 2887.92i −0.233420 0.191216i
\(612\) 2159.09 + 5976.30i 0.142608 + 0.394734i
\(613\) 18065.3 1.19029 0.595146 0.803617i \(-0.297094\pi\)
0.595146 + 0.803617i \(0.297094\pi\)
\(614\) −3763.40 + 5361.09i −0.247359 + 0.352371i
\(615\) 30428.4 1.99511
\(616\) −1476.18 + 5431.50i −0.0965535 + 0.355262i
\(617\) 18244.1i 1.19040i −0.803577 0.595201i \(-0.797072\pi\)
0.803577 0.595201i \(-0.202928\pi\)
\(618\) 9527.02 + 6687.81i 0.620118 + 0.435313i
\(619\) 20042.8 1.30143 0.650717 0.759321i \(-0.274469\pi\)
0.650717 + 0.759321i \(0.274469\pi\)
\(620\) 17302.1 6250.83i 1.12076 0.404902i
\(621\) 5193.11i 0.335575i
\(622\) −2477.13 + 3528.76i −0.159685 + 0.227476i
\(623\) 527.064 0.0338946
\(624\) −8999.23 + 63.3174i −0.577336 + 0.00406206i
\(625\) 26636.3 1.70472
\(626\) 8098.79 11537.0i 0.517081 0.736600i
\(627\) 969.943i 0.0617796i
\(628\) −1576.54 + 569.567i −0.100177 + 0.0361914i
\(629\) −5263.39 −0.333649
\(630\) −13854.8 9725.82i −0.876171 0.615057i
\(631\) 4394.10i 0.277221i −0.990347 0.138610i \(-0.955736\pi\)
0.990347 0.138610i \(-0.0442636\pi\)
\(632\) 20468.6 + 5562.97i 1.28828 + 0.350131i
\(633\) −9101.05 −0.571460
\(634\) 11856.5 16889.9i 0.742713 1.05802i
\(635\) −15682.0 −0.980036
\(636\) 1156.48 + 3201.11i 0.0721031 + 0.199579i
\(637\) 22455.6 27411.9i 1.39674 1.70502i
\(638\) 2311.90 + 1622.92i 0.143462 + 0.100708i
\(639\) 4671.28i 0.289191i
\(640\) 26428.4 12056.6i 1.63230 0.744657i
\(641\) 20234.0 1.24679 0.623397 0.781906i \(-0.285752\pi\)
0.623397 + 0.781906i \(0.285752\pi\)
\(642\) −4793.65 + 6828.72i −0.294689 + 0.419795i
\(643\) 17695.6 1.08530 0.542648 0.839960i \(-0.317422\pi\)
0.542648 + 0.839960i \(0.317422\pi\)
\(644\) −47974.8 + 17332.1i −2.93552 + 1.06053i
\(645\) −8581.58 −0.523875
\(646\) 6179.84 8803.40i 0.376381 0.536169i
\(647\) 3886.43 0.236154 0.118077 0.993004i \(-0.462327\pi\)
0.118077 + 0.993004i \(0.462327\pi\)
\(648\) 1768.66 + 480.689i 0.107222 + 0.0291408i
\(649\) 5963.55 0.360693
\(650\) −9893.44 35415.8i −0.597004 2.13711i
\(651\) 11401.4i 0.686414i
\(652\) 5290.14 + 14642.9i 0.317758 + 0.879542i
\(653\) 23468.4i 1.40642i −0.710984 0.703208i \(-0.751750\pi\)
0.710984 0.703208i \(-0.248250\pi\)
\(654\) 153.585 + 107.814i 0.00918294 + 0.00644627i
\(655\) 2118.45i 0.126373i
\(656\) 20683.2 + 24889.1i 1.23101 + 1.48133i
\(657\) 5544.74i 0.329255i
\(658\) 5237.89 7461.56i 0.310326 0.442070i
\(659\) 22637.2i 1.33812i 0.743208 + 0.669061i \(0.233303\pi\)
−0.743208 + 0.669061i \(0.766697\pi\)
\(660\) 3397.37 1227.39i 0.200368 0.0723880i
\(661\) −3387.82 −0.199351 −0.0996754 0.995020i \(-0.531780\pi\)
−0.0996754 + 0.995020i \(0.531780\pi\)
\(662\) −13796.1 + 19653.0i −0.809970 + 1.15383i
\(663\) 9600.14 + 7864.34i 0.562351 + 0.460672i
\(664\) −24903.2 6768.21i −1.45547 0.395569i
\(665\) 28653.3i 1.67087i
\(666\) −872.254 + 1242.56i −0.0507495 + 0.0722944i
\(667\) 25599.1i 1.48606i
\(668\) −10218.6 + 3691.73i −0.591870 + 0.213828i
\(669\) −6052.18 −0.349762
\(670\) 5694.35 8111.80i 0.328346 0.467741i
\(671\) 937.093i 0.0539137i
\(672\) −1462.28 17943.5i −0.0839412 1.03004i
\(673\) −25563.1 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(674\) 1931.10 2750.92i 0.110361 0.157213i
\(675\) 7488.89i 0.427033i
\(676\) −15031.4 + 9108.92i −0.855224 + 0.518259i
\(677\) 5125.96i 0.290999i 0.989358 + 0.145500i \(0.0464790\pi\)
−0.989358 + 0.145500i \(0.953521\pi\)
\(678\) 5660.73 + 3973.74i 0.320648 + 0.225089i
\(679\) −15958.8 −0.901978
\(680\) −38655.4 10505.8i −2.17995 0.592469i
\(681\) 2938.56i 0.165354i
\(682\) 1991.34 + 1397.89i 0.111807 + 0.0784865i
\(683\) 19348.8 1.08398 0.541992 0.840383i \(-0.317670\pi\)
0.541992 + 0.840383i \(0.317670\pi\)
\(684\) −1054.14 2917.81i −0.0589268 0.163107i
\(685\) 5556.07i 0.309907i
\(686\) 31695.5 + 22249.7i 1.76405 + 1.23834i
\(687\) 13981.5i 0.776461i
\(688\) −5833.19 7019.34i −0.323239 0.388968i
\(689\) 5142.16 + 4212.41i 0.284326 + 0.232917i
\(690\) 26794.3 + 18809.2i 1.47832 + 1.03776i
\(691\) −6848.71 −0.377044 −0.188522 0.982069i \(-0.560370\pi\)
−0.188522 + 0.982069i \(0.560370\pi\)
\(692\) 9990.47 3609.32i 0.548816 0.198274i
\(693\) 2238.73i 0.122716i
\(694\) −18525.7 13004.7i −1.01329 0.711314i
\(695\) 35611.3i 1.94362i
\(696\) −8718.52 2369.53i −0.474820 0.129047i
\(697\) 44625.9i 2.42514i
\(698\) 5504.89 7841.91i 0.298515 0.425244i
\(699\) 13997.7i 0.757426i
\(700\) 69183.7 24994.4i 3.73557 1.34957i
\(701\) 15306.7i 0.824715i −0.911022 0.412358i \(-0.864705\pi\)
0.911022 0.412358i \(-0.135295\pi\)
\(702\) 3447.52 963.069i 0.185354 0.0517788i
\(703\) 2569.75 0.137866
\(704\) 3313.26 + 1944.60i 0.177376 + 0.104105i
\(705\) −5850.81 −0.312559
\(706\) −6006.71 4216.61i −0.320206 0.224779i
\(707\) 35847.7 1.90692
\(708\) −17939.8 + 6481.21i −0.952285 + 0.344038i
\(709\) −24287.6 −1.28651 −0.643257 0.765650i \(-0.722417\pi\)
−0.643257 + 0.765650i \(0.722417\pi\)
\(710\) −24101.9 16919.1i −1.27398 0.894315i
\(711\) −8436.64 −0.445005
\(712\) 94.3503 347.156i 0.00496619 0.0182728i
\(713\) 22049.6i 1.15815i
\(714\) −14263.7 + 20319.2i −0.747628 + 1.06502i
\(715\) 4470.68 5457.43i 0.233838 0.285450i
\(716\) −11165.3 + 4033.75i −0.582775 + 0.210542i
\(717\) 3431.43 0.178730
\(718\) 1187.64 + 833.704i 0.0617303 + 0.0433336i
\(719\) −11711.7 −0.607474 −0.303737 0.952756i \(-0.598234\pi\)
−0.303737 + 0.952756i \(0.598234\pi\)
\(720\) −8886.17 + 7384.55i −0.459955 + 0.382230i
\(721\) 45476.6i 2.34901i
\(722\) 8129.21 11580.3i 0.419028 0.596920i
\(723\) 3636.03 0.187034
\(724\) −10530.7 + 3804.49i −0.540567 + 0.195294i
\(725\) 36916.1i 1.89107i
\(726\) −8852.70 6214.45i −0.452554 0.317686i
\(727\) 3053.44 0.155772 0.0778858 0.996962i \(-0.475183\pi\)
0.0778858 + 0.996962i \(0.475183\pi\)
\(728\) −20403.2 28634.5i −1.03873 1.45778i
\(729\) −729.000 −0.0370370
\(730\) 28608.6 + 20082.7i 1.45048 + 1.01821i
\(731\) 12585.6i 0.636793i
\(732\) 1018.44 + 2819.00i 0.0514241 + 0.142340i
\(733\) 18182.2 0.916201 0.458100 0.888900i \(-0.348530\pi\)
0.458100 + 0.888900i \(0.348530\pi\)
\(734\) 16890.0 24060.3i 0.849346 1.20992i
\(735\) 45494.1i 2.28309i
\(736\) 2827.95 + 34701.7i 0.141630 + 1.73794i
\(737\) 1310.75 0.0655117
\(738\) −10535.1 7395.44i −0.525476 0.368875i
\(739\) −33748.8 −1.67993 −0.839967 0.542638i \(-0.817426\pi\)
−0.839967 + 0.542638i \(0.817426\pi\)
\(740\) −3251.82 9000.94i −0.161540 0.447137i
\(741\) −4687.09 3839.62i −0.232368 0.190353i
\(742\) −7640.14 + 10883.6i −0.378003 + 0.538479i
\(743\) 14765.5i 0.729065i −0.931191 0.364533i \(-0.881229\pi\)
0.931191 0.364533i \(-0.118771\pi\)
\(744\) −7509.63 2040.98i −0.370049 0.100572i
\(745\) 41901.3 2.06060
\(746\) 4854.48 + 3407.77i 0.238251 + 0.167248i
\(747\) 10264.5 0.502755
\(748\) −1800.07 4982.53i −0.0879907 0.243555i
\(749\) −32596.4 −1.59018
\(750\) −21226.0 14900.3i −1.03342 0.725443i
\(751\) 20722.4 1.00689 0.503443 0.864028i \(-0.332066\pi\)
0.503443 + 0.864028i \(0.332066\pi\)
\(752\) −3976.99 4785.69i −0.192853 0.232069i
\(753\) 17166.1 0.830765
\(754\) −16994.4 + 4747.39i −0.820820 + 0.229297i
\(755\) 31767.5i 1.53131i
\(756\) 2433.06 + 6734.63i 0.117050 + 0.323990i
\(757\) 3918.30i 0.188128i −0.995566 0.0940640i \(-0.970014\pi\)
0.995566 0.0940640i \(-0.0299858\pi\)
\(758\) −10522.4 + 14989.5i −0.504208 + 0.718263i
\(759\) 4329.57i 0.207053i
\(760\) 18872.8 + 5129.26i 0.900772 + 0.244813i
\(761\) 14201.0i 0.676458i −0.941064 0.338229i \(-0.890172\pi\)
0.941064 0.338229i \(-0.109828\pi\)
\(762\) 5429.51 + 3811.42i 0.258124 + 0.181199i
\(763\) 733.127i 0.0347850i
\(764\) −2381.68 6592.42i −0.112783 0.312180i
\(765\) 15932.8 0.753009
\(766\) 23215.2 + 16296.7i 1.09504 + 0.768699i
\(767\) −23607.3 + 28817.9i −1.11136 + 1.35665i
\(768\) −12080.4 2248.95i −0.567598 0.105667i
\(769\) 9610.01i 0.450645i 0.974284 + 0.225322i \(0.0723435\pi\)
−0.974284 + 0.225322i \(0.927656\pi\)
\(770\) 11550.9 + 8108.57i 0.540607 + 0.379497i
\(771\) 10209.1i 0.476877i
\(772\) −22021.0 + 7955.64i −1.02662 + 0.370894i
\(773\) −4076.62 −0.189684 −0.0948420 </