Properties

Label 312.4.m.a.181.24
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.24
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.98174 + 2.01809i) q^{2} +3.00000i q^{3} +(-0.145397 - 7.99868i) q^{4} +19.4332 q^{5} +(-6.05428 - 5.94523i) q^{6} -8.53532i q^{7} +(16.4302 + 15.5579i) q^{8} -9.00000 q^{9} +(-38.5117 + 39.2181i) q^{10} -49.3074 q^{11} +(23.9960 - 0.436190i) q^{12} +(-30.7594 + 35.3675i) q^{13} +(17.2251 + 16.9148i) q^{14} +58.2997i q^{15} +(-63.9577 + 2.32596i) q^{16} +117.742 q^{17} +(17.8357 - 18.1628i) q^{18} +26.5911 q^{19} +(-2.82553 - 155.440i) q^{20} +25.6060 q^{21} +(97.7145 - 99.5069i) q^{22} +117.626 q^{23} +(-46.6737 + 49.2906i) q^{24} +252.651 q^{25} +(-10.4177 - 132.165i) q^{26} -27.0000i q^{27} +(-68.2713 + 1.24101i) q^{28} +222.374i q^{29} +(-117.654 - 115.535i) q^{30} +240.158i q^{31} +(122.054 - 133.682i) q^{32} -147.922i q^{33} +(-233.334 + 237.614i) q^{34} -165.869i q^{35} +(1.30857 + 71.9881i) q^{36} +192.722 q^{37} +(-52.6968 + 53.6634i) q^{38} +(-106.103 - 92.2781i) q^{39} +(319.292 + 302.340i) q^{40} -4.97450i q^{41} +(-50.7444 + 51.6752i) q^{42} +184.130i q^{43} +(7.16913 + 394.394i) q^{44} -174.899 q^{45} +(-233.104 + 237.379i) q^{46} -410.488i q^{47} +(-6.97789 - 191.873i) q^{48} +270.148 q^{49} +(-500.689 + 509.873i) q^{50} +353.226i q^{51} +(287.366 + 240.892i) q^{52} +501.688i q^{53} +(54.4885 + 53.5070i) q^{54} -958.203 q^{55} +(132.792 - 140.237i) q^{56} +79.7734i q^{57} +(-448.771 - 440.688i) q^{58} -353.661 q^{59} +(466.321 - 8.47659i) q^{60} -268.231i q^{61} +(-484.661 - 475.931i) q^{62} +76.8179i q^{63} +(27.9039 + 511.239i) q^{64} +(-597.754 + 687.305i) q^{65} +(298.521 + 293.144i) q^{66} +623.874 q^{67} +(-17.1193 - 941.780i) q^{68} +352.877i q^{69} +(334.739 + 328.709i) q^{70} -313.912i q^{71} +(-147.872 - 140.021i) q^{72} +254.390i q^{73} +(-381.926 + 388.932i) q^{74} +757.953i q^{75} +(-3.86626 - 212.694i) q^{76} +420.854i q^{77} +(396.494 - 31.2532i) q^{78} +866.042 q^{79} +(-1242.91 + 45.2010i) q^{80} +81.0000 q^{81} +(10.0390 + 9.85817i) q^{82} -901.650 q^{83} +(-3.72302 - 204.814i) q^{84} +2288.11 q^{85} +(-371.592 - 364.899i) q^{86} -667.122 q^{87} +(-810.131 - 767.119i) q^{88} +701.679i q^{89} +(346.605 - 352.963i) q^{90} +(301.873 + 262.541i) q^{91} +(-17.1024 - 940.849i) q^{92} -720.473 q^{93} +(828.403 + 813.482i) q^{94} +516.752 q^{95} +(401.046 + 366.161i) q^{96} +531.587i q^{97} +(-535.364 + 545.184i) q^{98} +443.767 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.98174 + 2.01809i −0.700652 + 0.713504i
\(3\) 3.00000i 0.577350i
\(4\) −0.145397 7.99868i −0.0181746 0.999835i
\(5\) 19.4332 1.73816 0.869081 0.494670i \(-0.164711\pi\)
0.869081 + 0.494670i \(0.164711\pi\)
\(6\) −6.05428 5.94523i −0.411941 0.404521i
\(7\) 8.53532i 0.460864i −0.973088 0.230432i \(-0.925986\pi\)
0.973088 0.230432i \(-0.0740139\pi\)
\(8\) 16.4302 + 15.5579i 0.726120 + 0.687568i
\(9\) −9.00000 −0.333333
\(10\) −38.5117 + 39.2181i −1.21785 + 1.24018i
\(11\) −49.3074 −1.35152 −0.675761 0.737121i \(-0.736185\pi\)
−0.675761 + 0.737121i \(0.736185\pi\)
\(12\) 23.9960 0.436190i 0.577255 0.0104931i
\(13\) −30.7594 + 35.3675i −0.656240 + 0.754552i
\(14\) 17.2251 + 16.9148i 0.328828 + 0.322905i
\(15\) 58.2997i 1.00353i
\(16\) −63.9577 + 2.32596i −0.999339 + 0.0363432i
\(17\) 117.742 1.67980 0.839901 0.542740i \(-0.182613\pi\)
0.839901 + 0.542740i \(0.182613\pi\)
\(18\) 17.8357 18.1628i 0.233551 0.237835i
\(19\) 26.5911 0.321075 0.160538 0.987030i \(-0.448677\pi\)
0.160538 + 0.987030i \(0.448677\pi\)
\(20\) −2.82553 155.440i −0.0315904 1.73787i
\(21\) 25.6060 0.266080
\(22\) 97.7145 99.5069i 0.946946 0.964316i
\(23\) 117.626 1.06638 0.533188 0.845997i \(-0.320994\pi\)
0.533188 + 0.845997i \(0.320994\pi\)
\(24\) −46.6737 + 49.2906i −0.396968 + 0.419225i
\(25\) 252.651 2.02121
\(26\) −10.4177 132.165i −0.0785803 0.996908i
\(27\) 27.0000i 0.192450i
\(28\) −68.2713 + 1.24101i −0.460788 + 0.00837601i
\(29\) 222.374i 1.42392i 0.702218 + 0.711962i \(0.252193\pi\)
−0.702218 + 0.711962i \(0.747807\pi\)
\(30\) −117.654 115.535i −0.716021 0.703124i
\(31\) 240.158i 1.39141i 0.718329 + 0.695703i \(0.244907\pi\)
−0.718329 + 0.695703i \(0.755093\pi\)
\(32\) 122.054 133.682i 0.674258 0.738496i
\(33\) 147.922i 0.780301i
\(34\) −233.334 + 237.614i −1.17696 + 1.19854i
\(35\) 165.869i 0.801056i
\(36\) 1.30857 + 71.9881i 0.00605820 + 0.333278i
\(37\) 192.722 0.856307 0.428154 0.903706i \(-0.359164\pi\)
0.428154 + 0.903706i \(0.359164\pi\)
\(38\) −52.6968 + 53.6634i −0.224962 + 0.229088i
\(39\) −106.103 92.2781i −0.435641 0.378880i
\(40\) 319.292 + 302.340i 1.26211 + 1.19510i
\(41\) 4.97450i 0.0189484i −0.999955 0.00947422i \(-0.996984\pi\)
0.999955 0.00947422i \(-0.00301578\pi\)
\(42\) −50.7444 + 51.6752i −0.186429 + 0.189849i
\(43\) 184.130i 0.653014i 0.945195 + 0.326507i \(0.105872\pi\)
−0.945195 + 0.326507i \(0.894128\pi\)
\(44\) 7.16913 + 394.394i 0.0245634 + 1.35130i
\(45\) −174.899 −0.579387
\(46\) −233.104 + 237.379i −0.747157 + 0.760862i
\(47\) 410.488i 1.27395i −0.770883 0.636977i \(-0.780185\pi\)
0.770883 0.636977i \(-0.219815\pi\)
\(48\) −6.97789 191.873i −0.0209827 0.576969i
\(49\) 270.148 0.787605
\(50\) −500.689 + 509.873i −1.41616 + 1.44214i
\(51\) 353.226i 0.969834i
\(52\) 287.366 + 240.892i 0.766355 + 0.642418i
\(53\) 501.688i 1.30023i 0.759836 + 0.650115i \(0.225279\pi\)
−0.759836 + 0.650115i \(0.774721\pi\)
\(54\) 54.4885 + 53.5070i 0.137314 + 0.134840i
\(55\) −958.203 −2.34916
\(56\) 132.792 140.237i 0.316875 0.334642i
\(57\) 79.7734i 0.185373i
\(58\) −448.771 440.688i −1.01598 0.997675i
\(59\) −353.661 −0.780386 −0.390193 0.920733i \(-0.627592\pi\)
−0.390193 + 0.920733i \(0.627592\pi\)
\(60\) 466.321 8.47659i 1.00336 0.0182387i
\(61\) 268.231i 0.563008i −0.959560 0.281504i \(-0.909167\pi\)
0.959560 0.281504i \(-0.0908332\pi\)
\(62\) −484.661 475.931i −0.992773 0.974891i
\(63\) 76.8179i 0.153621i
\(64\) 27.9039 + 511.239i 0.0544998 + 0.998514i
\(65\) −597.754 + 687.305i −1.14065 + 1.31153i
\(66\) 298.521 + 293.144i 0.556748 + 0.546720i
\(67\) 623.874 1.13759 0.568794 0.822480i \(-0.307410\pi\)
0.568794 + 0.822480i \(0.307410\pi\)
\(68\) −17.1193 941.780i −0.0305297 1.67952i
\(69\) 352.877i 0.615672i
\(70\) 334.739 + 328.709i 0.571556 + 0.561261i
\(71\) 313.912i 0.524710i −0.964971 0.262355i \(-0.915501\pi\)
0.964971 0.262355i \(-0.0844992\pi\)
\(72\) −147.872 140.021i −0.242040 0.229189i
\(73\) 254.390i 0.407865i 0.978985 + 0.203932i \(0.0653722\pi\)
−0.978985 + 0.203932i \(0.934628\pi\)
\(74\) −381.926 + 388.932i −0.599973 + 0.610978i
\(75\) 757.953i 1.16694i
\(76\) −3.86626 212.694i −0.00583541 0.321022i
\(77\) 420.854i 0.622868i
\(78\) 396.494 31.2532i 0.575565 0.0453684i
\(79\) 866.042 1.23338 0.616692 0.787205i \(-0.288472\pi\)
0.616692 + 0.787205i \(0.288472\pi\)
\(80\) −1242.91 + 45.2010i −1.73701 + 0.0631703i
\(81\) 81.0000 0.111111
\(82\) 10.0390 + 9.85817i 0.0135198 + 0.0132763i
\(83\) −901.650 −1.19240 −0.596198 0.802837i \(-0.703323\pi\)
−0.596198 + 0.802837i \(0.703323\pi\)
\(84\) −3.72302 204.814i −0.00483589 0.266036i
\(85\) 2288.11 2.91977
\(86\) −371.592 364.899i −0.465928 0.457535i
\(87\) −667.122 −0.822103
\(88\) −810.131 767.119i −0.981367 0.929264i
\(89\) 701.679i 0.835705i 0.908515 + 0.417853i \(0.137217\pi\)
−0.908515 + 0.417853i \(0.862783\pi\)
\(90\) 346.605 352.963i 0.405949 0.413395i
\(91\) 301.873 + 262.541i 0.347746 + 0.302437i
\(92\) −17.1024 940.849i −0.0193809 1.06620i
\(93\) −720.473 −0.803329
\(94\) 828.403 + 813.482i 0.908971 + 0.892598i
\(95\) 516.752 0.558080
\(96\) 401.046 + 366.161i 0.426371 + 0.389283i
\(97\) 531.587i 0.556438i 0.960518 + 0.278219i \(0.0897441\pi\)
−0.960518 + 0.278219i \(0.910256\pi\)
\(98\) −535.364 + 545.184i −0.551836 + 0.561959i
\(99\) 443.767 0.450507
\(100\) −36.7346 2020.87i −0.0367346 2.02087i
\(101\) 1194.23i 1.17654i −0.808665 0.588269i \(-0.799809\pi\)
0.808665 0.588269i \(-0.200191\pi\)
\(102\) −712.843 700.003i −0.691980 0.679516i
\(103\) 334.800 0.320280 0.160140 0.987094i \(-0.448805\pi\)
0.160140 + 0.987094i \(0.448805\pi\)
\(104\) −1055.63 + 102.545i −0.995315 + 0.0966857i
\(105\) 497.607 0.462490
\(106\) −1012.45 994.216i −0.927718 0.911008i
\(107\) 652.991i 0.589973i 0.955501 + 0.294986i \(0.0953151\pi\)
−0.955501 + 0.294986i \(0.904685\pi\)
\(108\) −215.964 + 3.92571i −0.192418 + 0.00349770i
\(109\) −1710.98 −1.50351 −0.751754 0.659443i \(-0.770792\pi\)
−0.751754 + 0.659443i \(0.770792\pi\)
\(110\) 1898.91 1933.74i 1.64595 1.67614i
\(111\) 578.167i 0.494389i
\(112\) 19.8528 + 545.899i 0.0167493 + 0.460559i
\(113\) −40.3996 −0.0336325 −0.0168162 0.999859i \(-0.505353\pi\)
−0.0168162 + 0.999859i \(0.505353\pi\)
\(114\) −160.990 158.090i −0.132264 0.129882i
\(115\) 2285.85 1.85353
\(116\) 1778.70 32.3325i 1.42369 0.0258793i
\(117\) 276.834 318.308i 0.218747 0.251517i
\(118\) 700.866 713.721i 0.546779 0.556808i
\(119\) 1004.97i 0.774160i
\(120\) −907.021 + 957.877i −0.689994 + 0.728682i
\(121\) 1100.22 0.826611
\(122\) 541.315 + 531.565i 0.401708 + 0.394472i
\(123\) 14.9235 0.0109399
\(124\) 1920.94 34.9181i 1.39118 0.0252882i
\(125\) 2480.67 1.77502
\(126\) −155.026 152.233i −0.109609 0.107635i
\(127\) −2128.45 −1.48716 −0.743579 0.668648i \(-0.766873\pi\)
−0.743579 + 0.668648i \(0.766873\pi\)
\(128\) −1087.03 956.831i −0.750628 0.660725i
\(129\) −552.391 −0.377018
\(130\) −202.451 2568.39i −0.136585 1.73279i
\(131\) 94.2390i 0.0628527i 0.999506 + 0.0314263i \(0.0100050\pi\)
−0.999506 + 0.0314263i \(0.989995\pi\)
\(132\) −1183.18 + 21.5074i −0.780173 + 0.0141817i
\(133\) 226.964i 0.147972i
\(134\) −1236.36 + 1259.04i −0.797053 + 0.811673i
\(135\) 524.698i 0.334509i
\(136\) 1934.53 + 1831.82i 1.21974 + 1.15498i
\(137\) 2147.19i 1.33903i −0.742801 0.669513i \(-0.766503\pi\)
0.742801 0.669513i \(-0.233497\pi\)
\(138\) −712.138 699.311i −0.439284 0.431372i
\(139\) 451.555i 0.275542i 0.990464 + 0.137771i \(0.0439938\pi\)
−0.990464 + 0.137771i \(0.956006\pi\)
\(140\) −1326.73 + 24.1168i −0.800924 + 0.0145589i
\(141\) 1231.46 0.735518
\(142\) 633.503 + 622.092i 0.374383 + 0.367639i
\(143\) 1516.67 1743.88i 0.886922 1.01979i
\(144\) 575.619 20.9337i 0.333113 0.0121144i
\(145\) 4321.45i 2.47501i
\(146\) −513.383 504.136i −0.291013 0.285771i
\(147\) 810.445i 0.454724i
\(148\) −28.0212 1541.52i −0.0155630 0.856166i
\(149\) 626.419 0.344418 0.172209 0.985060i \(-0.444910\pi\)
0.172209 + 0.985060i \(0.444910\pi\)
\(150\) −1529.62 1502.07i −0.832619 0.817621i
\(151\) 199.097i 0.107300i −0.998560 0.0536499i \(-0.982915\pi\)
0.998560 0.0536499i \(-0.0170855\pi\)
\(152\) 436.898 + 413.702i 0.233139 + 0.220761i
\(153\) −1059.68 −0.559934
\(154\) −849.323 834.025i −0.444418 0.436413i
\(155\) 4667.04i 2.41849i
\(156\) −722.676 + 862.097i −0.370900 + 0.442455i
\(157\) 1381.01i 0.702017i 0.936372 + 0.351008i \(0.114161\pi\)
−0.936372 + 0.351008i \(0.885839\pi\)
\(158\) −1716.27 + 1747.75i −0.864172 + 0.880024i
\(159\) −1505.06 −0.750688
\(160\) 2371.90 2597.88i 1.17197 1.28363i
\(161\) 1003.97i 0.491454i
\(162\) −160.521 + 163.466i −0.0778502 + 0.0792782i
\(163\) −1581.77 −0.760082 −0.380041 0.924970i \(-0.624090\pi\)
−0.380041 + 0.924970i \(0.624090\pi\)
\(164\) −39.7894 + 0.723276i −0.0189453 + 0.000344380i
\(165\) 2874.61i 1.35629i
\(166\) 1786.84 1819.61i 0.835455 0.850779i
\(167\) 3549.13i 1.64455i −0.569091 0.822275i \(-0.692705\pi\)
0.569091 0.822275i \(-0.307295\pi\)
\(168\) 420.711 + 398.375i 0.193206 + 0.182948i
\(169\) −304.721 2175.77i −0.138699 0.990335i
\(170\) −4534.44 + 4617.61i −2.04574 + 2.08326i
\(171\) −239.320 −0.107025
\(172\) 1472.80 26.7719i 0.652906 0.0118683i
\(173\) 1461.00i 0.642066i −0.947068 0.321033i \(-0.895970\pi\)
0.947068 0.321033i \(-0.104030\pi\)
\(174\) 1322.06 1346.31i 0.576008 0.586574i
\(175\) 2156.46i 0.931501i
\(176\) 3153.59 114.687i 1.35063 0.0491186i
\(177\) 1060.98i 0.450556i
\(178\) −1416.05 1390.55i −0.596279 0.585538i
\(179\) 4222.63i 1.76321i −0.471988 0.881605i \(-0.656463\pi\)
0.471988 0.881605i \(-0.343537\pi\)
\(180\) 25.4298 + 1398.96i 0.0105301 + 0.579292i
\(181\) 3351.24i 1.37622i −0.725606 0.688110i \(-0.758440\pi\)
0.725606 0.688110i \(-0.241560\pi\)
\(182\) −1128.07 + 88.9188i −0.459439 + 0.0362148i
\(183\) 804.693 0.325053
\(184\) 1932.61 + 1830.01i 0.774316 + 0.733206i
\(185\) 3745.22 1.48840
\(186\) 1427.79 1453.98i 0.562854 0.573178i
\(187\) −5805.55 −2.27029
\(188\) −3283.36 + 59.6836i −1.27374 + 0.0231536i
\(189\) −230.454 −0.0886933
\(190\) −1024.07 + 1042.85i −0.391020 + 0.398192i
\(191\) −2384.90 −0.903482 −0.451741 0.892149i \(-0.649197\pi\)
−0.451741 + 0.892149i \(0.649197\pi\)
\(192\) −1533.72 + 83.7116i −0.576492 + 0.0314655i
\(193\) 1797.53i 0.670411i −0.942145 0.335205i \(-0.891194\pi\)
0.942145 0.335205i \(-0.108806\pi\)
\(194\) −1072.79 1053.47i −0.397021 0.389869i
\(195\) −2061.92 1793.26i −0.757215 0.658555i
\(196\) −39.2787 2160.83i −0.0143144 0.787474i
\(197\) 3708.67 1.34128 0.670638 0.741785i \(-0.266020\pi\)
0.670638 + 0.741785i \(0.266020\pi\)
\(198\) −879.431 + 895.562i −0.315649 + 0.321439i
\(199\) −1420.65 −0.506068 −0.253034 0.967457i \(-0.581428\pi\)
−0.253034 + 0.967457i \(0.581428\pi\)
\(200\) 4151.11 + 3930.72i 1.46764 + 1.38972i
\(201\) 1871.62i 0.656787i
\(202\) 2410.07 + 2366.66i 0.839465 + 0.824344i
\(203\) 1898.03 0.656236
\(204\) 2825.34 51.3579i 0.969674 0.0176263i
\(205\) 96.6706i 0.0329354i
\(206\) −663.487 + 675.658i −0.224405 + 0.228521i
\(207\) −1058.63 −0.355458
\(208\) 1885.04 2333.57i 0.628383 0.777904i
\(209\) −1311.14 −0.433940
\(210\) −986.128 + 1004.22i −0.324044 + 0.329988i
\(211\) 5818.86i 1.89852i 0.314499 + 0.949258i \(0.398163\pi\)
−0.314499 + 0.949258i \(0.601837\pi\)
\(212\) 4012.84 72.9438i 1.30001 0.0236311i
\(213\) 941.735 0.302942
\(214\) −1317.80 1294.06i −0.420948 0.413365i
\(215\) 3578.25i 1.13504i
\(216\) 420.063 443.616i 0.132323 0.139742i
\(217\) 2049.82 0.641249
\(218\) 3390.73 3452.92i 1.05344 1.07276i
\(219\) −763.170 −0.235481
\(220\) 139.320 + 7664.35i 0.0426951 + 2.34878i
\(221\) −3621.67 + 4164.24i −1.10235 + 1.26750i
\(222\) −1166.79 1145.78i −0.352748 0.346395i
\(223\) 5752.76i 1.72751i 0.503916 + 0.863753i \(0.331892\pi\)
−0.503916 + 0.863753i \(0.668108\pi\)
\(224\) −1141.02 1041.77i −0.340346 0.310741i
\(225\) −2273.86 −0.673736
\(226\) 80.0615 81.5301i 0.0235647 0.0239969i
\(227\) −2000.89 −0.585037 −0.292519 0.956260i \(-0.594493\pi\)
−0.292519 + 0.956260i \(0.594493\pi\)
\(228\) 638.082 11.5988i 0.185342 0.00336907i
\(229\) 4617.48 1.33245 0.666226 0.745750i \(-0.267909\pi\)
0.666226 + 0.745750i \(0.267909\pi\)
\(230\) −4529.96 + 4613.05i −1.29868 + 1.32250i
\(231\) −1262.56 −0.359613
\(232\) −3459.67 + 3653.65i −0.979046 + 1.03394i
\(233\) 1716.45 0.482610 0.241305 0.970449i \(-0.422425\pi\)
0.241305 + 0.970449i \(0.422425\pi\)
\(234\) 93.7597 + 1189.48i 0.0261934 + 0.332303i
\(235\) 7977.12i 2.21434i
\(236\) 51.4212 + 2828.82i 0.0141832 + 0.780257i
\(237\) 2598.13i 0.712094i
\(238\) 2028.11 + 1991.58i 0.552366 + 0.542416i
\(239\) 931.378i 0.252075i −0.992026 0.126037i \(-0.959774\pi\)
0.992026 0.126037i \(-0.0402259\pi\)
\(240\) −135.603 3728.72i −0.0364714 1.00287i
\(241\) 4468.94i 1.19448i 0.802062 + 0.597240i \(0.203736\pi\)
−0.802062 + 0.597240i \(0.796264\pi\)
\(242\) −2180.35 + 2220.35i −0.579167 + 0.589790i
\(243\) 243.000i 0.0641500i
\(244\) −2145.49 + 38.9999i −0.562915 + 0.0102324i
\(245\) 5249.86 1.36898
\(246\) −29.5745 + 30.1170i −0.00766505 + 0.00780565i
\(247\) −817.927 + 940.462i −0.210702 + 0.242268i
\(248\) −3736.35 + 3945.84i −0.956687 + 1.01033i
\(249\) 2704.95i 0.688431i
\(250\) −4916.05 + 5006.22i −1.24367 + 1.26649i
\(251\) 680.070i 0.171018i 0.996337 + 0.0855092i \(0.0272517\pi\)
−0.996337 + 0.0855092i \(0.972748\pi\)
\(252\) 614.441 11.1691i 0.153596 0.00279200i
\(253\) −5799.81 −1.44123
\(254\) 4218.03 4295.40i 1.04198 1.06109i
\(255\) 6864.32i 1.68573i
\(256\) 4085.18 297.527i 0.997358 0.0726383i
\(257\) 7670.60 1.86179 0.930893 0.365293i \(-0.119031\pi\)
0.930893 + 0.365293i \(0.119031\pi\)
\(258\) 1094.70 1114.78i 0.264158 0.269004i
\(259\) 1644.95i 0.394641i
\(260\) 5584.45 + 4681.31i 1.33205 + 1.11663i
\(261\) 2001.37i 0.474642i
\(262\) −190.183 186.757i −0.0448456 0.0440378i
\(263\) 2160.00 0.506431 0.253216 0.967410i \(-0.418512\pi\)
0.253216 + 0.967410i \(0.418512\pi\)
\(264\) 2301.36 2430.39i 0.536511 0.566592i
\(265\) 9749.42i 2.26001i
\(266\) 458.034 + 449.784i 0.105578 + 0.103677i
\(267\) −2105.04 −0.482495
\(268\) −90.7093 4990.17i −0.0206752 1.13740i
\(269\) 6377.13i 1.44543i −0.691147 0.722714i \(-0.742894\pi\)
0.691147 0.722714i \(-0.257106\pi\)
\(270\) 1058.89 + 1039.82i 0.238674 + 0.234375i
\(271\) 4253.92i 0.953532i −0.879030 0.476766i \(-0.841809\pi\)
0.879030 0.476766i \(-0.158191\pi\)
\(272\) −7530.51 + 273.864i −1.67869 + 0.0610493i
\(273\) −787.623 + 905.619i −0.174612 + 0.200771i
\(274\) 4333.22 + 4255.17i 0.955399 + 0.938190i
\(275\) −12457.6 −2.73171
\(276\) 2822.55 51.3071i 0.615570 0.0111896i
\(277\) 4986.70i 1.08167i −0.841130 0.540833i \(-0.818109\pi\)
0.841130 0.540833i \(-0.181891\pi\)
\(278\) −911.279 894.865i −0.196600 0.193059i
\(279\) 2161.42i 0.463802i
\(280\) 2580.57 2725.26i 0.550781 0.581663i
\(281\) 2215.50i 0.470340i 0.971954 + 0.235170i \(0.0755647\pi\)
−0.971954 + 0.235170i \(0.924435\pi\)
\(282\) −2440.44 + 2485.21i −0.515342 + 0.524795i
\(283\) 1039.14i 0.218271i −0.994027 0.109135i \(-0.965192\pi\)
0.994027 0.109135i \(-0.0348082\pi\)
\(284\) −2510.88 + 45.6417i −0.524624 + 0.00953640i
\(285\) 1550.26i 0.322208i
\(286\) 513.672 + 6516.69i 0.106203 + 1.34734i
\(287\) −42.4589 −0.00873265
\(288\) −1098.48 + 1203.14i −0.224753 + 0.246165i
\(289\) 8950.17 1.82173
\(290\) −8721.08 8564.00i −1.76593 1.73412i
\(291\) −1594.76 −0.321260
\(292\) 2034.78 36.9875i 0.407797 0.00741277i
\(293\) −7130.48 −1.42173 −0.710866 0.703328i \(-0.751697\pi\)
−0.710866 + 0.703328i \(0.751697\pi\)
\(294\) −1635.55 1606.09i −0.324447 0.318603i
\(295\) −6872.79 −1.35644
\(296\) 3166.47 + 2998.35i 0.621782 + 0.588770i
\(297\) 1331.30i 0.260100i
\(298\) −1241.40 + 1264.17i −0.241317 + 0.245743i
\(299\) −3618.09 + 4160.12i −0.699798 + 0.804636i
\(300\) 6062.62 110.204i 1.16675 0.0212087i
\(301\) 1571.61 0.300951
\(302\) 401.796 + 394.558i 0.0765587 + 0.0751797i
\(303\) 3582.69 0.679275
\(304\) −1700.71 + 61.8500i −0.320863 + 0.0116689i
\(305\) 5212.60i 0.978598i
\(306\) 2100.01 2138.53i 0.392319 0.399515i
\(307\) 5102.81 0.948641 0.474320 0.880352i \(-0.342694\pi\)
0.474320 + 0.880352i \(0.342694\pi\)
\(308\) 3366.28 61.1908i 0.622765 0.0113204i
\(309\) 1004.40i 0.184914i
\(310\) −9418.52 9248.87i −1.72560 1.69452i
\(311\) 1696.60 0.309342 0.154671 0.987966i \(-0.450568\pi\)
0.154671 + 0.987966i \(0.450568\pi\)
\(312\) −307.634 3166.88i −0.0558215 0.574645i
\(313\) −5575.22 −1.00680 −0.503402 0.864052i \(-0.667919\pi\)
−0.503402 + 0.864052i \(0.667919\pi\)
\(314\) −2787.01 2736.81i −0.500891 0.491869i
\(315\) 1492.82i 0.267019i
\(316\) −125.920 6927.19i −0.0224162 1.23318i
\(317\) −5150.28 −0.912519 −0.456259 0.889847i \(-0.650811\pi\)
−0.456259 + 0.889847i \(0.650811\pi\)
\(318\) 2982.65 3037.36i 0.525971 0.535618i
\(319\) 10964.7i 1.92447i
\(320\) 542.263 + 9935.03i 0.0947294 + 1.73558i
\(321\) −1958.97 −0.340621
\(322\) 2026.11 + 1989.61i 0.350654 + 0.344338i
\(323\) 3130.89 0.539342
\(324\) −11.7771 647.893i −0.00201940 0.111093i
\(325\) −7771.38 + 8935.63i −1.32640 + 1.52511i
\(326\) 3134.65 3192.15i 0.532553 0.542321i
\(327\) 5132.95i 0.868051i
\(328\) 77.3927 81.7320i 0.0130283 0.0137588i
\(329\) −3503.65 −0.587119
\(330\) 5801.23 + 5696.73i 0.967718 + 0.950287i
\(331\) 5006.92 0.831436 0.415718 0.909493i \(-0.363530\pi\)
0.415718 + 0.909493i \(0.363530\pi\)
\(332\) 131.097 + 7212.01i 0.0216713 + 1.19220i
\(333\) −1734.50 −0.285436
\(334\) 7162.47 + 7033.46i 1.17339 + 1.15226i
\(335\) 12123.9 1.97731
\(336\) −1637.70 + 59.5585i −0.265904 + 0.00967019i
\(337\) −5029.86 −0.813038 −0.406519 0.913642i \(-0.633258\pi\)
−0.406519 + 0.913642i \(0.633258\pi\)
\(338\) 4994.77 + 3696.85i 0.803787 + 0.594918i
\(339\) 121.199i 0.0194177i
\(340\) −332.683 18301.8i −0.0530656 2.91928i
\(341\) 11841.6i 1.88052i
\(342\) 474.271 482.970i 0.0749873 0.0763627i
\(343\) 5233.42i 0.823842i
\(344\) −2864.68 + 3025.30i −0.448992 + 0.474166i
\(345\) 6857.54i 1.07014i
\(346\) 2948.43 + 2895.32i 0.458117 + 0.449865i
\(347\) 2220.47i 0.343519i 0.985139 + 0.171760i \(0.0549452\pi\)
−0.985139 + 0.171760i \(0.945055\pi\)
\(348\) 96.9974 + 5336.10i 0.0149414 + 0.821968i
\(349\) −3444.40 −0.528294 −0.264147 0.964482i \(-0.585090\pi\)
−0.264147 + 0.964482i \(0.585090\pi\)
\(350\) 4351.93 + 4273.54i 0.664629 + 0.652658i
\(351\) 954.923 + 830.503i 0.145214 + 0.126293i
\(352\) −6018.15 + 6591.52i −0.911274 + 0.998094i
\(353\) 7467.79i 1.12598i −0.826464 0.562989i \(-0.809651\pi\)
0.826464 0.562989i \(-0.190349\pi\)
\(354\) 2141.16 + 2102.60i 0.321473 + 0.315683i
\(355\) 6100.32i 0.912032i
\(356\) 5612.50 102.022i 0.835567 0.0151886i
\(357\) 3014.90 0.446961
\(358\) 8521.67 + 8368.17i 1.25806 + 1.23540i
\(359\) 2103.92i 0.309306i 0.987969 + 0.154653i \(0.0494260\pi\)
−0.987969 + 0.154653i \(0.950574\pi\)
\(360\) −2873.63 2721.06i −0.420705 0.398368i
\(361\) −6151.91 −0.896911
\(362\) 6763.12 + 6641.30i 0.981938 + 0.964251i
\(363\) 3300.66i 0.477244i
\(364\) 2056.09 2452.76i 0.296067 0.353185i
\(365\) 4943.62i 0.708935i
\(366\) −1594.69 + 1623.95i −0.227749 + 0.231926i
\(367\) −8045.36 −1.14432 −0.572159 0.820143i \(-0.693894\pi\)
−0.572159 + 0.820143i \(0.693894\pi\)
\(368\) −7523.06 + 273.593i −1.06567 + 0.0387555i
\(369\) 44.7705i 0.00631615i
\(370\) −7422.06 + 7558.20i −1.04285 + 1.06198i
\(371\) 4282.07 0.599229
\(372\) 104.754 + 5762.83i 0.0146002 + 0.803196i
\(373\) 320.782i 0.0445293i −0.999752 0.0222647i \(-0.992912\pi\)
0.999752 0.0222647i \(-0.00708765\pi\)
\(374\) 11505.1 11716.1i 1.59068 1.61986i
\(375\) 7442.01i 1.02481i
\(376\) 6386.33 6744.41i 0.875931 0.925043i
\(377\) −7864.82 6840.09i −1.07443 0.934436i
\(378\) 456.700 465.077i 0.0621431 0.0632830i
\(379\) 7990.79 1.08301 0.541503 0.840699i \(-0.317855\pi\)
0.541503 + 0.840699i \(0.317855\pi\)
\(380\) −75.1341 4133.33i −0.0101429 0.557988i
\(381\) 6385.34i 0.858611i
\(382\) 4726.25 4812.94i 0.633026 0.644637i
\(383\) 1147.52i 0.153095i 0.997066 + 0.0765477i \(0.0243897\pi\)
−0.997066 + 0.0765477i \(0.975610\pi\)
\(384\) 2870.49 3261.08i 0.381469 0.433376i
\(385\) 8178.56i 1.08264i
\(386\) 3627.59 + 3562.25i 0.478340 + 0.469724i
\(387\) 1657.17i 0.217671i
\(388\) 4251.99 77.2910i 0.556346 0.0101130i
\(389\) 12710.1i 1.65663i −0.560263 0.828315i \(-0.689300\pi\)
0.560263 0.828315i \(-0.310700\pi\)
\(390\) 7705.16 607.352i 1.00043 0.0788576i
\(391\) 13849.5 1.79130
\(392\) 4438.60 + 4202.94i 0.571895 + 0.541532i
\(393\) −282.717 −0.0362880
\(394\) −7349.62 + 7484.43i −0.939768 + 0.957006i
\(395\) 16830.0 2.14382
\(396\) −64.5222 3549.55i −0.00818779 0.450433i
\(397\) −2210.83 −0.279493 −0.139746 0.990187i \(-0.544629\pi\)
−0.139746 + 0.990187i \(0.544629\pi\)
\(398\) 2815.37 2867.01i 0.354577 0.361081i
\(399\) 680.892 0.0854316
\(400\) −16159.0 + 587.657i −2.01987 + 0.0734571i
\(401\) 4593.30i 0.572016i 0.958227 + 0.286008i \(0.0923284\pi\)
−0.958227 + 0.286008i \(0.907672\pi\)
\(402\) −3777.11 3709.07i −0.468620 0.460179i
\(403\) −8493.78 7387.10i −1.04989 0.913096i
\(404\) −9552.27 + 173.637i −1.17634 + 0.0213831i
\(405\) 1574.09 0.193129
\(406\) −3761.41 + 3830.41i −0.459792 + 0.468226i
\(407\) −9502.64 −1.15732
\(408\) −5495.45 + 5803.58i −0.666827 + 0.704215i
\(409\) 13029.9i 1.57528i −0.616138 0.787638i \(-0.711304\pi\)
0.616138 0.787638i \(-0.288696\pi\)
\(410\) 195.090 + 191.576i 0.0234996 + 0.0230763i
\(411\) 6441.56 0.773087
\(412\) −48.6788 2677.96i −0.00582096 0.320227i
\(413\) 3018.61i 0.359652i
\(414\) 2097.93 2136.41i 0.249052 0.253621i
\(415\) −17522.0 −2.07258
\(416\) 973.705 + 8428.71i 0.114759 + 0.993393i
\(417\) −1354.66 −0.159084
\(418\) 2598.34 2646.00i 0.304041 0.309618i
\(419\) 16210.3i 1.89003i 0.327025 + 0.945016i \(0.393954\pi\)
−0.327025 + 0.945016i \(0.606046\pi\)
\(420\) −72.3504 3980.20i −0.00840556 0.462414i
\(421\) 997.361 0.115459 0.0577297 0.998332i \(-0.481614\pi\)
0.0577297 + 0.998332i \(0.481614\pi\)
\(422\) −11743.0 11531.5i −1.35460 1.33020i
\(423\) 3694.39i 0.424651i
\(424\) −7805.21 + 8242.84i −0.893996 + 0.944122i
\(425\) 29747.6 3.39523
\(426\) −1866.27 + 1900.51i −0.212257 + 0.216150i
\(427\) −2289.44 −0.259470
\(428\) 5223.07 94.9428i 0.589875 0.0107225i
\(429\) 5231.64 + 4550.00i 0.588778 + 0.512065i
\(430\) −7221.24 7091.17i −0.809858 0.795271i
\(431\) 12985.6i 1.45127i −0.688082 0.725633i \(-0.741547\pi\)
0.688082 0.725633i \(-0.258453\pi\)
\(432\) 62.8010 + 1726.86i 0.00699425 + 0.192323i
\(433\) 3083.02 0.342172 0.171086 0.985256i \(-0.445272\pi\)
0.171086 + 0.985256i \(0.445272\pi\)
\(434\) −4062.22 + 4136.73i −0.449292 + 0.457533i
\(435\) −12964.3 −1.42895
\(436\) 248.771 + 13685.6i 0.0273257 + 1.50326i
\(437\) 3127.80 0.342386
\(438\) 1512.41 1540.15i 0.164990 0.168016i
\(439\) 6249.22 0.679406 0.339703 0.940533i \(-0.389673\pi\)
0.339703 + 0.940533i \(0.389673\pi\)
\(440\) −15743.5 14907.6i −1.70577 1.61521i
\(441\) −2431.34 −0.262535
\(442\) −1226.61 15561.3i −0.131999 1.67461i
\(443\) 6954.31i 0.745845i −0.927863 0.372922i \(-0.878356\pi\)
0.927863 0.372922i \(-0.121644\pi\)
\(444\) 4624.57 84.0636i 0.494307 0.00898532i
\(445\) 13635.9i 1.45259i
\(446\) −11609.6 11400.5i −1.23258 1.21038i
\(447\) 1879.26i 0.198850i
\(448\) 4363.59 238.168i 0.460179 0.0251170i
\(449\) 3461.92i 0.363871i −0.983310 0.181936i \(-0.941764\pi\)
0.983310 0.181936i \(-0.0582362\pi\)
\(450\) 4506.20 4588.86i 0.472054 0.480713i
\(451\) 245.279i 0.0256092i
\(452\) 5.87396 + 323.143i 0.000611257 + 0.0336269i
\(453\) 597.290 0.0619495
\(454\) 3965.24 4037.97i 0.409907 0.417426i
\(455\) 5866.37 + 5102.02i 0.604439 + 0.525685i
\(456\) −1241.11 + 1310.69i −0.127456 + 0.134603i
\(457\) 10185.4i 1.04256i 0.853385 + 0.521282i \(0.174546\pi\)
−0.853385 + 0.521282i \(0.825454\pi\)
\(458\) −9150.65 + 9318.49i −0.933584 + 0.950709i
\(459\) 3179.03i 0.323278i
\(460\) −332.355 18283.7i −0.0336872 1.85323i
\(461\) −1661.54 −0.167865 −0.0839324 0.996471i \(-0.526748\pi\)
−0.0839324 + 0.996471i \(0.526748\pi\)
\(462\) 2502.07 2547.97i 0.251963 0.256585i
\(463\) 1164.53i 0.116890i −0.998291 0.0584452i \(-0.981386\pi\)
0.998291 0.0584452i \(-0.0186143\pi\)
\(464\) −517.234 14222.5i −0.0517500 1.42298i
\(465\) −14001.1 −1.39632
\(466\) −3401.55 + 3463.95i −0.338141 + 0.344344i
\(467\) 17297.7i 1.71401i −0.515305 0.857007i \(-0.672321\pi\)
0.515305 0.857007i \(-0.327679\pi\)
\(468\) −2586.29 2168.03i −0.255452 0.214139i
\(469\) 5324.97i 0.524273i
\(470\) 16098.6 + 15808.6i 1.57994 + 1.55148i
\(471\) −4143.03 −0.405310
\(472\) −5810.73 5502.23i −0.566654 0.536569i
\(473\) 9078.99i 0.882563i
\(474\) −5243.26 5148.81i −0.508082 0.498930i
\(475\) 6718.27 0.648959
\(476\) −8038.39 + 146.119i −0.774032 + 0.0140700i
\(477\) 4515.19i 0.433410i
\(478\) 1879.61 + 1845.75i 0.179856 + 0.176617i
\(479\) 3869.43i 0.369100i 0.982823 + 0.184550i \(0.0590828\pi\)
−0.982823 + 0.184550i \(0.940917\pi\)
\(480\) 7793.63 + 7115.70i 0.741102 + 0.676637i
\(481\) −5928.02 + 6816.11i −0.561943 + 0.646129i
\(482\) −9018.74 8856.29i −0.852266 0.836915i
\(483\) 3011.91 0.283741
\(484\) −159.968 8800.30i −0.0150233 0.826475i
\(485\) 10330.5i 0.967180i
\(486\) −490.397 481.563i −0.0457713 0.0449468i
\(487\) 6596.18i 0.613761i 0.951748 + 0.306881i \(0.0992852\pi\)
−0.951748 + 0.306881i \(0.900715\pi\)
\(488\) 4173.11 4407.09i 0.387106 0.408811i
\(489\) 4745.30i 0.438834i
\(490\) −10403.9 + 10594.7i −0.959181 + 0.976775i
\(491\) 13904.9i 1.27804i −0.769188 0.639022i \(-0.779339\pi\)
0.769188 0.639022i \(-0.220661\pi\)
\(492\) −2.16983 119.368i −0.000198828 0.0109381i
\(493\) 26182.8i 2.39191i
\(494\) −277.020 3514.41i −0.0252302 0.320082i
\(495\) 8623.82 0.783055
\(496\) −558.598 15359.9i −0.0505681 1.39049i
\(497\) −2679.33 −0.241820
\(498\) 5458.84 + 5360.51i 0.491198 + 0.482350i
\(499\) 6757.51 0.606228 0.303114 0.952954i \(-0.401974\pi\)
0.303114 + 0.952954i \(0.401974\pi\)
\(500\) −360.681 19842.1i −0.0322603 1.77473i
\(501\) 10647.4 0.949481
\(502\) −1372.44 1347.72i −0.122022 0.119824i
\(503\) −9933.11 −0.880508 −0.440254 0.897873i \(-0.645112\pi\)
−0.440254 + 0.897873i \(0.645112\pi\)
\(504\) −1195.12 + 1262.13i −0.105625 + 0.111547i
\(505\) 23207.8i 2.04502i
\(506\) 11493.7 11704.6i 1.00980 1.02832i
\(507\) 6527.30 914.163i 0.571770 0.0800777i
\(508\) 309.469 + 17024.8i 0.0270285 + 1.48691i
\(509\) 6953.24 0.605495 0.302747 0.953071i \(-0.402096\pi\)
0.302747 + 0.953071i \(0.402096\pi\)
\(510\) −13852.8 13603.3i −1.20277 1.18111i
\(511\) 2171.30 0.187970
\(512\) −7495.34 + 8833.89i −0.646973 + 0.762513i
\(513\) 717.961i 0.0617909i
\(514\) −15201.1 + 15480.0i −1.30446 + 1.32839i
\(515\) 6506.25 0.556698
\(516\) 80.3158 + 4418.40i 0.00685215 + 0.376956i
\(517\) 20240.1i 1.72178i
\(518\) 3319.66 + 3259.86i 0.281578 + 0.276506i
\(519\) 4382.99 0.370697
\(520\) −20514.3 + 1992.77i −1.73002 + 0.168055i
\(521\) −3536.95 −0.297421 −0.148711 0.988881i \(-0.547512\pi\)
−0.148711 + 0.988881i \(0.547512\pi\)
\(522\) 4038.94 + 3966.19i 0.338658 + 0.332558i
\(523\) 4675.88i 0.390940i 0.980710 + 0.195470i \(0.0626233\pi\)
−0.980710 + 0.195470i \(0.937377\pi\)
\(524\) 753.787 13.7020i 0.0628423 0.00114232i
\(525\) 6469.37 0.537802
\(526\) −4280.56 + 4359.08i −0.354832 + 0.361340i
\(527\) 28276.6i 2.33729i
\(528\) 344.062 + 9460.77i 0.0283586 + 0.779786i
\(529\) 1668.77 0.137156
\(530\) −19675.2 19320.8i −1.61252 1.58348i
\(531\) 3182.95 0.260129
\(532\) −1815.41 + 32.9998i −0.147947 + 0.00268933i
\(533\) 175.936 + 153.012i 0.0142976 + 0.0124347i
\(534\) 4171.64 4248.16i 0.338061 0.344262i
\(535\) 12689.7i 1.02547i
\(536\) 10250.4 + 9706.17i 0.826025 + 0.782169i
\(537\) 12667.9 1.01799
\(538\) 12869.6 + 12637.8i 1.03132 + 1.01274i
\(539\) −13320.3 −1.06446
\(540\) −4196.89 + 76.2893i −0.334454 + 0.00607957i
\(541\) −16883.9 −1.34177 −0.670884 0.741563i \(-0.734085\pi\)
−0.670884 + 0.741563i \(0.734085\pi\)
\(542\) 8584.80 + 8430.17i 0.680348 + 0.668094i
\(543\) 10053.7 0.794561
\(544\) 14370.8 15740.0i 1.13262 1.24053i
\(545\) −33249.9 −2.61334
\(546\) −266.756 3384.20i −0.0209086 0.265257i
\(547\) 2833.26i 0.221465i 0.993850 + 0.110733i \(0.0353197\pi\)
−0.993850 + 0.110733i \(0.964680\pi\)
\(548\) −17174.6 + 312.194i −1.33880 + 0.0243362i
\(549\) 2414.08i 0.187669i
\(550\) 24687.7 25140.5i 1.91397 1.94908i
\(551\) 5913.18i 0.457187i
\(552\) −5490.02 + 5797.84i −0.423316 + 0.447052i
\(553\) 7391.94i 0.568422i
\(554\) 10063.6 + 9882.35i 0.771773 + 0.757871i
\(555\) 11235.7i 0.859328i
\(556\) 3611.84 65.6546i 0.275497 0.00500787i
\(557\) −5202.74 −0.395776 −0.197888 0.980225i \(-0.563408\pi\)
−0.197888 + 0.980225i \(0.563408\pi\)
\(558\) 4361.94 + 4283.38i 0.330924 + 0.324964i
\(559\) −6512.23 5663.73i −0.492733 0.428534i
\(560\) 385.805 + 10608.6i 0.0291129 + 0.800527i
\(561\) 17416.7i 1.31075i
\(562\) −4471.08 4390.54i −0.335589 0.329544i
\(563\) 18851.0i 1.41114i 0.708638 + 0.705572i \(0.249310\pi\)
−0.708638 + 0.705572i \(0.750690\pi\)
\(564\) −179.051 9850.09i −0.0133677 0.735396i
\(565\) −785.094 −0.0584587
\(566\) 2097.09 + 2059.31i 0.155737 + 0.152932i
\(567\) 691.361i 0.0512071i
\(568\) 4883.80 5157.63i 0.360774 0.381003i
\(569\) −11997.1 −0.883906 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(570\) −3128.56 3072.21i −0.229896 0.225755i
\(571\) 5920.74i 0.433932i 0.976179 + 0.216966i \(0.0696161\pi\)
−0.976179 + 0.216966i \(0.930384\pi\)
\(572\) −14169.3 11877.8i −1.03575 0.868242i
\(573\) 7154.69i 0.521625i
\(574\) 84.1426 85.6860i 0.00611854 0.00623078i
\(575\) 29718.2 2.15536
\(576\) −251.135 4601.15i −0.0181666 0.332838i
\(577\) 11759.5i 0.848446i 0.905558 + 0.424223i \(0.139453\pi\)
−0.905558 + 0.424223i \(0.860547\pi\)
\(578\) −17736.9 + 18062.3i −1.27640 + 1.29981i
\(579\) 5392.60 0.387062
\(580\) 34565.9 628.324i 2.47460 0.0449823i
\(581\) 7695.87i 0.549533i
\(582\) 3160.41 3218.38i 0.225091 0.229220i
\(583\) 24736.9i 1.75729i
\(584\) −3957.77 + 4179.68i −0.280435 + 0.296159i
\(585\) 5379.79 6185.75i 0.380217 0.437178i
\(586\) 14130.8 14390.0i 0.996138 1.01441i
\(587\) 13667.5 0.961016 0.480508 0.876990i \(-0.340452\pi\)
0.480508 + 0.876990i \(0.340452\pi\)
\(588\) 6482.49 117.836i 0.454649 0.00826442i
\(589\) 6386.07i 0.446746i
\(590\) 13620.1 13869.9i 0.950390 0.967823i
\(591\) 11126.0i 0.774386i
\(592\) −12326.1 + 448.265i −0.855741 + 0.0311209i
\(593\) 15113.2i 1.04659i 0.852152 + 0.523294i \(0.175297\pi\)
−0.852152 + 0.523294i \(0.824703\pi\)
\(594\) −2686.69 2638.29i −0.185583 0.182240i
\(595\) 19529.7i 1.34561i
\(596\) −91.0793 5010.52i −0.00625965 0.344361i
\(597\) 4261.96i 0.292178i
\(598\) −1225.39 15545.9i −0.0837961 1.06308i
\(599\) 5927.32 0.404314 0.202157 0.979353i \(-0.435205\pi\)
0.202157 + 0.979353i \(0.435205\pi\)
\(600\) −11792.1 + 12453.3i −0.802354 + 0.847341i
\(601\) 16427.9 1.11499 0.557493 0.830182i \(-0.311764\pi\)
0.557493 + 0.830182i \(0.311764\pi\)
\(602\) −3114.53 + 3171.66i −0.210862 + 0.214729i
\(603\) −5614.87 −0.379196
\(604\) −1592.51 + 28.9480i −0.107282 + 0.00195013i
\(605\) 21380.8 1.43678
\(606\) −7099.97 + 7230.21i −0.475935 + 0.484665i
\(607\) −23279.8 −1.55667 −0.778333 0.627851i \(-0.783935\pi\)
−0.778333 + 0.627851i \(0.783935\pi\)
\(608\) 3245.55 3554.76i 0.216487 0.237113i
\(609\) 5694.10i 0.378878i
\(610\) 10519.5 + 10330.0i 0.698233 + 0.685657i
\(611\) 14517.9 + 12626.4i 0.961265 + 0.836019i
\(612\) 154.074 + 8476.02i 0.0101766 + 0.559841i
\(613\) −4167.72 −0.274605 −0.137302 0.990529i \(-0.543843\pi\)
−0.137302 + 0.990529i \(0.543843\pi\)
\(614\) −10112.5 + 10297.9i −0.664667 + 0.676858i
\(615\) 290.012 0.0190153
\(616\) −6547.61 + 6914.73i −0.428264 + 0.452276i
\(617\) 19433.5i 1.26801i −0.773328 0.634006i \(-0.781409\pi\)
0.773328 0.634006i \(-0.218591\pi\)
\(618\) −2026.97 1990.46i −0.131937 0.129560i
\(619\) 27993.9 1.81772 0.908861 0.417098i \(-0.136953\pi\)
0.908861 + 0.417098i \(0.136953\pi\)
\(620\) 37330.2 678.573i 2.41809 0.0439551i
\(621\) 3175.89i 0.205224i
\(622\) −3362.22 + 3423.90i −0.216741 + 0.220717i
\(623\) 5989.05 0.385146
\(624\) 7000.71 + 5655.11i 0.449123 + 0.362797i
\(625\) 16626.1 1.06407
\(626\) 11048.6 11251.3i 0.705420 0.718359i
\(627\) 3933.42i 0.250535i
\(628\) 11046.3 200.794i 0.701901 0.0127589i
\(629\) 22691.5 1.43843
\(630\) −3012.65 2958.38i −0.190519 0.187087i
\(631\) 5978.76i 0.377196i 0.982054 + 0.188598i \(0.0603943\pi\)
−0.982054 + 0.188598i \(0.939606\pi\)
\(632\) 14229.3 + 13473.8i 0.895584 + 0.848035i
\(633\) −17456.6 −1.09611
\(634\) 10206.5 10393.7i 0.639358 0.651085i
\(635\) −41362.6 −2.58492
\(636\) 218.831 + 12038.5i 0.0136434 + 0.750564i
\(637\) −8309.60 + 9554.47i −0.516857 + 0.594289i
\(638\) 22127.8 + 21729.2i 1.37311 + 1.34838i
\(639\) 2825.20i 0.174903i
\(640\) −21124.4 18594.3i −1.30471 1.14845i
\(641\) −10474.7 −0.645437 −0.322719 0.946495i \(-0.604597\pi\)
−0.322719 + 0.946495i \(0.604597\pi\)
\(642\) 3882.18 3953.39i 0.238657 0.243034i
\(643\) −5234.84 −0.321060 −0.160530 0.987031i \(-0.551320\pi\)
−0.160530 + 0.987031i \(0.551320\pi\)
\(644\) −8030.45 + 145.974i −0.491373 + 0.00893197i
\(645\) −10734.7 −0.655318
\(646\) −6204.62 + 6318.43i −0.377891 + 0.384823i
\(647\) 18120.4 1.10106 0.550531 0.834814i \(-0.314425\pi\)
0.550531 + 0.834814i \(0.314425\pi\)
\(648\) 1330.85 + 1260.19i 0.0806800 + 0.0763965i
\(649\) 17438.1 1.05471
\(650\) −2632.05 33391.5i −0.158827 2.01496i
\(651\) 6149.47i 0.370225i
\(652\) 229.984 + 12652.0i 0.0138142 + 0.759957i
\(653\) 12855.0i 0.770374i −0.922839 0.385187i \(-0.874137\pi\)
0.922839 0.385187i \(-0.125863\pi\)
\(654\) 10358.8 + 10172.2i 0.619358 + 0.608201i
\(655\) 1831.37i 0.109248i
\(656\) 11.5705 + 318.157i 0.000688646 + 0.0189359i
\(657\) 2289.51i 0.135955i
\(658\) 6943.32 7070.68i 0.411366 0.418912i
\(659\) 15459.0i 0.913805i −0.889517 0.456902i \(-0.848959\pi\)
0.889517 0.456902i \(-0.151041\pi\)
\(660\) −22993.1 + 417.959i −1.35607 + 0.0246500i
\(661\) −31286.3 −1.84100 −0.920498 0.390748i \(-0.872216\pi\)
−0.920498 + 0.390748i \(0.872216\pi\)
\(662\) −9922.43 + 10104.4i −0.582547 + 0.593233i
\(663\) −12492.7 10865.0i −0.731790 0.636443i
\(664\) −14814.3 14027.8i −0.865823 0.819854i
\(665\) 4410.64i 0.257199i
\(666\) 3437.33 3500.38i 0.199991 0.203659i
\(667\) 26156.9i 1.51844i
\(668\) −28388.3 + 516.032i −1.64428 + 0.0298890i
\(669\) −17258.3 −0.997376
\(670\) −24026.4 + 24467.2i −1.38541 + 1.41082i
\(671\) 13225.8i 0.760917i
\(672\) 3125.30 3423.06i 0.179406 0.196499i
\(673\) −18362.9 −1.05176 −0.525881 0.850558i \(-0.676264\pi\)
−0.525881 + 0.850558i \(0.676264\pi\)
\(674\) 9967.88 10150.7i 0.569657 0.580106i
\(675\) 6821.57i 0.388981i
\(676\) −17358.9 + 2753.71i −0.987650 + 0.156675i
\(677\) 14036.5i 0.796846i 0.917202 + 0.398423i \(0.130442\pi\)
−0.917202 + 0.398423i \(0.869558\pi\)
\(678\) 244.590 + 240.185i 0.0138546 + 0.0136051i
\(679\) 4537.27 0.256442
\(680\) 37594.1 + 35598.1i 2.12010 + 2.00754i
\(681\) 6002.66i 0.337771i
\(682\) 23897.4 + 23466.9i 1.34175 + 1.31759i
\(683\) 10248.8 0.574170 0.287085 0.957905i \(-0.407314\pi\)
0.287085 + 0.957905i \(0.407314\pi\)
\(684\) 34.7964 + 1914.25i 0.00194514 + 0.107007i
\(685\) 41726.8i 2.32744i
\(686\) 10561.5 + 10371.3i 0.587814 + 0.577226i
\(687\) 13852.4i 0.769291i
\(688\) −428.280 11776.6i −0.0237326 0.652583i
\(689\) −17743.5 15431.6i −0.981091 0.853262i
\(690\) −13839.1 13589.9i −0.763547 0.749794i
\(691\) −11893.3 −0.654763 −0.327381 0.944892i \(-0.606166\pi\)
−0.327381 + 0.944892i \(0.606166\pi\)
\(692\) −11686.0 + 212.424i −0.641960 + 0.0116693i
\(693\) 3787.69i 0.207623i
\(694\) −4481.12 4400.40i −0.245102 0.240687i
\(695\) 8775.17i 0.478937i
\(696\) −10961.0 10379.0i −0.596946 0.565252i
\(697\) 585.707i 0.0318296i
\(698\) 6825.91 6951.12i 0.370150 0.376940i
\(699\) 5149.34i 0.278635i
\(700\) −17248.8 + 313.542i −0.931347 + 0.0169297i
\(701\) 24679.9i 1.32974i 0.746959 + 0.664870i \(0.231513\pi\)
−0.746959 + 0.664870i \(0.768487\pi\)
\(702\) −3568.44 + 281.279i −0.191855 + 0.0151228i
\(703\) 5124.71 0.274939
\(704\) −1375.87 25207.9i −0.0736576 1.34951i
\(705\) 23931.3 1.27845
\(706\) 15070.7 + 14799.2i 0.803389 + 0.788918i
\(707\) −10193.1 −0.542224
\(708\) −8486.47 + 154.264i −0.450482 + 0.00818868i
\(709\) 5023.16 0.266077 0.133039 0.991111i \(-0.457527\pi\)
0.133039 + 0.991111i \(0.457527\pi\)
\(710\) 12311.0 + 12089.3i 0.650738 + 0.639016i
\(711\) −7794.38 −0.411128
\(712\) −10916.6 + 11528.7i −0.574605 + 0.606822i
\(713\) 28248.7i 1.48376i
\(714\) −5974.75 + 6084.34i −0.313164 + 0.318908i
\(715\) 29473.7 33889.2i 1.54161 1.77257i
\(716\) −33775.5 + 613.957i −1.76292 + 0.0320456i
\(717\) 2794.13 0.145535
\(718\) −4245.91 4169.43i −0.220691 0.216716i
\(719\) −15982.2 −0.828978 −0.414489 0.910054i \(-0.636040\pi\)
−0.414489 + 0.910054i \(0.636040\pi\)
\(720\) 11186.2 406.809i 0.579005 0.0210568i
\(721\) 2857.63i 0.147605i
\(722\) 12191.5 12415.1i 0.628422 0.639949i
\(723\) −13406.8 −0.689633
\(724\) −26805.5 + 487.260i −1.37599 + 0.0250122i
\(725\) 56183.0i 2.87805i
\(726\) −6661.04 6541.05i −0.340515 0.334382i
\(727\) 24046.0 1.22671 0.613353 0.789809i \(-0.289820\pi\)
0.613353 + 0.789809i \(0.289820\pi\)
\(728\) 875.250 + 9010.11i 0.0445590 + 0.458705i
\(729\) −729.000 −0.0370370
\(730\) −9976.69 9796.99i −0.505827 0.496716i
\(731\) 21679.9i 1.09693i
\(732\) −117.000 6436.48i −0.00590770 0.324999i
\(733\) −605.906 −0.0305316 −0.0152658 0.999883i \(-0.504859\pi\)
−0.0152658 + 0.999883i \(0.504859\pi\)
\(734\) 15943.8 16236.3i 0.801768 0.816474i
\(735\) 15749.6i 0.790383i
\(736\) 14356.6 15724.4i 0.719012 0.787514i
\(737\) −30761.6 −1.53747
\(738\) −90.3510 88.7235i −0.00450659 0.00442542i
\(739\) 16237.4 0.808256 0.404128 0.914703i \(-0.367575\pi\)
0.404128 + 0.914703i \(0.367575\pi\)
\(740\) −544.543 29956.8i −0.0270511 1.48815i
\(741\) −2821.39 2453.78i −0.139873 0.121649i
\(742\) −8485.95 + 8641.61i −0.419850 + 0.427552i
\(743\) 25041.0i 1.23643i −0.786011 0.618213i \(-0.787857\pi\)
0.786011 0.618213i \(-0.212143\pi\)
\(744\) −11837.5 11209.0i −0.583313 0.552343i
\(745\) 12173.4 0.598654
\(746\) 647.367 + 635.707i 0.0317718 + 0.0311996i
\(747\) 8114.85 0.397466
\(748\) 844.108 + 46436.7i 0.0412616 + 2.26991i
\(749\) 5573.49 0.271897
\(750\) −15018.7 14748.1i −0.731205 0.718035i
\(751\) 12977.4 0.630562 0.315281 0.948998i \(-0.397901\pi\)
0.315281 + 0.948998i \(0.397901\pi\)
\(752\) 954.780 + 26253.9i 0.0462995 + 1.27311i
\(753\) −2040.21 −0.0987376
\(754\) 29390.0 2316.64i 1.41952 0.111892i
\(755\) 3869.09i 0.186504i
\(756\) 33.5072 + 1843.32i 0.00161196 + 0.0886786i
\(757\) 21350.2i 1.02508i −0.858663 0.512541i \(-0.828704\pi\)
0.858663 0.512541i \(-0.171296\pi\)
\(758\) −15835.7 + 16126.2i −0.758810 + 0.772729i
\(759\) 17399.4i 0.832094i
\(760\) 8490.35 + 8039.57i 0.405233 + 0.383718i
\(761\) 32649.8i 1.55526i 0.628722 + 0.777630i \(0.283578\pi\)
−0.628722 + 0.777630i \(0.716422\pi\)
\(762\) 12886.2 + 12654.1i 0.612622 + 0.601587i
\(763\) 14603.8i 0.692913i
\(764\) 346.756 + 19076.0i 0.0164204 + 0.903332i
\(765\) −20593.0 −0.973256
\(766\) −2315.80 2274.09i −0.109234 0.107266i
\(767\) 10878.4 12508.1i 0.512121 0.588842i
\(768\) 892.580 + 12255.5i 0.0419378 + 0.575825i
\(769\) 27941.7i 1.31028i 0.755508 + 0.655139i \(0.227390\pi\)
−0.755508 + 0.655139i \(0.772610\pi\)
\(770\) −16505.1 16207.8i −0.772471 0.758557i
\(771\) 23011.8i 1.07490i
\(772\) −14377.9 + 261.355i −0.670300 + 0.0121844i
\(773\) −23070.5 −1.07346 −0.536732 0.843752i \(-0.680342\pi\)
−0.536732 + 0.843752i \(0.680342\pi\)
\(774\) 3344.33 + 3284.09i 0.155309 + 0.152512i