Properties

Label 312.4.m.a.181.19
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.19
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.23230 - 1.73690i) q^{2} +3.00000i q^{3} +(1.96633 + 7.75458i) q^{4} -12.2791 q^{5} +(5.21071 - 6.69690i) q^{6} +32.4044i q^{7} +(9.07951 - 20.7259i) q^{8} -9.00000 q^{9} +(27.4107 + 21.3277i) q^{10} -68.1675 q^{11} +(-23.2637 + 5.89900i) q^{12} +(-8.22964 + 46.1440i) q^{13} +(56.2833 - 72.3363i) q^{14} -36.8374i q^{15} +(-56.2671 + 30.4962i) q^{16} +86.0275 q^{17} +(20.0907 + 15.6321i) q^{18} +16.5885 q^{19} +(-24.1449 - 95.2195i) q^{20} -97.2131 q^{21} +(152.170 + 118.400i) q^{22} -41.2086 q^{23} +(62.1777 + 27.2385i) q^{24} +25.7771 q^{25} +(98.5188 - 88.7133i) q^{26} -27.0000i q^{27} +(-251.282 + 63.7178i) q^{28} +21.6289i q^{29} +(-63.9830 + 82.2322i) q^{30} -111.539i q^{31} +(178.574 + 29.6538i) q^{32} -204.503i q^{33} +(-192.039 - 149.421i) q^{34} -397.898i q^{35} +(-17.6970 - 69.7912i) q^{36} +410.686 q^{37} +(-37.0305 - 28.8126i) q^{38} +(-138.432 - 24.6889i) q^{39} +(-111.489 + 254.496i) q^{40} +253.880i q^{41} +(217.009 + 168.850i) q^{42} -341.204i q^{43} +(-134.040 - 528.611i) q^{44} +110.512 q^{45} +(91.9900 + 71.5753i) q^{46} -360.180i q^{47} +(-91.4886 - 168.801i) q^{48} -707.044 q^{49} +(-57.5423 - 44.7724i) q^{50} +258.082i q^{51} +(-374.010 + 26.9172i) q^{52} +226.059i q^{53} +(-46.8964 + 60.2721i) q^{54} +837.038 q^{55} +(671.610 + 294.216i) q^{56} +49.7655i q^{57} +(37.5673 - 48.2822i) q^{58} -725.135 q^{59} +(285.659 - 72.4346i) q^{60} -118.535i q^{61} +(-193.733 + 248.989i) q^{62} -291.639i q^{63} +(-347.125 - 376.362i) q^{64} +(101.053 - 566.609i) q^{65} +(-355.201 + 456.511i) q^{66} -685.284 q^{67} +(169.159 + 667.107i) q^{68} -123.626i q^{69} +(-691.110 + 888.227i) q^{70} +312.909i q^{71} +(-81.7156 + 186.533i) q^{72} -736.026i q^{73} +(-916.774 - 713.322i) q^{74} +77.3314i q^{75} +(32.6185 + 128.637i) q^{76} -2208.93i q^{77} +(266.140 + 295.556i) q^{78} -354.167 q^{79} +(690.911 - 374.467i) q^{80} +81.0000 q^{81} +(440.965 - 566.736i) q^{82} +798.760 q^{83} +(-191.153 - 753.847i) q^{84} -1056.34 q^{85} +(-592.639 + 761.671i) q^{86} -64.8867 q^{87} +(-618.928 + 1412.83i) q^{88} -509.714i q^{89} +(-246.696 - 191.949i) q^{90} +(-1495.27 - 266.676i) q^{91} +(-81.0298 - 319.555i) q^{92} +334.617 q^{93} +(-625.597 + 804.029i) q^{94} -203.692 q^{95} +(-88.9614 + 535.722i) q^{96} +1799.10i q^{97} +(1578.33 + 1228.07i) q^{98} +613.508 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23230 1.73690i −0.789238 0.614088i
\(3\) 3.00000i 0.577350i
\(4\) 1.96633 + 7.75458i 0.245792 + 0.969323i
\(5\) −12.2791 −1.09828 −0.549140 0.835731i \(-0.685044\pi\)
−0.549140 + 0.835731i \(0.685044\pi\)
\(6\) 5.21071 6.69690i 0.354544 0.455666i
\(7\) 32.4044i 1.74967i 0.484419 + 0.874836i \(0.339031\pi\)
−0.484419 + 0.874836i \(0.660969\pi\)
\(8\) 9.07951 20.7259i 0.401261 0.915964i
\(9\) −9.00000 −0.333333
\(10\) 27.4107 + 21.3277i 0.866803 + 0.674440i
\(11\) −68.1675 −1.86848 −0.934240 0.356644i \(-0.883921\pi\)
−0.934240 + 0.356644i \(0.883921\pi\)
\(12\) −23.2637 + 5.89900i −0.559639 + 0.141908i
\(13\) −8.22964 + 46.1440i −0.175576 + 0.984466i
\(14\) 56.2833 72.3363i 1.07445 1.38091i
\(15\) 36.8374i 0.634092i
\(16\) −56.2671 + 30.4962i −0.879173 + 0.476503i
\(17\) 86.0275 1.22734 0.613668 0.789564i \(-0.289693\pi\)
0.613668 + 0.789564i \(0.289693\pi\)
\(18\) 20.0907 + 15.6321i 0.263079 + 0.204696i
\(19\) 16.5885 0.200298 0.100149 0.994972i \(-0.468068\pi\)
0.100149 + 0.994972i \(0.468068\pi\)
\(20\) −24.1449 95.2195i −0.269948 1.06459i
\(21\) −97.2131 −1.01017
\(22\) 152.170 + 118.400i 1.47467 + 1.14741i
\(23\) −41.2086 −0.373591 −0.186795 0.982399i \(-0.559810\pi\)
−0.186795 + 0.982399i \(0.559810\pi\)
\(24\) 62.1777 + 27.2385i 0.528832 + 0.231668i
\(25\) 25.7771 0.206217
\(26\) 98.5188 88.7133i 0.743120 0.669158i
\(27\) 27.0000i 0.192450i
\(28\) −251.282 + 63.7178i −1.69600 + 0.430055i
\(29\) 21.6289i 0.138496i 0.997599 + 0.0692481i \(0.0220600\pi\)
−0.997599 + 0.0692481i \(0.977940\pi\)
\(30\) −63.9830 + 82.2322i −0.389388 + 0.500449i
\(31\) 111.539i 0.646226i −0.946360 0.323113i \(-0.895271\pi\)
0.946360 0.323113i \(-0.104729\pi\)
\(32\) 178.574 + 29.6538i 0.986491 + 0.163816i
\(33\) 204.503i 1.07877i
\(34\) −192.039 149.421i −0.968660 0.753693i
\(35\) 397.898i 1.92163i
\(36\) −17.6970 69.7912i −0.0819306 0.323108i
\(37\) 410.686 1.82477 0.912383 0.409338i \(-0.134240\pi\)
0.912383 + 0.409338i \(0.134240\pi\)
\(38\) −37.0305 28.8126i −0.158083 0.123001i
\(39\) −138.432 24.6889i −0.568382 0.101369i
\(40\) −111.489 + 254.496i −0.440697 + 1.00598i
\(41\) 253.880i 0.967058i 0.875328 + 0.483529i \(0.160645\pi\)
−0.875328 + 0.483529i \(0.839355\pi\)
\(42\) 217.009 + 168.850i 0.797267 + 0.620336i
\(43\) 341.204i 1.21007i −0.796197 0.605037i \(-0.793158\pi\)
0.796197 0.605037i \(-0.206842\pi\)
\(44\) −134.040 528.611i −0.459257 1.81116i
\(45\) 110.512 0.366093
\(46\) 91.9900 + 71.5753i 0.294852 + 0.229418i
\(47\) 360.180i 1.11782i −0.829228 0.558910i \(-0.811220\pi\)
0.829228 0.558910i \(-0.188780\pi\)
\(48\) −91.4886 168.801i −0.275109 0.507591i
\(49\) −707.044 −2.06135
\(50\) −57.5423 44.7724i −0.162754 0.126635i
\(51\) 258.082i 0.708603i
\(52\) −374.010 + 26.9172i −0.997420 + 0.0717834i
\(53\) 226.059i 0.585880i 0.956131 + 0.292940i \(0.0946336\pi\)
−0.956131 + 0.292940i \(0.905366\pi\)
\(54\) −46.8964 + 60.2721i −0.118181 + 0.151889i
\(55\) 837.038 2.05211
\(56\) 671.610 + 294.216i 1.60264 + 0.702076i
\(57\) 49.7655i 0.115642i
\(58\) 37.5673 48.2822i 0.0850488 0.109306i
\(59\) −725.135 −1.60008 −0.800038 0.599949i \(-0.795188\pi\)
−0.800038 + 0.599949i \(0.795188\pi\)
\(60\) 285.659 72.4346i 0.614640 0.155854i
\(61\) 118.535i 0.248801i −0.992232 0.124401i \(-0.960299\pi\)
0.992232 0.124401i \(-0.0397008\pi\)
\(62\) −193.733 + 248.989i −0.396840 + 0.510026i
\(63\) 291.639i 0.583224i
\(64\) −347.125 376.362i −0.677978 0.735082i
\(65\) 101.053 566.609i 0.192832 1.08122i
\(66\) −355.201 + 456.511i −0.662458 + 0.851404i
\(67\) −685.284 −1.24956 −0.624782 0.780800i \(-0.714812\pi\)
−0.624782 + 0.780800i \(0.714812\pi\)
\(68\) 169.159 + 667.107i 0.301669 + 1.18969i
\(69\) 123.626i 0.215693i
\(70\) −691.110 + 888.227i −1.18005 + 1.51662i
\(71\) 312.909i 0.523034i 0.965199 + 0.261517i \(0.0842228\pi\)
−0.965199 + 0.261517i \(0.915777\pi\)
\(72\) −81.7156 + 186.533i −0.133754 + 0.305321i
\(73\) 736.026i 1.18007i −0.807376 0.590037i \(-0.799113\pi\)
0.807376 0.590037i \(-0.200887\pi\)
\(74\) −916.774 713.322i −1.44017 1.12057i
\(75\) 77.3314i 0.119059i
\(76\) 32.6185 + 128.637i 0.0492316 + 0.194153i
\(77\) 2208.93i 3.26923i
\(78\) 266.140 + 295.556i 0.386339 + 0.429041i
\(79\) −354.167 −0.504391 −0.252196 0.967676i \(-0.581153\pi\)
−0.252196 + 0.967676i \(0.581153\pi\)
\(80\) 690.911 374.467i 0.965577 0.523333i
\(81\) 81.0000 0.111111
\(82\) 440.965 566.736i 0.593858 0.763238i
\(83\) 798.760 1.05633 0.528164 0.849142i \(-0.322881\pi\)
0.528164 + 0.849142i \(0.322881\pi\)
\(84\) −191.153 753.847i −0.248292 0.979184i
\(85\) −1056.34 −1.34796
\(86\) −592.639 + 761.671i −0.743092 + 0.955036i
\(87\) −64.8867 −0.0799608
\(88\) −618.928 + 1412.83i −0.749749 + 1.71146i
\(89\) 509.714i 0.607074i −0.952820 0.303537i \(-0.901832\pi\)
0.952820 0.303537i \(-0.0981676\pi\)
\(90\) −246.696 191.949i −0.288934 0.224813i
\(91\) −1495.27 266.676i −1.72249 0.307201i
\(92\) −81.0298 319.555i −0.0918255 0.362130i
\(93\) 334.617 0.373099
\(94\) −625.597 + 804.029i −0.686440 + 0.882226i
\(95\) −203.692 −0.219983
\(96\) −88.9614 + 535.722i −0.0945790 + 0.569551i
\(97\) 1799.10i 1.88320i 0.336733 + 0.941600i \(0.390678\pi\)
−0.336733 + 0.941600i \(0.609322\pi\)
\(98\) 1578.33 + 1228.07i 1.62690 + 1.26585i
\(99\) 613.508 0.622827
\(100\) 50.6864 + 199.891i 0.0506864 + 0.199891i
\(101\) 1155.41i 1.13829i −0.822236 0.569147i \(-0.807274\pi\)
0.822236 0.569147i \(-0.192726\pi\)
\(102\) 448.264 576.117i 0.435145 0.559256i
\(103\) −88.7363 −0.0848878 −0.0424439 0.999099i \(-0.513514\pi\)
−0.0424439 + 0.999099i \(0.513514\pi\)
\(104\) 881.655 + 589.532i 0.831283 + 0.555850i
\(105\) 1193.69 1.10945
\(106\) 392.643 504.632i 0.359782 0.462398i
\(107\) 1278.51i 1.15512i 0.816347 + 0.577562i \(0.195996\pi\)
−0.816347 + 0.577562i \(0.804004\pi\)
\(108\) 209.374 53.0910i 0.186546 0.0473026i
\(109\) 1258.78 1.10614 0.553070 0.833135i \(-0.313456\pi\)
0.553070 + 0.833135i \(0.313456\pi\)
\(110\) −1868.52 1453.85i −1.61960 1.26018i
\(111\) 1232.06i 1.05353i
\(112\) −988.210 1823.30i −0.833724 1.53826i
\(113\) −1111.76 −0.925537 −0.462769 0.886479i \(-0.653144\pi\)
−0.462769 + 0.886479i \(0.653144\pi\)
\(114\) 86.4379 111.092i 0.0710145 0.0912691i
\(115\) 506.006 0.410307
\(116\) −167.723 + 42.5296i −0.134247 + 0.0340412i
\(117\) 74.0668 415.296i 0.0585254 0.328155i
\(118\) 1618.72 + 1259.49i 1.26284 + 0.982588i
\(119\) 2787.67i 2.14744i
\(120\) −763.488 334.466i −0.580805 0.254437i
\(121\) 3315.81 2.49122
\(122\) −205.884 + 264.606i −0.152786 + 0.196363i
\(123\) −761.639 −0.558331
\(124\) 864.939 219.323i 0.626402 0.158837i
\(125\) 1218.37 0.871795
\(126\) −506.549 + 651.027i −0.358151 + 0.460302i
\(127\) 1070.88 0.748230 0.374115 0.927382i \(-0.377947\pi\)
0.374115 + 0.927382i \(0.377947\pi\)
\(128\) 121.183 + 1443.08i 0.0836811 + 0.996493i
\(129\) 1023.61 0.698636
\(130\) −1209.73 + 1089.32i −0.816153 + 0.734922i
\(131\) 1246.30i 0.831220i −0.909543 0.415610i \(-0.863568\pi\)
0.909543 0.415610i \(-0.136432\pi\)
\(132\) 1585.83 402.120i 1.04567 0.265152i
\(133\) 537.540i 0.350456i
\(134\) 1529.76 + 1190.27i 0.986202 + 0.767342i
\(135\) 331.537i 0.211364i
\(136\) 781.087 1783.00i 0.492483 1.12420i
\(137\) 408.168i 0.254541i −0.991868 0.127271i \(-0.959378\pi\)
0.991868 0.127271i \(-0.0406217\pi\)
\(138\) −214.726 + 275.970i −0.132454 + 0.170233i
\(139\) 1117.40i 0.681847i −0.940091 0.340923i \(-0.889260\pi\)
0.940091 0.340923i \(-0.110740\pi\)
\(140\) 3085.53 782.400i 1.86268 0.472320i
\(141\) 1080.54 0.645374
\(142\) 543.492 698.506i 0.321189 0.412798i
\(143\) 560.995 3145.53i 0.328061 1.83946i
\(144\) 506.404 274.466i 0.293058 0.158834i
\(145\) 265.584i 0.152107i
\(146\) −1278.41 + 1643.03i −0.724669 + 0.931358i
\(147\) 2121.13i 1.19012i
\(148\) 807.545 + 3184.70i 0.448512 + 1.76879i
\(149\) 2219.67 1.22042 0.610209 0.792241i \(-0.291086\pi\)
0.610209 + 0.792241i \(0.291086\pi\)
\(150\) 134.317 172.627i 0.0731130 0.0939662i
\(151\) 2664.08i 1.43576i 0.696166 + 0.717881i \(0.254888\pi\)
−0.696166 + 0.717881i \(0.745112\pi\)
\(152\) 150.615 343.811i 0.0803719 0.183466i
\(153\) −774.247 −0.409112
\(154\) −3836.69 + 4930.99i −2.00759 + 2.58020i
\(155\) 1369.60i 0.709737i
\(156\) −80.7515 1122.03i −0.0414442 0.575861i
\(157\) 1240.93i 0.630808i 0.948958 + 0.315404i \(0.102140\pi\)
−0.948958 + 0.315404i \(0.897860\pi\)
\(158\) 790.607 + 615.154i 0.398084 + 0.309741i
\(159\) −678.178 −0.338258
\(160\) −2192.73 364.123i −1.08344 0.179915i
\(161\) 1335.34i 0.653661i
\(162\) −180.816 140.689i −0.0876931 0.0682320i
\(163\) −1339.78 −0.643799 −0.321900 0.946774i \(-0.604321\pi\)
−0.321900 + 0.946774i \(0.604321\pi\)
\(164\) −1968.73 + 499.212i −0.937391 + 0.237695i
\(165\) 2511.12i 1.18479i
\(166\) −1783.07 1387.37i −0.833694 0.648679i
\(167\) 1721.59i 0.797730i 0.917010 + 0.398865i \(0.130596\pi\)
−0.917010 + 0.398865i \(0.869404\pi\)
\(168\) −882.648 + 2014.83i −0.405344 + 0.925282i
\(169\) −2061.55 759.498i −0.938346 0.345698i
\(170\) 2358.07 + 1834.77i 1.06386 + 0.827765i
\(171\) −149.297 −0.0667660
\(172\) 2645.90 670.922i 1.17295 0.297426i
\(173\) 1620.78i 0.712288i −0.934431 0.356144i \(-0.884091\pi\)
0.934431 0.356144i \(-0.115909\pi\)
\(174\) 144.847 + 112.702i 0.0631080 + 0.0491030i
\(175\) 835.292i 0.360812i
\(176\) 3835.59 2078.85i 1.64272 0.890336i
\(177\) 2175.40i 0.923805i
\(178\) −885.324 + 1137.84i −0.372797 + 0.479126i
\(179\) 141.093i 0.0589149i 0.999566 + 0.0294574i \(0.00937795\pi\)
−0.999566 + 0.0294574i \(0.990622\pi\)
\(180\) 217.304 + 856.976i 0.0899826 + 0.354862i
\(181\) 810.805i 0.332965i 0.986044 + 0.166483i \(0.0532409\pi\)
−0.986044 + 0.166483i \(0.946759\pi\)
\(182\) 2874.70 + 3192.44i 1.17081 + 1.30022i
\(183\) 355.606 0.143645
\(184\) −374.154 + 854.085i −0.149908 + 0.342195i
\(185\) −5042.87 −2.00410
\(186\) −746.967 581.198i −0.294464 0.229116i
\(187\) −5864.28 −2.29325
\(188\) 2793.04 708.233i 1.08353 0.274751i
\(189\) 874.918 0.336725
\(190\) 454.703 + 353.794i 0.173619 + 0.135089i
\(191\) −702.992 −0.266318 −0.133159 0.991095i \(-0.542512\pi\)
−0.133159 + 0.991095i \(0.542512\pi\)
\(192\) 1129.09 1041.37i 0.424400 0.391431i
\(193\) 1153.51i 0.430216i −0.976590 0.215108i \(-0.930990\pi\)
0.976590 0.215108i \(-0.0690104\pi\)
\(194\) 3124.85 4016.12i 1.15645 1.48629i
\(195\) 1699.83 + 303.159i 0.624242 + 0.111332i
\(196\) −1390.28 5482.83i −0.506663 1.99812i
\(197\) −1846.76 −0.667898 −0.333949 0.942591i \(-0.608381\pi\)
−0.333949 + 0.942591i \(0.608381\pi\)
\(198\) −1369.53 1065.60i −0.491558 0.382471i
\(199\) −2201.10 −0.784079 −0.392040 0.919948i \(-0.628230\pi\)
−0.392040 + 0.919948i \(0.628230\pi\)
\(200\) 234.044 534.254i 0.0827469 0.188887i
\(201\) 2055.85i 0.721436i
\(202\) −2006.84 + 2579.22i −0.699012 + 0.898384i
\(203\) −700.871 −0.242323
\(204\) −2001.32 + 507.476i −0.686865 + 0.174169i
\(205\) 3117.42i 1.06210i
\(206\) 198.086 + 154.126i 0.0669967 + 0.0521286i
\(207\) 370.877 0.124530
\(208\) −944.160 2847.36i −0.314739 0.949178i
\(209\) −1130.80 −0.374253
\(210\) −2664.68 2073.33i −0.875622 0.681302i
\(211\) 3082.53i 1.00573i −0.864364 0.502867i \(-0.832278\pi\)
0.864364 0.502867i \(-0.167722\pi\)
\(212\) −1752.99 + 444.508i −0.567906 + 0.144004i
\(213\) −938.726 −0.301974
\(214\) 2220.65 2854.02i 0.709348 0.911668i
\(215\) 4189.69i 1.32900i
\(216\) −559.599 245.147i −0.176277 0.0772228i
\(217\) 3614.36 1.13068
\(218\) −2809.98 2186.38i −0.873007 0.679267i
\(219\) 2208.08 0.681316
\(220\) 1645.90 + 6490.88i 0.504392 + 1.98916i
\(221\) −707.975 + 3969.65i −0.215491 + 1.20827i
\(222\) 2139.96 2750.32i 0.646960 0.831485i
\(223\) 397.116i 0.119251i −0.998221 0.0596253i \(-0.981009\pi\)
0.998221 0.0596253i \(-0.0189906\pi\)
\(224\) −960.913 + 5786.58i −0.286624 + 1.72604i
\(225\) −231.994 −0.0687390
\(226\) 2481.79 + 1931.02i 0.730469 + 0.568361i
\(227\) −497.923 −0.145587 −0.0727936 0.997347i \(-0.523191\pi\)
−0.0727936 + 0.997347i \(0.523191\pi\)
\(228\) −385.911 + 97.8556i −0.112095 + 0.0284239i
\(229\) −1061.31 −0.306259 −0.153129 0.988206i \(-0.548935\pi\)
−0.153129 + 0.988206i \(0.548935\pi\)
\(230\) −1129.56 878.883i −0.323830 0.251965i
\(231\) 6626.78 1.88749
\(232\) 448.278 + 196.380i 0.126857 + 0.0555732i
\(233\) −1895.98 −0.533090 −0.266545 0.963822i \(-0.585882\pi\)
−0.266545 + 0.963822i \(0.585882\pi\)
\(234\) −886.669 + 798.420i −0.247707 + 0.223053i
\(235\) 4422.69i 1.22768i
\(236\) −1425.86 5623.12i −0.393286 1.55099i
\(237\) 1062.50i 0.291210i
\(238\) 4841.91 6222.91i 1.31872 1.69484i
\(239\) 3083.31i 0.834489i 0.908794 + 0.417244i \(0.137004\pi\)
−0.908794 + 0.417244i \(0.862996\pi\)
\(240\) 1123.40 + 2072.73i 0.302147 + 0.557476i
\(241\) 769.489i 0.205673i 0.994698 + 0.102836i \(0.0327918\pi\)
−0.994698 + 0.102836i \(0.967208\pi\)
\(242\) −7401.89 5759.25i −1.96616 1.52983i
\(243\) 243.000i 0.0641500i
\(244\) 919.191 233.080i 0.241169 0.0611533i
\(245\) 8681.89 2.26394
\(246\) 1700.21 + 1322.89i 0.440656 + 0.342864i
\(247\) −136.517 + 765.461i −0.0351676 + 0.197187i
\(248\) −2311.75 1012.72i −0.591920 0.259306i
\(249\) 2396.28i 0.609872i
\(250\) −2719.77 2116.19i −0.688054 0.535359i
\(251\) 231.523i 0.0582214i −0.999576 0.0291107i \(-0.990732\pi\)
0.999576 0.0291107i \(-0.00926754\pi\)
\(252\) 2261.54 573.460i 0.565332 0.143352i
\(253\) 2809.09 0.698047
\(254\) −2390.53 1860.01i −0.590531 0.459479i
\(255\) 3169.03i 0.778244i
\(256\) 2235.97 3431.86i 0.545890 0.837857i
\(257\) −6738.02 −1.63543 −0.817716 0.575622i \(-0.804760\pi\)
−0.817716 + 0.575622i \(0.804760\pi\)
\(258\) −2285.01 1777.92i −0.551390 0.429024i
\(259\) 13308.0i 3.19274i
\(260\) 4592.52 330.519i 1.09545 0.0788382i
\(261\) 194.660i 0.0461654i
\(262\) −2164.70 + 2782.12i −0.510442 + 0.656030i
\(263\) −4363.07 −1.02296 −0.511479 0.859296i \(-0.670902\pi\)
−0.511479 + 0.859296i \(0.670902\pi\)
\(264\) −4238.50 1856.78i −0.988112 0.432868i
\(265\) 2775.81i 0.643459i
\(266\) 933.655 1199.95i 0.215211 0.276593i
\(267\) 1529.14 0.350494
\(268\) −1347.50 5314.09i −0.307132 1.21123i
\(269\) 6945.92i 1.57435i 0.616729 + 0.787175i \(0.288457\pi\)
−0.616729 + 0.787175i \(0.711543\pi\)
\(270\) 575.847 740.089i 0.129796 0.166816i
\(271\) 5815.95i 1.30367i −0.758362 0.651833i \(-0.774000\pi\)
0.758362 0.651833i \(-0.226000\pi\)
\(272\) −4840.51 + 2623.51i −1.07904 + 0.584830i
\(273\) 800.029 4485.81i 0.177363 0.994481i
\(274\) −708.949 + 911.155i −0.156311 + 0.200894i
\(275\) −1757.16 −0.385313
\(276\) 958.666 243.089i 0.209076 0.0530155i
\(277\) 4616.88i 1.00145i −0.865606 0.500725i \(-0.833067\pi\)
0.865606 0.500725i \(-0.166933\pi\)
\(278\) −1940.82 + 2494.37i −0.418714 + 0.538139i
\(279\) 1003.85i 0.215409i
\(280\) −8246.78 3612.72i −1.76014 0.771075i
\(281\) 1619.89i 0.343895i −0.985106 0.171948i \(-0.944994\pi\)
0.985106 0.171948i \(-0.0550060\pi\)
\(282\) −2412.09 1876.79i −0.509354 0.396317i
\(283\) 2242.90i 0.471119i 0.971860 + 0.235559i \(0.0756922\pi\)
−0.971860 + 0.235559i \(0.924308\pi\)
\(284\) −2426.48 + 615.283i −0.506989 + 0.128557i
\(285\) 611.077i 0.127007i
\(286\) −6715.78 + 6047.37i −1.38851 + 1.25031i
\(287\) −8226.82 −1.69203
\(288\) −1607.17 266.884i −0.328830 0.0546052i
\(289\) 2487.72 0.506355
\(290\) −461.294 + 592.864i −0.0934073 + 0.120049i
\(291\) −5397.29 −1.08727
\(292\) 5707.58 1447.27i 1.14387 0.290052i
\(293\) −9531.90 −1.90054 −0.950272 0.311420i \(-0.899196\pi\)
−0.950272 + 0.311420i \(0.899196\pi\)
\(294\) −3684.20 + 4735.00i −0.730840 + 0.939289i
\(295\) 8904.03 1.75733
\(296\) 3728.83 8511.83i 0.732208 1.67142i
\(297\) 1840.52i 0.359589i
\(298\) −4954.97 3855.35i −0.963199 0.749444i
\(299\) 339.132 1901.53i 0.0655937 0.367787i
\(300\) −599.673 + 152.059i −0.115407 + 0.0292638i
\(301\) 11056.5 2.11723
\(302\) 4627.26 5947.04i 0.881684 1.13316i
\(303\) 3466.23 0.657194
\(304\) −933.386 + 505.886i −0.176097 + 0.0954426i
\(305\) 1455.51i 0.273253i
\(306\) 1728.35 + 1344.79i 0.322887 + 0.251231i
\(307\) −4725.75 −0.878544 −0.439272 0.898354i \(-0.644764\pi\)
−0.439272 + 0.898354i \(0.644764\pi\)
\(308\) 17129.3 4343.49i 3.16894 0.803549i
\(309\) 266.209i 0.0490100i
\(310\) 2378.87 3057.37i 0.435841 0.560151i
\(311\) −4068.93 −0.741890 −0.370945 0.928655i \(-0.620966\pi\)
−0.370945 + 0.928655i \(0.620966\pi\)
\(312\) −1768.60 + 2644.97i −0.320920 + 0.479941i
\(313\) −3049.57 −0.550709 −0.275355 0.961343i \(-0.588795\pi\)
−0.275355 + 0.961343i \(0.588795\pi\)
\(314\) 2155.37 2770.12i 0.387372 0.497857i
\(315\) 3581.08i 0.640543i
\(316\) −696.410 2746.42i −0.123975 0.488918i
\(317\) −2469.66 −0.437570 −0.218785 0.975773i \(-0.570209\pi\)
−0.218785 + 0.975773i \(0.570209\pi\)
\(318\) 1513.90 + 1177.93i 0.266966 + 0.207720i
\(319\) 1474.39i 0.258777i
\(320\) 4262.39 + 4621.40i 0.744610 + 0.807325i
\(321\) −3835.53 −0.666912
\(322\) −2319.35 + 2980.88i −0.401405 + 0.515894i
\(323\) 1427.07 0.245833
\(324\) 159.273 + 628.121i 0.0273102 + 0.107703i
\(325\) −212.137 + 1189.46i −0.0362068 + 0.203014i
\(326\) 2990.78 + 2327.06i 0.508111 + 0.395350i
\(327\) 3776.34i 0.638630i
\(328\) 5261.88 + 2305.10i 0.885789 + 0.388043i
\(329\) 11671.4 1.95582
\(330\) 4361.56 5605.56i 0.727564 0.935079i
\(331\) 2231.98 0.370636 0.185318 0.982679i \(-0.440668\pi\)
0.185318 + 0.982679i \(0.440668\pi\)
\(332\) 1570.63 + 6194.05i 0.259637 + 1.02392i
\(333\) −3696.17 −0.608255
\(334\) 2990.24 3843.12i 0.489877 0.629599i
\(335\) 8414.69 1.37237
\(336\) 5469.90 2964.63i 0.888117 0.481351i
\(337\) 10028.0 1.62095 0.810476 0.585772i \(-0.199209\pi\)
0.810476 + 0.585772i \(0.199209\pi\)
\(338\) 3282.82 + 5276.13i 0.528289 + 0.849065i
\(339\) 3335.28i 0.534359i
\(340\) −2077.12 8191.50i −0.331317 1.30661i
\(341\) 7603.35i 1.20746i
\(342\) 333.275 + 259.314i 0.0526942 + 0.0410002i
\(343\) 11796.6i 1.85702i
\(344\) −7071.76 3097.97i −1.10838 0.485556i
\(345\) 1518.02i 0.236891i
\(346\) −2815.14 + 3618.07i −0.437408 + 0.562164i
\(347\) 5462.03i 0.845006i −0.906361 0.422503i \(-0.861152\pi\)
0.906361 0.422503i \(-0.138848\pi\)
\(348\) −127.589 503.169i −0.0196537 0.0775078i
\(349\) 4873.75 0.747524 0.373762 0.927525i \(-0.378068\pi\)
0.373762 + 0.927525i \(0.378068\pi\)
\(350\) 1450.82 1864.62i 0.221570 0.284767i
\(351\) 1245.89 + 222.200i 0.189461 + 0.0337897i
\(352\) −12172.9 2021.43i −1.84324 0.306086i
\(353\) 9847.90i 1.48485i −0.669931 0.742423i \(-0.733676\pi\)
0.669931 0.742423i \(-0.266324\pi\)
\(354\) −3778.47 + 4856.16i −0.567297 + 0.729101i
\(355\) 3842.25i 0.574437i
\(356\) 3952.62 1002.27i 0.588451 0.149214i
\(357\) −8363.00 −1.23982
\(358\) 245.064 314.961i 0.0361789 0.0464978i
\(359\) 438.907i 0.0645254i −0.999479 0.0322627i \(-0.989729\pi\)
0.999479 0.0322627i \(-0.0102713\pi\)
\(360\) 1003.40 2290.46i 0.146899 0.335328i
\(361\) −6583.82 −0.959881
\(362\) 1408.29 1809.96i 0.204470 0.262789i
\(363\) 9947.44i 1.43831i
\(364\) −872.234 12119.6i −0.125597 1.74516i
\(365\) 9037.77i 1.29605i
\(366\) −793.819 617.652i −0.113370 0.0882110i
\(367\) −4343.24 −0.617753 −0.308877 0.951102i \(-0.599953\pi\)
−0.308877 + 0.951102i \(0.599953\pi\)
\(368\) 2318.69 1256.70i 0.328451 0.178017i
\(369\) 2284.92i 0.322353i
\(370\) 11257.2 + 8758.97i 1.58171 + 1.23070i
\(371\) −7325.31 −1.02510
\(372\) 657.969 + 2594.82i 0.0917046 + 0.361653i
\(373\) 6760.28i 0.938430i 0.883084 + 0.469215i \(0.155463\pi\)
−0.883084 + 0.469215i \(0.844537\pi\)
\(374\) 13090.8 + 10185.7i 1.80992 + 1.40826i
\(375\) 3655.11i 0.503331i
\(376\) −7465.04 3270.25i −1.02388 0.448538i
\(377\) −998.045 177.998i −0.136345 0.0243166i
\(378\) −1953.08 1519.65i −0.265756 0.206779i
\(379\) 7560.67 1.02471 0.512355 0.858773i \(-0.328773\pi\)
0.512355 + 0.858773i \(0.328773\pi\)
\(380\) −400.527 1579.55i −0.0540700 0.213235i
\(381\) 3212.64i 0.431991i
\(382\) 1569.29 + 1221.03i 0.210188 + 0.163543i
\(383\) 1033.71i 0.137912i −0.997620 0.0689561i \(-0.978033\pi\)
0.997620 0.0689561i \(-0.0219668\pi\)
\(384\) −4329.23 + 363.550i −0.575325 + 0.0483133i
\(385\) 27123.7i 3.59053i
\(386\) −2003.54 + 2574.99i −0.264191 + 0.339543i
\(387\) 3070.84i 0.403358i
\(388\) −13951.2 + 3537.62i −1.82543 + 0.462875i
\(389\) 3396.43i 0.442688i −0.975196 0.221344i \(-0.928956\pi\)
0.975196 0.221344i \(-0.0710444\pi\)
\(390\) −3267.97 3629.18i −0.424308 0.471206i
\(391\) −3545.07 −0.458521
\(392\) −6419.61 + 14654.1i −0.827141 + 1.88812i
\(393\) 3738.90 0.479905
\(394\) 4122.51 + 3207.64i 0.527130 + 0.410148i
\(395\) 4348.86 0.553962
\(396\) 1206.36 + 4757.50i 0.153086 + 0.603720i
\(397\) 14322.9 1.81070 0.905350 0.424665i \(-0.139608\pi\)
0.905350 + 0.424665i \(0.139608\pi\)
\(398\) 4913.51 + 3823.10i 0.618825 + 0.481494i
\(399\) −1612.62 −0.202336
\(400\) −1450.40 + 786.104i −0.181300 + 0.0982630i
\(401\) 6038.23i 0.751957i −0.926628 0.375979i \(-0.877307\pi\)
0.926628 0.375979i \(-0.122693\pi\)
\(402\) −3570.81 + 4589.28i −0.443025 + 0.569384i
\(403\) 5146.87 + 917.927i 0.636188 + 0.113462i
\(404\) 8959.72 2271.92i 1.10337 0.279783i
\(405\) −994.610 −0.122031
\(406\) 1564.56 + 1217.35i 0.191250 + 0.148808i
\(407\) −27995.4 −3.40954
\(408\) 5348.99 + 2343.26i 0.649055 + 0.284335i
\(409\) 6379.88i 0.771307i −0.922644 0.385654i \(-0.873976\pi\)
0.922644 0.385654i \(-0.126024\pi\)
\(410\) −5414.66 + 6959.03i −0.652222 + 0.838248i
\(411\) 1224.51 0.146960
\(412\) −174.485 688.113i −0.0208647 0.0822837i
\(413\) 23497.5i 2.79961i
\(414\) −827.910 644.178i −0.0982839 0.0764725i
\(415\) −9808.08 −1.16014
\(416\) −2837.95 + 7996.08i −0.334475 + 0.942405i
\(417\) 3352.20 0.393664
\(418\) 2524.28 + 1964.09i 0.295375 + 0.229824i
\(419\) 12520.8i 1.45986i −0.683522 0.729930i \(-0.739553\pi\)
0.683522 0.729930i \(-0.260447\pi\)
\(420\) 2347.20 + 9256.59i 0.272694 + 1.07542i
\(421\) −8797.22 −1.01841 −0.509205 0.860646i \(-0.670060\pi\)
−0.509205 + 0.860646i \(0.670060\pi\)
\(422\) −5354.06 + 6881.13i −0.617610 + 0.793764i
\(423\) 3241.62i 0.372607i
\(424\) 4685.28 + 2052.51i 0.536644 + 0.235091i
\(425\) 2217.54 0.253098
\(426\) 2095.52 + 1630.48i 0.238329 + 0.185439i
\(427\) 3841.06 0.435321
\(428\) −9914.32 + 2513.98i −1.11969 + 0.283920i
\(429\) 9436.58 + 1682.98i 1.06201 + 0.189406i
\(430\) 7277.09 9352.66i 0.816122 1.04890i
\(431\) 542.587i 0.0606392i 0.999540 + 0.0303196i \(0.00965251\pi\)
−0.999540 + 0.0303196i \(0.990347\pi\)
\(432\) 823.397 + 1519.21i 0.0917030 + 0.169197i
\(433\) −608.491 −0.0675340 −0.0337670 0.999430i \(-0.510750\pi\)
−0.0337670 + 0.999430i \(0.510750\pi\)
\(434\) −8068.33 6277.79i −0.892378 0.694340i
\(435\) 796.753 0.0878192
\(436\) 2475.18 + 9761.31i 0.271880 + 1.07221i
\(437\) −683.589 −0.0748295
\(438\) −4929.10 3835.22i −0.537720 0.418388i
\(439\) 6350.28 0.690393 0.345197 0.938530i \(-0.387812\pi\)
0.345197 + 0.938530i \(0.387812\pi\)
\(440\) 7599.90 17348.4i 0.823434 1.87966i
\(441\) 6363.40 0.687118
\(442\) 8475.32 7631.78i 0.912059 0.821282i
\(443\) 12566.8i 1.34778i 0.738834 + 0.673888i \(0.235377\pi\)
−0.738834 + 0.673888i \(0.764623\pi\)
\(444\) −9554.09 + 2422.64i −1.02121 + 0.258949i
\(445\) 6258.85i 0.666737i
\(446\) −689.752 + 886.483i −0.0732303 + 0.0941170i
\(447\) 6659.00i 0.704609i
\(448\) 12195.8 11248.4i 1.28615 1.18624i
\(449\) 6925.73i 0.727941i 0.931410 + 0.363971i \(0.118579\pi\)
−0.931410 + 0.363971i \(0.881421\pi\)
\(450\) 517.881 + 402.951i 0.0542514 + 0.0422118i
\(451\) 17306.4i 1.80693i
\(452\) −2186.09 8621.24i −0.227489 0.897144i
\(453\) −7992.25 −0.828937
\(454\) 1111.51 + 864.844i 0.114903 + 0.0894034i
\(455\) 18360.6 + 3274.56i 1.89178 + 0.337392i
\(456\) 1031.43 + 451.846i 0.105924 + 0.0464027i
\(457\) 2587.54i 0.264858i −0.991192 0.132429i \(-0.957722\pi\)
0.991192 0.132429i \(-0.0422777\pi\)
\(458\) 2369.16 + 1843.39i 0.241711 + 0.188070i
\(459\) 2322.74i 0.236201i
\(460\) 994.976 + 3923.86i 0.100850 + 0.397720i
\(461\) −1934.54 −0.195446 −0.0977231 0.995214i \(-0.531156\pi\)
−0.0977231 + 0.995214i \(0.531156\pi\)
\(462\) −14793.0 11510.1i −1.48968 1.15909i
\(463\) 14.8325i 0.00148882i 1.00000 0.000744411i \(0.000236953\pi\)
−1.00000 0.000744411i \(0.999763\pi\)
\(464\) −659.599 1217.00i −0.0659938 0.121762i
\(465\) −4108.81 −0.409767
\(466\) 4232.41 + 3293.14i 0.420735 + 0.327364i
\(467\) 6870.30i 0.680770i −0.940286 0.340385i \(-0.889443\pi\)
0.940286 0.340385i \(-0.110557\pi\)
\(468\) 3366.09 242.254i 0.332473 0.0239278i
\(469\) 22206.2i 2.18633i
\(470\) 7681.79 9872.78i 0.753903 0.968931i
\(471\) −3722.78 −0.364197
\(472\) −6583.87 + 15029.1i −0.642049 + 1.46561i
\(473\) 23259.1i 2.26100i
\(474\) −1845.46 + 2371.82i −0.178829 + 0.229834i
\(475\) 427.604 0.0413049
\(476\) −21617.2 + 5481.48i −2.08156 + 0.527822i
\(477\) 2034.53i 0.195293i
\(478\) 5355.41 6882.88i 0.512450 0.658610i
\(479\) 10988.5i 1.04818i 0.851663 + 0.524089i \(0.175594\pi\)
−0.851663 + 0.524089i \(0.824406\pi\)
\(480\) 1092.37 6578.20i 0.103874 0.625526i
\(481\) −3379.80 + 18950.7i −0.320386 + 1.79642i
\(482\) 1336.53 1717.73i 0.126301 0.162325i
\(483\) 4006.02 0.377391
\(484\) 6520.00 + 25712.7i 0.612321 + 2.41480i
\(485\) 22091.3i 2.06828i
\(486\) 422.068 542.449i 0.0393938 0.0506296i
\(487\) 15324.2i 1.42588i −0.701224 0.712941i \(-0.747363\pi\)
0.701224 0.712941i \(-0.252637\pi\)
\(488\) −2456.75 1076.24i −0.227893 0.0998343i
\(489\) 4019.33i 0.371698i
\(490\) −19380.6 15079.6i −1.78679 1.39026i
\(491\) 2957.73i 0.271854i 0.990719 + 0.135927i \(0.0434013\pi\)
−0.990719 + 0.135927i \(0.956599\pi\)
\(492\) −1497.64 5906.19i −0.137233 0.541203i
\(493\) 1860.68i 0.169981i
\(494\) 1634.28 1471.62i 0.148846 0.134031i
\(495\) −7533.35 −0.684038
\(496\) 3401.52 + 6275.98i 0.307929 + 0.568145i
\(497\) −10139.6 −0.915138
\(498\) 4162.11 5349.22i 0.374515 0.481334i
\(499\) −19909.4 −1.78611 −0.893054 0.449949i \(-0.851442\pi\)
−0.893054 + 0.449949i \(0.851442\pi\)
\(500\) 2395.72 + 9447.96i 0.214280 + 0.845051i
\(501\) −5164.78 −0.460570
\(502\) −402.132 + 516.828i −0.0357531 + 0.0459505i
\(503\) 11860.2 1.05133 0.525667 0.850690i \(-0.323816\pi\)
0.525667 + 0.850690i \(0.323816\pi\)
\(504\) −6044.49 2647.94i −0.534212 0.234025i
\(505\) 14187.4i 1.25016i
\(506\) −6270.73 4879.11i −0.550925 0.428662i
\(507\) 2278.49 6184.64i 0.199589 0.541754i
\(508\) 2105.71 + 8304.22i 0.183909 + 0.725276i
\(509\) −9315.87 −0.811235 −0.405617 0.914043i \(-0.632943\pi\)
−0.405617 + 0.914043i \(0.632943\pi\)
\(510\) −5504.30 + 7074.22i −0.477910 + 0.614219i
\(511\) 23850.5 2.06474
\(512\) −10952.2 + 3777.29i −0.945355 + 0.326044i
\(513\) 447.890i 0.0385474i
\(514\) 15041.3 + 11703.3i 1.29074 + 1.00430i
\(515\) 1089.60 0.0932305
\(516\) 2012.76 + 7937.69i 0.171719 + 0.677204i
\(517\) 24552.6i 2.08863i
\(518\) 23114.7 29707.5i 1.96062 2.51983i
\(519\) 4862.35 0.411240
\(520\) −10826.0 7238.94i −0.912981 0.610478i
\(521\) −6666.57 −0.560591 −0.280295 0.959914i \(-0.590432\pi\)
−0.280295 + 0.959914i \(0.590432\pi\)
\(522\) −338.106 + 434.540i −0.0283496 + 0.0364354i
\(523\) 743.792i 0.0621869i 0.999516 + 0.0310935i \(0.00989895\pi\)
−0.999516 + 0.0310935i \(0.990101\pi\)
\(524\) 9664.54 2450.64i 0.805720 0.204307i
\(525\) −2505.88 −0.208315
\(526\) 9739.68 + 7578.22i 0.807357 + 0.628187i
\(527\) 9595.43i 0.793137i
\(528\) 6236.55 + 11506.8i 0.514036 + 0.948423i
\(529\) −10468.9 −0.860430
\(530\) −4821.32 + 6196.45i −0.395141 + 0.507842i
\(531\) 6526.21 0.533359
\(532\) −4168.40 + 1056.98i −0.339705 + 0.0861392i
\(533\) −11715.0 2089.34i −0.952035 0.169792i
\(534\) −3413.51 2655.97i −0.276623 0.215234i
\(535\) 15699.0i 1.26865i
\(536\) −6222.04 + 14203.1i −0.501401 + 1.14455i
\(537\) −423.278 −0.0340145
\(538\) 12064.4 15505.4i 0.966790 1.24254i
\(539\) 48197.4 3.85160
\(540\) −2570.93 + 651.912i −0.204880 + 0.0519515i
\(541\) −18892.4 −1.50138 −0.750692 0.660652i \(-0.770280\pi\)
−0.750692 + 0.660652i \(0.770280\pi\)
\(542\) −10101.7 + 12982.9i −0.800566 + 1.02890i
\(543\) −2432.42 −0.192238
\(544\) 15362.3 + 2551.04i 1.21076 + 0.201057i
\(545\) −15456.7 −1.21485
\(546\) −9577.32 + 8624.10i −0.750680 + 0.675966i
\(547\) 20234.2i 1.58163i 0.612056 + 0.790814i \(0.290343\pi\)
−0.612056 + 0.790814i \(0.709657\pi\)
\(548\) 3165.18 802.595i 0.246733 0.0625642i
\(549\) 1066.82i 0.0829337i
\(550\) 3922.52 + 3052.02i 0.304103 + 0.236616i
\(551\) 358.791i 0.0277405i
\(552\) −2562.25 1122.46i −0.197567 0.0865491i
\(553\) 11476.6i 0.882519i
\(554\) −8019.08 + 10306.3i −0.614979 + 0.790382i
\(555\) 15128.6i 1.15707i
\(556\) 8664.97 2197.18i 0.660929 0.167592i
\(557\) −11090.0 −0.843627 −0.421813 0.906683i \(-0.638606\pi\)
−0.421813 + 0.906683i \(0.638606\pi\)
\(558\) 1743.59 2240.90i 0.132280 0.170009i
\(559\) 15744.5 + 2807.99i 1.19128 + 0.212460i
\(560\) 12134.4 + 22388.5i 0.915662 + 1.68944i
\(561\) 17592.8i 1.32401i
\(562\) −2813.59 + 3616.08i −0.211182 + 0.271415i
\(563\) 4094.03i 0.306470i 0.988190 + 0.153235i \(0.0489692\pi\)
−0.988190 + 0.153235i \(0.951031\pi\)
\(564\) 2124.70 + 8379.12i 0.158628 + 0.625576i
\(565\) 13651.5 1.01650
\(566\) 3895.70 5006.83i 0.289308 0.371825i
\(567\) 2624.75i 0.194408i
\(568\) 6485.31 + 2841.06i 0.479080 + 0.209873i
\(569\) 17754.7 1.30811 0.654057 0.756445i \(-0.273066\pi\)
0.654057 + 0.756445i \(0.273066\pi\)
\(570\) −1061.38 + 1364.11i −0.0779937 + 0.100239i
\(571\) 22379.2i 1.64017i −0.572240 0.820086i \(-0.693925\pi\)
0.572240 0.820086i \(-0.306075\pi\)
\(572\) 25495.3 1834.88i 1.86366 0.134126i
\(573\) 2108.98i 0.153759i
\(574\) 18364.7 + 14289.2i 1.33542 + 1.03906i
\(575\) −1062.24 −0.0770407
\(576\) 3124.12 + 3387.26i 0.225993 + 0.245027i
\(577\) 5263.77i 0.379781i −0.981805 0.189891i \(-0.939187\pi\)
0.981805 0.189891i \(-0.0608133\pi\)
\(578\) −5553.35 4320.94i −0.399635 0.310947i
\(579\) 3460.54 0.248386
\(580\) 2059.49 522.227i 0.147441 0.0373867i
\(581\) 25883.3i 1.84823i
\(582\) 12048.4 + 9374.56i 0.858111 + 0.667677i
\(583\) 15409.9i 1.09470i
\(584\) −15254.8 6682.76i −1.08090 0.473518i
\(585\) −909.476 + 5099.48i −0.0642773 + 0.360406i
\(586\) 21278.1 + 16556.0i 1.49998 + 1.16710i
\(587\) −17373.1 −1.22158 −0.610788 0.791794i \(-0.709147\pi\)
−0.610788 + 0.791794i \(0.709147\pi\)
\(588\) 16448.5 4170.85i 1.15361 0.292522i
\(589\) 1850.27i 0.129438i
\(590\) −19876.5 15465.4i −1.38695 1.07916i
\(591\) 5540.27i 0.385611i
\(592\) −23108.1 + 12524.4i −1.60428 + 0.869506i
\(593\) 1386.85i 0.0960391i −0.998846 0.0480195i \(-0.984709\pi\)
0.998846 0.0480195i \(-0.0152910\pi\)
\(594\) 3196.81 4108.60i 0.220819 0.283801i
\(595\) 34230.1i 2.35848i
\(596\) 4364.61 + 17212.6i 0.299969 + 1.18298i
\(597\) 6603.30i 0.452688i
\(598\) −4059.82 + 3655.75i −0.277623 + 0.249991i
\(599\) 24658.1 1.68198 0.840988 0.541054i \(-0.181975\pi\)
0.840988 + 0.541054i \(0.181975\pi\)
\(600\) 1602.76 + 702.131i 0.109054 + 0.0477740i
\(601\) 12778.0 0.867262 0.433631 0.901091i \(-0.357232\pi\)
0.433631 + 0.901091i \(0.357232\pi\)
\(602\) −24681.5 19204.1i −1.67100 1.30017i
\(603\) 6167.55 0.416521
\(604\) −20658.9 + 5238.48i −1.39172 + 0.352898i
\(605\) −40715.3 −2.73605
\(606\) −7737.67 6020.51i −0.518682 0.403575i
\(607\) −21279.4 −1.42291 −0.711453 0.702733i \(-0.751963\pi\)
−0.711453 + 0.702733i \(0.751963\pi\)
\(608\) 2962.27 + 491.912i 0.197592 + 0.0328119i
\(609\) 2102.61i 0.139905i
\(610\) 2528.08 3249.13i 0.167802 0.215662i
\(611\) 16620.1 + 2964.15i 1.10046 + 0.196263i
\(612\) −1522.43 6003.96i −0.100556 0.396562i
\(613\) −1231.53 −0.0811436 −0.0405718 0.999177i \(-0.512918\pi\)
−0.0405718 + 0.999177i \(0.512918\pi\)
\(614\) 10549.3 + 8208.17i 0.693380 + 0.539503i
\(615\) 9352.27 0.613203
\(616\) −45782.0 20056.0i −2.99449 1.31182i
\(617\) 23252.0i 1.51716i −0.651578 0.758582i \(-0.725893\pi\)
0.651578 0.758582i \(-0.274107\pi\)
\(618\) −462.379 + 594.258i −0.0300965 + 0.0386805i
\(619\) −13316.4 −0.864673 −0.432337 0.901712i \(-0.642311\pi\)
−0.432337 + 0.901712i \(0.642311\pi\)
\(620\) −10620.7 + 2693.10i −0.687964 + 0.174447i
\(621\) 1112.63i 0.0718976i
\(622\) 9083.07 + 7067.34i 0.585527 + 0.455586i
\(623\) 16517.0 1.06218
\(624\) 8542.09 2832.48i 0.548008 0.181715i
\(625\) −18182.7 −1.16369
\(626\) 6807.56 + 5296.81i 0.434640 + 0.338184i
\(627\) 3392.39i 0.216075i
\(628\) −9622.88 + 2440.08i −0.611456 + 0.155047i
\(629\) 35330.3 2.23960
\(630\) 6219.99 7994.05i 0.393350 0.505540i
\(631\) 27537.3i 1.73731i −0.495417 0.868655i \(-0.664985\pi\)
0.495417 0.868655i \(-0.335015\pi\)
\(632\) −3215.66 + 7340.42i −0.202393 + 0.462004i
\(633\) 9247.59 0.580661
\(634\) 5513.02 + 4289.56i 0.345347 + 0.268707i
\(635\) −13149.5 −0.821765
\(636\) −1333.52 5258.98i −0.0831410 0.327881i
\(637\) 5818.72 32625.9i 0.361925 2.02933i
\(638\) −2560.87 + 3291.28i −0.158912 + 0.204237i
\(639\) 2816.18i 0.174345i
\(640\) −1488.03 17719.7i −0.0919053 1.09443i
\(641\) 19752.9 1.21715 0.608573 0.793498i \(-0.291742\pi\)
0.608573 + 0.793498i \(0.291742\pi\)
\(642\) 8562.06 + 6661.95i 0.526352 + 0.409542i
\(643\) 17495.7 1.07304 0.536518 0.843889i \(-0.319739\pi\)
0.536518 + 0.843889i \(0.319739\pi\)
\(644\) 10355.0 2625.72i 0.633609 0.160664i
\(645\) −12569.1 −0.767298
\(646\) −3185.64 2478.68i −0.194021 0.150963i
\(647\) −25309.6 −1.53790 −0.768952 0.639306i \(-0.779222\pi\)
−0.768952 + 0.639306i \(0.779222\pi\)
\(648\) 735.440 1678.80i 0.0445846 0.101774i
\(649\) 49430.7 2.98971
\(650\) 2539.53 2286.77i 0.153244 0.137992i
\(651\) 10843.1i 0.652801i
\(652\) −2634.45 10389.4i −0.158241 0.624049i
\(653\) 3090.76i 0.185223i −0.995702 0.0926116i \(-0.970479\pi\)
0.995702 0.0926116i \(-0.0295215\pi\)
\(654\) 6559.14 8429.93i 0.392175 0.504031i
\(655\) 15303.5i 0.912911i
\(656\) −7742.37 14285.1i −0.460806 0.850211i
\(657\) 6624.24i 0.393358i
\(658\) −26054.1 20272.1i −1.54361 1.20105i
\(659\) 14959.9i 0.884302i 0.896941 + 0.442151i \(0.145784\pi\)
−0.896941 + 0.442151i \(0.854216\pi\)
\(660\) −19472.6 + 4937.69i −1.14844 + 0.291211i
\(661\) 5061.91 0.297860 0.148930 0.988848i \(-0.452417\pi\)
0.148930 + 0.988848i \(0.452417\pi\)
\(662\) −4982.45 3876.73i −0.292520 0.227603i
\(663\) −11909.0 2123.93i −0.697596 0.124414i
\(664\) 7252.35 16555.0i 0.423864 0.967559i
\(665\) 6600.53i 0.384898i
\(666\) 8250.97 + 6419.89i 0.480058 + 0.373522i
\(667\) 891.297i 0.0517409i
\(668\) −13350.2 + 3385.23i −0.773258 + 0.196076i
\(669\) 1191.35 0.0688493
\(670\) −18784.1 14615.5i −1.08313 0.842755i
\(671\) 8080.25i 0.464880i
\(672\) −17359.7 2882.74i −0.996527 0.165482i
\(673\) 2117.72 0.121296 0.0606480 0.998159i \(-0.480683\pi\)
0.0606480 + 0.998159i \(0.480683\pi\)
\(674\) −22385.5 17417.7i −1.27932 0.995407i
\(675\) 695.982i 0.0396865i
\(676\) 1835.90 17479.9i 0.104455 0.994530i
\(677\) 11921.9i 0.676801i −0.941002 0.338400i \(-0.890114\pi\)
0.941002 0.338400i \(-0.109886\pi\)
\(678\) −5793.07 + 7445.36i −0.328144 + 0.421736i
\(679\) −58298.6 −3.29498
\(680\) −9591.07 + 21893.6i −0.540884 + 1.23468i
\(681\) 1493.77i 0.0840548i
\(682\) 13206.3 16973.0i 0.741488 0.952974i
\(683\) −15712.2 −0.880248 −0.440124 0.897937i \(-0.645066\pi\)
−0.440124 + 0.897937i \(0.645066\pi\)
\(684\) −293.567 1157.73i −0.0164105 0.0647178i
\(685\) 5011.96i 0.279558i
\(686\) −20489.6 + 26333.6i −1.14037 + 1.46563i
\(687\) 3183.93i 0.176819i
\(688\) 10405.4 + 19198.6i 0.576604 + 1.06386i
\(689\) −10431.3 1860.39i −0.576779 0.102867i
\(690\) 2636.65 3388.67i 0.145472 0.186963i
\(691\) 5345.61 0.294293 0.147147 0.989115i \(-0.452991\pi\)
0.147147 + 0.989115i \(0.452991\pi\)
\(692\) 12568.5 3187.00i 0.690437 0.175074i
\(693\) 19880.3i 1.08974i
\(694\) −9487.02 + 12192.9i −0.518908 + 0.666911i
\(695\) 13720.7i 0.748858i
\(696\) −589.140 + 1344.84i −0.0320852 + 0.0732412i
\(697\) 21840.6i 1.18691i
\(698\) −10879.7 8465.23i −0.589974 0.459046i
\(699\) 5687.95i 0.307780i
\(700\) −6477.34 + 1642.46i −0.349743 + 0.0886846i
\(701\) 25908.7i 1.39595i 0.716125 + 0.697973i \(0.245914\pi\)
−0.716125 + 0.697973i \(0.754086\pi\)
\(702\) −2395.26 2660.01i −0.128780 0.143014i
\(703\) 6812.66 0.365497
\(704\) 23662.7 + 25655.7i 1.26679 + 1.37349i
\(705\) −13268.1 −0.708801
\(706\) −17104.9 + 21983.5i −0.911827 + 1.17190i
\(707\) 37440.4 1.99164
\(708\) 16869.4 4277.57i 0.895465 0.227064i
\(709\) −22006.2 −1.16567 −0.582835 0.812591i \(-0.698057\pi\)
−0.582835 + 0.812591i \(0.698057\pi\)
\(710\) −6673.61 + 8577.05i −0.352755 + 0.453368i
\(711\) 3187.50 0.168130
\(712\) −10564.3 4627.95i −0.556058 0.243595i
\(713\) 4596.37i 0.241424i
\(714\) 18668.7 + 14525.7i 0.978515 + 0.761361i
\(715\) −6888.53 + 38624.3i −0.360303 + 2.02024i
\(716\) −1094.12 + 277.435i −0.0571075 + 0.0144808i
\(717\) −9249.93 −0.481792
\(718\) −762.339 + 979.772i −0.0396243 + 0.0509259i
\(719\) −6330.11 −0.328336 −0.164168 0.986432i \(-0.552494\pi\)
−0.164168 + 0.986432i \(0.552494\pi\)
\(720\) −6218.20 + 3370.20i −0.321859 + 0.174444i
\(721\) 2875.44i 0.148526i
\(722\) 14697.1 + 11435.5i 0.757574 + 0.589451i
\(723\) −2308.47 −0.118745
\(724\) −6287.46 + 1594.31i −0.322751 + 0.0818401i
\(725\) 557.531i 0.0285603i
\(726\) 17277.7 22205.7i 0.883247 1.13517i
\(727\) 4693.46 0.239437 0.119719 0.992808i \(-0.461801\pi\)
0.119719 + 0.992808i \(0.461801\pi\)
\(728\) −19103.4 + 28569.5i −0.972555 + 1.45447i
\(729\) −729.000 −0.0370370
\(730\) 15697.7 20175.0i 0.795889 1.02289i
\(731\) 29352.9i 1.48517i
\(732\) 699.239 + 2757.57i 0.0353069 + 0.139239i
\(733\) 10858.5 0.547161 0.273581 0.961849i \(-0.411792\pi\)
0.273581 + 0.961849i \(0.411792\pi\)
\(734\) 9695.42 + 7543.79i 0.487554 + 0.379355i
\(735\) 26045.7i 1.30709i
\(736\) −7358.78 1221.99i −0.368544 0.0612000i
\(737\) 46714.1 2.33478
\(738\) −3968.68 + 5100.62i −0.197953 + 0.254413i
\(739\) −30692.5 −1.52780 −0.763899 0.645336i \(-0.776717\pi\)
−0.763899 + 0.645336i \(0.776717\pi\)
\(740\) −9915.96 39105.3i −0.492592 1.94262i
\(741\) −2296.38 409.552i −0.113846 0.0203040i
\(742\) 16352.3 + 12723.4i 0.809045 + 0.629500i
\(743\) 12764.0i 0.630236i −0.949053 0.315118i \(-0.897956\pi\)
0.949053 0.315118i \(-0.102044\pi\)
\(744\) 3038.16 6935.24i 0.149710 0.341745i
\(745\) −27255.6 −1.34036
\(746\) 11742.0 15091.0i 0.576278 0.740644i
\(747\) −7188.84 −0.352110
\(748\) −11531.1 45475.0i −0.563663 2.22290i
\(749\) −41429.4 −2.02109
\(750\) 6348.58 8159.31i 0.309090 0.397248i
\(751\) −36902.3 −1.79306 −0.896528 0.442987i \(-0.853919\pi\)
−0.896528 + 0.442987i \(0.853919\pi\)
\(752\) 10984.1 + 20266.2i 0.532645 + 0.982758i
\(753\) 694.568 0.0336142
\(754\) 1918.77 + 2130.85i 0.0926758 + 0.102919i
\(755\) 32712.6i 1.57687i
\(756\) 1720.38 + 6784.63i 0.0827641 + 0.326395i
\(757\) 20098.2i 0.964971i −0.875904 0.482486i \(-0.839734\pi\)
0.875904 0.482486i \(-0.160266\pi\)
\(758\) −16877.7 13132.1i −0.808740 0.629263i
\(759\) 8427.26i 0.403018i
\(760\) −1849.43 + 4221.71i −0.0882708 + 0.201497i
\(761\) 7163.25i 0.341219i −0.985339 0.170609i \(-0.945426\pi\)
0.985339 0.170609i \(-0.0545736\pi\)
\(762\) 5580.04 7171.58i 0.265280 0.340943i
\(763\) 40790.0i 1.93538i
\(764\) −1382.32 5451.41i −0.0654588 0.258148i
\(765\) 9507.08 0.449319
\(766\) −1795.46 + 2307.56i −0.0846902 + 0.108845i
\(767\) 5967.60 33460.7i 0.280936 1.57522i
\(768\) 10295.6 + 6707.90i 0.483737 + 0.315170i
\(769\) 39460.5i 1.85043i 0.379441 + 0.925216i \(0.376116\pi\)
−0.379441 + 0.925216i \(0.623884\pi\)
\(770\) 47111.3 60548.3i 2.20490 2.83378i
\(771\) 20214.0i 0.944217i
\(772\) 8945.02 2268.19i 0.417018 0.105744i
\(773\) 17510.7 0.814768 0.407384 0.913257i \(-0.366441\pi\)
0.407384 + 0.913257i \(0.366441\pi\)
\(774\) 5333.75 6855.04i 0.247697