Properties

Label 312.4.m.a.181.18
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.18
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.30493 + 1.63930i) q^{2} +3.00000i q^{3} +(2.62541 - 7.55693i) q^{4} -3.15976 q^{5} +(-4.91789 - 6.91479i) q^{6} +31.8225i q^{7} +(6.33669 + 21.7220i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(-2.30493 + 1.63930i) q^{2} +3.00000i q^{3} +(2.62541 - 7.55693i) q^{4} -3.15976 q^{5} +(-4.91789 - 6.91479i) q^{6} +31.8225i q^{7} +(6.33669 + 21.7220i) q^{8} -9.00000 q^{9} +(7.28302 - 5.17979i) q^{10} +30.3274 q^{11} +(22.6708 + 7.87622i) q^{12} +(42.8769 + 18.9360i) q^{13} +(-52.1666 - 73.3487i) q^{14} -9.47928i q^{15} +(-50.2145 - 39.6800i) q^{16} +33.4761 q^{17} +(20.7444 - 14.7537i) q^{18} +32.4678 q^{19} +(-8.29565 + 23.8781i) q^{20} -95.4676 q^{21} +(-69.9025 + 49.7156i) q^{22} +92.1829 q^{23} +(-65.1661 + 19.0101i) q^{24} -115.016 q^{25} +(-129.870 + 26.6420i) q^{26} -27.0000i q^{27} +(240.481 + 83.5470i) q^{28} +11.6863i q^{29} +(15.5394 + 21.8491i) q^{30} +328.498i q^{31} +(180.788 + 9.14316i) q^{32} +90.9822i q^{33} +(-77.1601 + 54.8773i) q^{34} -100.551i q^{35} +(-23.6286 + 68.0124i) q^{36} -271.273 q^{37} +(-74.8359 + 53.2243i) q^{38} +(-56.8079 + 128.631i) q^{39} +(-20.0224 - 68.6364i) q^{40} +153.109i q^{41} +(220.046 - 156.500i) q^{42} +26.1234i q^{43} +(79.6217 - 229.182i) q^{44} +28.4378 q^{45} +(-212.475 + 151.115i) q^{46} -72.2968i q^{47} +(119.040 - 150.643i) q^{48} -669.673 q^{49} +(265.104 - 188.545i) q^{50} +100.428i q^{51} +(255.667 - 274.303i) q^{52} -666.675i q^{53} +(44.2610 + 62.2331i) q^{54} -95.8272 q^{55} +(-691.250 + 201.649i) q^{56} +97.4033i q^{57} +(-19.1574 - 26.9362i) q^{58} -512.543 q^{59} +(-71.6343 - 24.8869i) q^{60} +527.725i q^{61} +(-538.505 - 757.164i) q^{62} -286.403i q^{63} +(-431.693 + 275.291i) q^{64} +(-135.481 - 59.8331i) q^{65} +(-149.147 - 209.708i) q^{66} -863.838 q^{67} +(87.8884 - 252.977i) q^{68} +276.549i q^{69} +(164.834 + 231.764i) q^{70} -810.528i q^{71} +(-57.0302 - 195.498i) q^{72} +157.904i q^{73} +(625.266 - 444.697i) q^{74} -345.048i q^{75} +(85.2410 - 245.357i) q^{76} +965.094i q^{77} +(-79.9259 - 389.610i) q^{78} +796.996 q^{79} +(158.666 + 125.379i) q^{80} +81.0000 q^{81} +(-250.991 - 352.905i) q^{82} -69.5892 q^{83} +(-250.641 + 721.442i) q^{84} -105.776 q^{85} +(-42.8240 - 60.2126i) q^{86} -35.0590 q^{87} +(192.175 + 658.772i) q^{88} +1637.05i q^{89} +(-65.5472 + 46.6181i) q^{90} +(-602.590 + 1364.45i) q^{91} +(242.017 - 696.620i) q^{92} -985.493 q^{93} +(118.516 + 166.639i) q^{94} -102.590 q^{95} +(-27.4295 + 542.365i) q^{96} -904.235i q^{97} +(1543.55 - 1097.79i) q^{98} -272.946 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30493 + 1.63930i −0.814916 + 0.579579i
\(3\) 3.00000i 0.577350i
\(4\) 2.62541 7.55693i 0.328176 0.944617i
\(5\) −3.15976 −0.282617 −0.141309 0.989966i \(-0.545131\pi\)
−0.141309 + 0.989966i \(0.545131\pi\)
\(6\) −4.91789 6.91479i −0.334620 0.470492i
\(7\) 31.8225i 1.71825i 0.511762 + 0.859127i \(0.328993\pi\)
−0.511762 + 0.859127i \(0.671007\pi\)
\(8\) 6.33669 + 21.7220i 0.280045 + 0.959987i
\(9\) −9.00000 −0.333333
\(10\) 7.28302 5.17979i 0.230309 0.163799i
\(11\) 30.3274 0.831277 0.415639 0.909530i \(-0.363558\pi\)
0.415639 + 0.909530i \(0.363558\pi\)
\(12\) 22.6708 + 7.87622i 0.545375 + 0.189472i
\(13\) 42.8769 + 18.9360i 0.914763 + 0.403991i
\(14\) −52.1666 73.3487i −0.995865 1.40023i
\(15\) 9.47928i 0.163169i
\(16\) −50.2145 39.6800i −0.784602 0.620000i
\(17\) 33.4761 0.477597 0.238799 0.971069i \(-0.423246\pi\)
0.238799 + 0.971069i \(0.423246\pi\)
\(18\) 20.7444 14.7537i 0.271639 0.193193i
\(19\) 32.4678 0.392032 0.196016 0.980601i \(-0.437200\pi\)
0.196016 + 0.980601i \(0.437200\pi\)
\(20\) −8.29565 + 23.8781i −0.0927482 + 0.266965i
\(21\) −95.4676 −0.992035
\(22\) −69.9025 + 49.7156i −0.677421 + 0.481791i
\(23\) 92.1829 0.835716 0.417858 0.908512i \(-0.362781\pi\)
0.417858 + 0.908512i \(0.362781\pi\)
\(24\) −65.1661 + 19.0101i −0.554249 + 0.161684i
\(25\) −115.016 −0.920127
\(26\) −129.870 + 26.6420i −0.979600 + 0.200959i
\(27\) 27.0000i 0.192450i
\(28\) 240.481 + 83.5470i 1.62309 + 0.563889i
\(29\) 11.6863i 0.0748309i 0.999300 + 0.0374155i \(0.0119125\pi\)
−0.999300 + 0.0374155i \(0.988088\pi\)
\(30\) 15.5394 + 21.8491i 0.0945695 + 0.132969i
\(31\) 328.498i 1.90322i 0.307304 + 0.951611i \(0.400573\pi\)
−0.307304 + 0.951611i \(0.599427\pi\)
\(32\) 180.788 + 9.14316i 0.998724 + 0.0505093i
\(33\) 90.9822i 0.479938i
\(34\) −77.1601 + 54.8773i −0.389202 + 0.276805i
\(35\) 100.551i 0.485609i
\(36\) −23.6286 + 68.0124i −0.109392 + 0.314872i
\(37\) −271.273 −1.20532 −0.602662 0.797996i \(-0.705893\pi\)
−0.602662 + 0.797996i \(0.705893\pi\)
\(38\) −74.8359 + 53.2243i −0.319473 + 0.227214i
\(39\) −56.8079 + 128.631i −0.233245 + 0.528139i
\(40\) −20.0224 68.6364i −0.0791455 0.271309i
\(41\) 153.109i 0.583209i 0.956539 + 0.291605i \(0.0941892\pi\)
−0.956539 + 0.291605i \(0.905811\pi\)
\(42\) 220.046 156.500i 0.808425 0.574963i
\(43\) 26.1234i 0.0926461i 0.998927 + 0.0463230i \(0.0147504\pi\)
−0.998927 + 0.0463230i \(0.985250\pi\)
\(44\) 79.6217 229.182i 0.272805 0.785239i
\(45\) 28.4378 0.0942058
\(46\) −212.475 + 151.115i −0.681038 + 0.484364i
\(47\) 72.2968i 0.224374i −0.993687 0.112187i \(-0.964214\pi\)
0.993687 0.112187i \(-0.0357855\pi\)
\(48\) 119.040 150.643i 0.357957 0.452990i
\(49\) −669.673 −1.95240
\(50\) 265.104 188.545i 0.749826 0.533287i
\(51\) 100.428i 0.275741i
\(52\) 255.667 274.303i 0.681820 0.731520i
\(53\) 666.675i 1.72783i −0.503641 0.863913i \(-0.668007\pi\)
0.503641 0.863913i \(-0.331993\pi\)
\(54\) 44.2610 + 62.2331i 0.111540 + 0.156831i
\(55\) −95.8272 −0.234933
\(56\) −691.250 + 201.649i −1.64950 + 0.481188i
\(57\) 97.4033i 0.226340i
\(58\) −19.1574 26.9362i −0.0433704 0.0609809i
\(59\) −512.543 −1.13097 −0.565487 0.824757i \(-0.691312\pi\)
−0.565487 + 0.824757i \(0.691312\pi\)
\(60\) −71.6343 24.8869i −0.154132 0.0535482i
\(61\) 527.725i 1.10768i 0.832624 + 0.553838i \(0.186837\pi\)
−0.832624 + 0.553838i \(0.813163\pi\)
\(62\) −538.505 757.164i −1.10307 1.55097i
\(63\) 286.403i 0.572752i
\(64\) −431.693 + 275.291i −0.843150 + 0.537679i
\(65\) −135.481 59.8331i −0.258528 0.114175i
\(66\) −149.147 209.708i −0.278162 0.391109i
\(67\) −863.838 −1.57514 −0.787572 0.616223i \(-0.788662\pi\)
−0.787572 + 0.616223i \(0.788662\pi\)
\(68\) 87.8884 252.977i 0.156736 0.451146i
\(69\) 276.549i 0.482501i
\(70\) 164.834 + 231.764i 0.281449 + 0.395730i
\(71\) 810.528i 1.35482i −0.735608 0.677408i \(-0.763103\pi\)
0.735608 0.677408i \(-0.236897\pi\)
\(72\) −57.0302 195.498i −0.0933483 0.319996i
\(73\) 157.904i 0.253167i 0.991956 + 0.126584i \(0.0404012\pi\)
−0.991956 + 0.126584i \(0.959599\pi\)
\(74\) 625.266 444.697i 0.982238 0.698581i
\(75\) 345.048i 0.531236i
\(76\) 85.2410 245.357i 0.128655 0.370320i
\(77\) 965.094i 1.42835i
\(78\) −79.9259 389.610i −0.116023 0.565572i
\(79\) 796.996 1.13505 0.567526 0.823356i \(-0.307901\pi\)
0.567526 + 0.823356i \(0.307901\pi\)
\(80\) 158.666 + 125.379i 0.221742 + 0.175223i
\(81\) 81.0000 0.111111
\(82\) −250.991 352.905i −0.338016 0.475267i
\(83\) −69.5892 −0.0920290 −0.0460145 0.998941i \(-0.514652\pi\)
−0.0460145 + 0.998941i \(0.514652\pi\)
\(84\) −250.641 + 721.442i −0.325562 + 0.937093i
\(85\) −105.776 −0.134977
\(86\) −42.8240 60.2126i −0.0536958 0.0754988i
\(87\) −35.0590 −0.0432036
\(88\) 192.175 + 658.772i 0.232795 + 0.798015i
\(89\) 1637.05i 1.94975i 0.222761 + 0.974873i \(0.428493\pi\)
−0.222761 + 0.974873i \(0.571507\pi\)
\(90\) −65.5472 + 46.6181i −0.0767698 + 0.0545997i
\(91\) −602.590 + 1364.45i −0.694160 + 1.57180i
\(92\) 242.017 696.620i 0.274262 0.789431i
\(93\) −985.493 −1.09883
\(94\) 118.516 + 166.639i 0.130042 + 0.182846i
\(95\) −102.590 −0.110795
\(96\) −27.4295 + 542.365i −0.0291616 + 0.576613i
\(97\) 904.235i 0.946507i −0.880926 0.473253i \(-0.843080\pi\)
0.880926 0.473253i \(-0.156920\pi\)
\(98\) 1543.55 1097.79i 1.59104 1.13157i
\(99\) −272.946 −0.277092
\(100\) −301.963 + 869.168i −0.301963 + 0.869168i
\(101\) 571.027i 0.562567i 0.959625 + 0.281283i \(0.0907601\pi\)
−0.959625 + 0.281283i \(0.909240\pi\)
\(102\) −164.632 231.480i −0.159814 0.224706i
\(103\) −348.693 −0.333570 −0.166785 0.985993i \(-0.553339\pi\)
−0.166785 + 0.985993i \(0.553339\pi\)
\(104\) −139.630 + 1051.36i −0.131652 + 0.991296i
\(105\) 301.654 0.280366
\(106\) 1092.88 + 1536.64i 1.00141 + 1.40803i
\(107\) 224.543i 0.202873i −0.994842 0.101436i \(-0.967656\pi\)
0.994842 0.101436i \(-0.0323439\pi\)
\(108\) −204.037 70.8859i −0.181792 0.0631574i
\(109\) 933.844 0.820606 0.410303 0.911949i \(-0.365423\pi\)
0.410303 + 0.911949i \(0.365423\pi\)
\(110\) 220.875 157.089i 0.191451 0.136163i
\(111\) 813.819i 0.695895i
\(112\) 1262.72 1597.95i 1.06532 1.34815i
\(113\) −39.1345 −0.0325793 −0.0162897 0.999867i \(-0.505185\pi\)
−0.0162897 + 0.999867i \(0.505185\pi\)
\(114\) −159.673 224.508i −0.131182 0.184448i
\(115\) −291.276 −0.236188
\(116\) 88.3128 + 30.6813i 0.0706865 + 0.0245577i
\(117\) −385.892 170.424i −0.304921 0.134664i
\(118\) 1181.38 840.211i 0.921648 0.655489i
\(119\) 1065.29i 0.820634i
\(120\) 205.909 60.0672i 0.156640 0.0456947i
\(121\) −411.250 −0.308978
\(122\) −865.098 1216.37i −0.641986 0.902663i
\(123\) −459.327 −0.336716
\(124\) 2482.43 + 862.439i 1.79782 + 0.624591i
\(125\) 758.392 0.542661
\(126\) 469.499 + 660.138i 0.331955 + 0.466744i
\(127\) 2654.51 1.85472 0.927360 0.374170i \(-0.122072\pi\)
0.927360 + 0.374170i \(0.122072\pi\)
\(128\) 543.737 1342.20i 0.375469 0.926835i
\(129\) −78.3702 −0.0534892
\(130\) 410.358 84.1822i 0.276852 0.0567944i
\(131\) 1492.43i 0.995378i −0.867356 0.497689i \(-0.834182\pi\)
0.867356 0.497689i \(-0.165818\pi\)
\(132\) 687.546 + 238.865i 0.453358 + 0.157504i
\(133\) 1033.21i 0.673611i
\(134\) 1991.09 1416.09i 1.28361 0.912920i
\(135\) 85.3135i 0.0543897i
\(136\) 212.128 + 727.169i 0.133749 + 0.458487i
\(137\) 1648.95i 1.02832i −0.857695 0.514158i \(-0.828104\pi\)
0.857695 0.514158i \(-0.171896\pi\)
\(138\) −453.346 637.426i −0.279648 0.393198i
\(139\) 733.234i 0.447425i −0.974655 0.223713i \(-0.928182\pi\)
0.974655 0.223713i \(-0.0718177\pi\)
\(140\) −759.861 263.988i −0.458714 0.159365i
\(141\) 216.890 0.129542
\(142\) 1328.70 + 1868.21i 0.785223 + 1.10406i
\(143\) 1300.34 + 574.278i 0.760422 + 0.335829i
\(144\) 451.930 + 357.120i 0.261534 + 0.206667i
\(145\) 36.9260i 0.0211485i
\(146\) −258.851 363.957i −0.146731 0.206310i
\(147\) 2009.02i 1.12722i
\(148\) −712.202 + 2049.99i −0.395558 + 1.13857i
\(149\) −2501.73 −1.37550 −0.687750 0.725948i \(-0.741402\pi\)
−0.687750 + 0.725948i \(0.741402\pi\)
\(150\) 565.636 + 795.311i 0.307893 + 0.432912i
\(151\) 398.863i 0.214961i 0.994207 + 0.107480i \(0.0342782\pi\)
−0.994207 + 0.107480i \(0.965722\pi\)
\(152\) 205.738 + 705.265i 0.109787 + 0.376346i
\(153\) −301.285 −0.159199
\(154\) −1582.08 2224.47i −0.827840 1.16398i
\(155\) 1037.97i 0.537884i
\(156\) 822.910 + 767.001i 0.422343 + 0.393649i
\(157\) 1705.02i 0.866720i 0.901221 + 0.433360i \(0.142672\pi\)
−0.901221 + 0.433360i \(0.857328\pi\)
\(158\) −1837.02 + 1306.51i −0.924971 + 0.657852i
\(159\) 2000.02 0.997561
\(160\) −571.247 28.8902i −0.282257 0.0142748i
\(161\) 2933.49i 1.43597i
\(162\) −186.699 + 132.783i −0.0905462 + 0.0643977i
\(163\) 1303.86 0.626542 0.313271 0.949664i \(-0.398575\pi\)
0.313271 + 0.949664i \(0.398575\pi\)
\(164\) 1157.03 + 401.973i 0.550909 + 0.191395i
\(165\) 287.482i 0.135639i
\(166\) 160.398 114.077i 0.0749959 0.0533381i
\(167\) 2448.11i 1.13437i 0.823590 + 0.567186i \(0.191968\pi\)
−0.823590 + 0.567186i \(0.808032\pi\)
\(168\) −604.948 2073.75i −0.277814 0.952340i
\(169\) 1479.86 + 1623.83i 0.673582 + 0.739113i
\(170\) 243.807 173.399i 0.109995 0.0782301i
\(171\) −292.210 −0.130677
\(172\) 197.413 + 68.5845i 0.0875151 + 0.0304042i
\(173\) 2513.15i 1.10446i 0.833692 + 0.552229i \(0.186223\pi\)
−0.833692 + 0.552229i \(0.813777\pi\)
\(174\) 80.8085 57.4721i 0.0352073 0.0250399i
\(175\) 3660.10i 1.58101i
\(176\) −1522.87 1203.39i −0.652222 0.515392i
\(177\) 1537.63i 0.652968i
\(178\) −2683.62 3773.30i −1.13003 1.58888i
\(179\) 2275.36i 0.950104i −0.879958 0.475052i \(-0.842429\pi\)
0.879958 0.475052i \(-0.157571\pi\)
\(180\) 74.6608 214.903i 0.0309161 0.0889884i
\(181\) 3625.71i 1.48893i 0.667661 + 0.744466i \(0.267296\pi\)
−0.667661 + 0.744466i \(0.732704\pi\)
\(182\) −847.815 4132.79i −0.345298 1.68320i
\(183\) −1583.17 −0.639517
\(184\) 584.135 + 2002.40i 0.234038 + 0.802276i
\(185\) 857.158 0.340646
\(186\) 2271.49 1615.52i 0.895451 0.636857i
\(187\) 1015.24 0.397016
\(188\) −546.342 189.808i −0.211947 0.0736340i
\(189\) 859.208 0.330678
\(190\) 236.463 168.176i 0.0902887 0.0642146i
\(191\) 3729.40 1.41283 0.706414 0.707799i \(-0.250312\pi\)
0.706414 + 0.707799i \(0.250312\pi\)
\(192\) −825.874 1295.08i −0.310429 0.486793i
\(193\) 767.818i 0.286366i 0.989696 + 0.143183i \(0.0457338\pi\)
−0.989696 + 0.143183i \(0.954266\pi\)
\(194\) 1482.31 + 2084.20i 0.548576 + 0.771323i
\(195\) 179.499 406.442i 0.0659190 0.149261i
\(196\) −1758.16 + 5060.67i −0.640730 + 1.84427i
\(197\) 3005.02 1.08680 0.543398 0.839475i \(-0.317137\pi\)
0.543398 + 0.839475i \(0.317137\pi\)
\(198\) 629.123 447.441i 0.225807 0.160597i
\(199\) −3534.47 −1.25906 −0.629528 0.776978i \(-0.716752\pi\)
−0.629528 + 0.776978i \(0.716752\pi\)
\(200\) −728.820 2498.38i −0.257677 0.883310i
\(201\) 2591.51i 0.909409i
\(202\) −936.083 1316.18i −0.326052 0.458445i
\(203\) −371.888 −0.128579
\(204\) 758.931 + 263.665i 0.260469 + 0.0904914i
\(205\) 483.787i 0.164825i
\(206\) 803.712 571.611i 0.271831 0.193330i
\(207\) −829.646 −0.278572
\(208\) −1401.66 2652.22i −0.467249 0.884126i
\(209\) 984.662 0.325888
\(210\) −695.292 + 494.502i −0.228475 + 0.162495i
\(211\) 2159.43i 0.704556i 0.935895 + 0.352278i \(0.114593\pi\)
−0.935895 + 0.352278i \(0.885407\pi\)
\(212\) −5038.02 1750.29i −1.63213 0.567030i
\(213\) 2431.58 0.782203
\(214\) 368.093 + 517.556i 0.117581 + 0.165324i
\(215\) 82.5437i 0.0261834i
\(216\) 586.495 171.091i 0.184750 0.0538946i
\(217\) −10453.6 −3.27022
\(218\) −2152.44 + 1530.85i −0.668725 + 0.475606i
\(219\) −473.711 −0.146166
\(220\) −251.585 + 724.160i −0.0770994 + 0.221922i
\(221\) 1435.35 + 633.902i 0.436888 + 0.192945i
\(222\) 1334.09 + 1875.80i 0.403326 + 0.567096i
\(223\) 3677.94i 1.10445i −0.833694 0.552227i \(-0.813778\pi\)
0.833694 0.552227i \(-0.186222\pi\)
\(224\) −290.958 + 5753.14i −0.0867878 + 1.71606i
\(225\) 1035.14 0.306709
\(226\) 90.2023 64.1531i 0.0265494 0.0188823i
\(227\) −2985.71 −0.872990 −0.436495 0.899707i \(-0.643780\pi\)
−0.436495 + 0.899707i \(0.643780\pi\)
\(228\) 736.070 + 255.723i 0.213804 + 0.0742792i
\(229\) 111.331 0.0321264 0.0160632 0.999871i \(-0.494887\pi\)
0.0160632 + 0.999871i \(0.494887\pi\)
\(230\) 671.370 477.488i 0.192473 0.136890i
\(231\) −2895.28 −0.824656
\(232\) −253.851 + 74.0526i −0.0718367 + 0.0209560i
\(233\) 4372.15 1.22931 0.614654 0.788797i \(-0.289296\pi\)
0.614654 + 0.788797i \(0.289296\pi\)
\(234\) 1168.83 239.778i 0.326533 0.0669862i
\(235\) 228.440i 0.0634120i
\(236\) −1345.63 + 3873.25i −0.371158 + 1.06834i
\(237\) 2390.99i 0.655322i
\(238\) −1746.34 2455.43i −0.475622 0.668747i
\(239\) 3323.79i 0.899573i 0.893136 + 0.449787i \(0.148500\pi\)
−0.893136 + 0.449787i \(0.851500\pi\)
\(240\) −376.138 + 475.997i −0.101165 + 0.128023i
\(241\) 1479.10i 0.395342i −0.980268 0.197671i \(-0.936662\pi\)
0.980268 0.197671i \(-0.0633377\pi\)
\(242\) 947.901 674.160i 0.251791 0.179077i
\(243\) 243.000i 0.0641500i
\(244\) 3987.98 + 1385.49i 1.04633 + 0.363512i
\(245\) 2116.00 0.551782
\(246\) 1058.72 752.973i 0.274395 0.195154i
\(247\) 1392.12 + 614.808i 0.358617 + 0.158378i
\(248\) −7135.63 + 2081.59i −1.82707 + 0.532988i
\(249\) 208.768i 0.0531330i
\(250\) −1748.04 + 1243.23i −0.442223 + 0.314515i
\(251\) 3963.27i 0.996651i −0.866990 0.498325i \(-0.833948\pi\)
0.866990 0.498325i \(-0.166052\pi\)
\(252\) −2164.33 751.923i −0.541031 0.187963i
\(253\) 2795.67 0.694712
\(254\) −6118.46 + 4351.53i −1.51144 + 1.07496i
\(255\) 317.329i 0.0779292i
\(256\) 946.991 + 3985.02i 0.231199 + 0.972906i
\(257\) −4738.68 −1.15016 −0.575080 0.818097i \(-0.695029\pi\)
−0.575080 + 0.818097i \(0.695029\pi\)
\(258\) 180.638 128.472i 0.0435892 0.0310013i
\(259\) 8632.59i 2.07106i
\(260\) −807.846 + 866.733i −0.192694 + 0.206740i
\(261\) 105.177i 0.0249436i
\(262\) 2446.54 + 3439.95i 0.576900 + 0.811149i
\(263\) 4228.54 0.991417 0.495709 0.868489i \(-0.334908\pi\)
0.495709 + 0.868489i \(0.334908\pi\)
\(264\) −1976.32 + 576.526i −0.460734 + 0.134404i
\(265\) 2106.53i 0.488314i
\(266\) −1693.73 2381.47i −0.390411 0.548936i
\(267\) −4911.16 −1.12569
\(268\) −2267.92 + 6527.97i −0.516924 + 1.48791i
\(269\) 6051.15i 1.37154i −0.727817 0.685771i \(-0.759465\pi\)
0.727817 0.685771i \(-0.240535\pi\)
\(270\) −139.854 196.642i −0.0315232 0.0443231i
\(271\) 3361.97i 0.753598i −0.926295 0.376799i \(-0.877025\pi\)
0.926295 0.376799i \(-0.122975\pi\)
\(272\) −1680.99 1328.33i −0.374724 0.296110i
\(273\) −4093.35 1807.77i −0.907476 0.400774i
\(274\) 2703.12 + 3800.71i 0.595991 + 0.837991i
\(275\) −3488.13 −0.764881
\(276\) 2089.86 + 726.052i 0.455778 + 0.158345i
\(277\) 5266.13i 1.14228i −0.820853 0.571139i \(-0.806502\pi\)
0.820853 0.571139i \(-0.193498\pi\)
\(278\) 1201.99 + 1690.05i 0.259319 + 0.364614i
\(279\) 2956.48i 0.634408i
\(280\) 2184.18 637.164i 0.466178 0.135992i
\(281\) 5935.42i 1.26006i 0.776570 + 0.630031i \(0.216958\pi\)
−0.776570 + 0.630031i \(0.783042\pi\)
\(282\) −499.917 + 355.548i −0.105566 + 0.0750800i
\(283\) 173.311i 0.0364038i −0.999834 0.0182019i \(-0.994206\pi\)
0.999834 0.0182019i \(-0.00579417\pi\)
\(284\) −6125.10 2127.96i −1.27978 0.444618i
\(285\) 307.771i 0.0639676i
\(286\) −3938.62 + 807.982i −0.814319 + 0.167052i
\(287\) −4872.31 −1.00210
\(288\) −1627.09 82.2884i −0.332908 0.0168364i
\(289\) −3792.35 −0.771901
\(290\) 60.5327 + 85.1118i 0.0122572 + 0.0172343i
\(291\) 2712.70 0.546466
\(292\) 1193.27 + 414.561i 0.239146 + 0.0830834i
\(293\) 8551.32 1.70503 0.852515 0.522703i \(-0.175077\pi\)
0.852515 + 0.522703i \(0.175077\pi\)
\(294\) 3293.38 + 4630.65i 0.653312 + 0.918588i
\(295\) 1619.51 0.319633
\(296\) −1718.97 5892.60i −0.337545 1.15710i
\(297\) 818.839i 0.159979i
\(298\) 5766.31 4101.08i 1.12092 0.797211i
\(299\) 3952.52 + 1745.57i 0.764482 + 0.337622i
\(300\) −2607.50 905.890i −0.501814 0.174339i
\(301\) −831.313 −0.159190
\(302\) −653.856 919.352i −0.124587 0.175175i
\(303\) −1713.08 −0.324798
\(304\) −1630.35 1288.32i −0.307589 0.243060i
\(305\) 1667.48i 0.313049i
\(306\) 694.441 493.896i 0.129734 0.0922685i
\(307\) 8547.36 1.58900 0.794501 0.607263i \(-0.207733\pi\)
0.794501 + 0.607263i \(0.207733\pi\)
\(308\) 7293.15 + 2533.76i 1.34924 + 0.468748i
\(309\) 1046.08i 0.192587i
\(310\) 1701.55 + 2392.46i 0.311746 + 0.438330i
\(311\) −5897.36 −1.07527 −0.537634 0.843178i \(-0.680682\pi\)
−0.537634 + 0.843178i \(0.680682\pi\)
\(312\) −3154.09 418.889i −0.572325 0.0760093i
\(313\) 2734.59 0.493829 0.246914 0.969037i \(-0.420583\pi\)
0.246914 + 0.969037i \(0.420583\pi\)
\(314\) −2795.03 3929.94i −0.502333 0.706304i
\(315\) 904.963i 0.161870i
\(316\) 2092.44 6022.84i 0.372496 1.07219i
\(317\) −571.593 −0.101274 −0.0506370 0.998717i \(-0.516125\pi\)
−0.0506370 + 0.998717i \(0.516125\pi\)
\(318\) −4609.91 + 3278.63i −0.812928 + 0.578166i
\(319\) 354.416i 0.0622052i
\(320\) 1364.04 869.855i 0.238289 0.151957i
\(321\) 673.629 0.117129
\(322\) −4808.87 6761.50i −0.832260 1.17020i
\(323\) 1086.89 0.187234
\(324\) 212.658 612.112i 0.0364640 0.104957i
\(325\) −4931.53 2177.94i −0.841698 0.371724i
\(326\) −3005.31 + 2137.42i −0.510579 + 0.363131i
\(327\) 2801.53i 0.473777i
\(328\) −3325.83 + 970.203i −0.559873 + 0.163325i
\(329\) 2300.67 0.385531
\(330\) 471.268 + 662.625i 0.0786135 + 0.110534i
\(331\) 606.517 0.100717 0.0503583 0.998731i \(-0.483964\pi\)
0.0503583 + 0.998731i \(0.483964\pi\)
\(332\) −182.700 + 525.881i −0.0302017 + 0.0869322i
\(333\) 2441.46 0.401775
\(334\) −4013.17 5642.71i −0.657458 0.924417i
\(335\) 2729.52 0.445163
\(336\) 4793.86 + 3788.16i 0.778352 + 0.615062i
\(337\) −2.45017 −0.000396051 −0.000198026 1.00000i \(-0.500063\pi\)
−0.000198026 1.00000i \(0.500063\pi\)
\(338\) −6072.91 1316.89i −0.977287 0.211921i
\(339\) 117.404i 0.0188097i
\(340\) −277.706 + 799.346i −0.0442963 + 0.127502i
\(341\) 9962.47i 1.58211i
\(342\) 673.523 479.019i 0.106491 0.0757379i
\(343\) 10395.6i 1.63646i
\(344\) −567.453 + 165.536i −0.0889390 + 0.0259451i
\(345\) 873.827i 0.136363i
\(346\) −4119.80 5792.64i −0.640121 0.900041i
\(347\) 902.500i 0.139622i −0.997560 0.0698109i \(-0.977760\pi\)
0.997560 0.0698109i \(-0.0222396\pi\)
\(348\) −92.0440 + 264.938i −0.0141784 + 0.0408109i
\(349\) −4953.37 −0.759735 −0.379868 0.925041i \(-0.624030\pi\)
−0.379868 + 0.925041i \(0.624030\pi\)
\(350\) 5999.99 + 8436.27i 0.916323 + 1.28839i
\(351\) 511.271 1157.68i 0.0777482 0.176046i
\(352\) 5482.84 + 277.288i 0.830216 + 0.0419872i
\(353\) 4514.62i 0.680705i 0.940298 + 0.340352i \(0.110546\pi\)
−0.940298 + 0.340352i \(0.889454\pi\)
\(354\) 2520.63 + 3544.13i 0.378447 + 0.532114i
\(355\) 2561.07i 0.382895i
\(356\) 12371.1 + 4297.93i 1.84176 + 0.639859i
\(357\) −3195.88 −0.473793
\(358\) 3730.00 + 5244.55i 0.550661 + 0.774255i
\(359\) 3303.93i 0.485724i 0.970061 + 0.242862i \(0.0780863\pi\)
−0.970061 + 0.242862i \(0.921914\pi\)
\(360\) 180.202 + 617.727i 0.0263818 + 0.0904363i
\(361\) −5804.85 −0.846311
\(362\) −5943.61 8357.00i −0.862954 1.21335i
\(363\) 1233.75i 0.178388i
\(364\) 8729.03 + 8135.97i 1.25694 + 1.17154i
\(365\) 498.937i 0.0715495i
\(366\) 3649.11 2595.30i 0.521153 0.370651i
\(367\) 12769.7 1.81627 0.908134 0.418679i \(-0.137507\pi\)
0.908134 + 0.418679i \(0.137507\pi\)
\(368\) −4628.92 3657.82i −0.655704 0.518144i
\(369\) 1377.98i 0.194403i
\(370\) −1975.69 + 1405.14i −0.277598 + 0.197431i
\(371\) 21215.3 2.96885
\(372\) −2587.32 + 7447.30i −0.360608 + 1.03797i
\(373\) 8952.31i 1.24272i −0.783527 0.621358i \(-0.786581\pi\)
0.783527 0.621358i \(-0.213419\pi\)
\(374\) −2340.07 + 1664.29i −0.323534 + 0.230102i
\(375\) 2275.18i 0.313306i
\(376\) 1570.43 458.122i 0.215396 0.0628347i
\(377\) −221.292 + 501.074i −0.0302310 + 0.0684525i
\(378\) −1980.41 + 1408.50i −0.269475 + 0.191654i
\(379\) 2688.52 0.364380 0.182190 0.983263i \(-0.441681\pi\)
0.182190 + 0.983263i \(0.441681\pi\)
\(380\) −269.341 + 775.268i −0.0363603 + 0.104659i
\(381\) 7963.52i 1.07082i
\(382\) −8596.01 + 6113.60i −1.15134 + 0.818846i
\(383\) 12013.3i 1.60274i 0.598168 + 0.801371i \(0.295896\pi\)
−0.598168 + 0.801371i \(0.704104\pi\)
\(384\) 4026.60 + 1631.21i 0.535108 + 0.216777i
\(385\) 3049.46i 0.403676i
\(386\) −1258.68 1769.77i −0.165972 0.233365i
\(387\) 235.111i 0.0308820i
\(388\) −6833.24 2373.98i −0.894086 0.310620i
\(389\) 11974.3i 1.56073i 0.625325 + 0.780364i \(0.284966\pi\)
−0.625325 + 0.780364i \(0.715034\pi\)
\(390\) 252.547 + 1231.07i 0.0327903 + 0.159841i
\(391\) 3085.93 0.399136
\(392\) −4243.51 14546.6i −0.546759 1.87428i
\(393\) 4477.30 0.574681
\(394\) −6926.37 + 4926.13i −0.885648 + 0.629885i
\(395\) −2518.31 −0.320785
\(396\) −716.595 + 2062.64i −0.0909350 + 0.261746i
\(397\) 3566.63 0.450891 0.225446 0.974256i \(-0.427616\pi\)
0.225446 + 0.974256i \(0.427616\pi\)
\(398\) 8146.72 5794.06i 1.02603 0.729723i
\(399\) −3099.62 −0.388910
\(400\) 5775.47 + 4563.83i 0.721933 + 0.570479i
\(401\) 7221.88i 0.899361i −0.893190 0.449680i \(-0.851538\pi\)
0.893190 0.449680i \(-0.148462\pi\)
\(402\) 4248.26 + 5973.26i 0.527075 + 0.741092i
\(403\) −6220.42 + 14085.0i −0.768886 + 1.74100i
\(404\) 4315.21 + 1499.18i 0.531410 + 0.184621i
\(405\) −255.940 −0.0314019
\(406\) 857.177 609.636i 0.104781 0.0745215i
\(407\) −8227.00 −1.00196
\(408\) −2181.51 + 636.384i −0.264708 + 0.0772198i
\(409\) 4995.74i 0.603969i 0.953313 + 0.301984i \(0.0976491\pi\)
−0.953313 + 0.301984i \(0.902351\pi\)
\(410\) 793.071 + 1115.10i 0.0955292 + 0.134319i
\(411\) 4946.85 0.593699
\(412\) −915.459 + 2635.05i −0.109469 + 0.315096i
\(413\) 16310.4i 1.94330i
\(414\) 1912.28 1360.04i 0.227013 0.161455i
\(415\) 219.885 0.0260090
\(416\) 7578.51 + 3815.43i 0.893190 + 0.449680i
\(417\) 2199.70 0.258321
\(418\) −2269.58 + 1614.15i −0.265571 + 0.188878i
\(419\) 4651.46i 0.542336i −0.962532 0.271168i \(-0.912590\pi\)
0.962532 0.271168i \(-0.0874099\pi\)
\(420\) 791.965 2279.58i 0.0920094 0.264839i
\(421\) −4982.78 −0.576831 −0.288416 0.957505i \(-0.593129\pi\)
−0.288416 + 0.957505i \(0.593129\pi\)
\(422\) −3539.95 4977.33i −0.408346 0.574154i
\(423\) 650.671i 0.0747913i
\(424\) 14481.5 4224.51i 1.65869 0.483869i
\(425\) −3850.29 −0.439450
\(426\) −5604.63 + 3986.09i −0.637430 + 0.453349i
\(427\) −16793.5 −1.90327
\(428\) −1696.86 589.517i −0.191637 0.0665779i
\(429\) −1722.83 + 3901.03i −0.193891 + 0.439030i
\(430\) 135.314 + 190.257i 0.0151754 + 0.0213373i
\(431\) 1566.50i 0.175071i −0.996161 0.0875354i \(-0.972101\pi\)
0.996161 0.0875354i \(-0.0278991\pi\)
\(432\) −1071.36 + 1355.79i −0.119319 + 0.150997i
\(433\) 6832.62 0.758325 0.379163 0.925330i \(-0.376212\pi\)
0.379163 + 0.925330i \(0.376212\pi\)
\(434\) 24094.9 17136.6i 2.66496 1.89535i
\(435\) 110.778 0.0122101
\(436\) 2451.72 7057.00i 0.269303 0.775158i
\(437\) 2992.97 0.327628
\(438\) 1091.87 776.553i 0.119113 0.0847150i
\(439\) 11087.7 1.20543 0.602717 0.797955i \(-0.294085\pi\)
0.602717 + 0.797955i \(0.294085\pi\)
\(440\) −607.228 2081.56i −0.0657919 0.225533i
\(441\) 6027.06 0.650800
\(442\) −4347.54 + 891.870i −0.467854 + 0.0959772i
\(443\) 6400.66i 0.686467i −0.939250 0.343233i \(-0.888478\pi\)
0.939250 0.343233i \(-0.111522\pi\)
\(444\) −6149.98 2136.61i −0.657354 0.228376i
\(445\) 5172.70i 0.551032i
\(446\) 6029.25 + 8477.40i 0.640119 + 0.900037i
\(447\) 7505.18i 0.794145i
\(448\) −8760.47 13737.5i −0.923869 1.44875i
\(449\) 1185.40i 0.124593i 0.998058 + 0.0622965i \(0.0198424\pi\)
−0.998058 + 0.0622965i \(0.980158\pi\)
\(450\) −2385.93 + 1696.91i −0.249942 + 0.177762i
\(451\) 4643.39i 0.484809i
\(452\) −102.744 + 295.737i −0.0106917 + 0.0307750i
\(453\) −1196.59 −0.124108
\(454\) 6881.86 4894.47i 0.711414 0.505967i
\(455\) 1904.04 4311.34i 0.196182 0.444217i
\(456\) −2115.80 + 617.214i −0.217283 + 0.0633853i
\(457\) 10739.6i 1.09930i −0.835396 0.549648i \(-0.814762\pi\)
0.835396 0.549648i \(-0.185238\pi\)
\(458\) −256.610 + 182.504i −0.0261803 + 0.0186198i
\(459\) 903.855i 0.0919136i
\(460\) −764.717 + 2201.15i −0.0775111 + 0.223107i
\(461\) −18672.2 −1.88645 −0.943223 0.332159i \(-0.892223\pi\)
−0.943223 + 0.332159i \(0.892223\pi\)
\(462\) 6673.42 4746.23i 0.672025 0.477954i
\(463\) 6961.59i 0.698775i 0.936978 + 0.349387i \(0.113610\pi\)
−0.936978 + 0.349387i \(0.886390\pi\)
\(464\) 463.714 586.823i 0.0463952 0.0587124i
\(465\) 3113.92 0.310547
\(466\) −10077.5 + 7167.25i −1.00178 + 0.712482i
\(467\) 8319.54i 0.824374i 0.911099 + 0.412187i \(0.135235\pi\)
−0.911099 + 0.412187i \(0.864765\pi\)
\(468\) −2301.00 + 2468.73i −0.227273 + 0.243840i
\(469\) 27489.5i 2.70650i
\(470\) −374.482 526.539i −0.0367523 0.0516754i
\(471\) −5115.05 −0.500401
\(472\) −3247.83 11133.5i −0.316723 1.08572i
\(473\) 792.255i 0.0770146i
\(474\) −3919.54 5511.06i −0.379811 0.534032i
\(475\) −3734.31 −0.360720
\(476\) 8050.36 + 2796.83i 0.775184 + 0.269312i
\(477\) 6000.07i 0.575942i
\(478\) −5448.68 7661.10i −0.521374 0.733077i
\(479\) 10801.1i 1.03030i −0.857100 0.515151i \(-0.827736\pi\)
0.857100 0.515151i \(-0.172264\pi\)
\(480\) 86.6705 1713.74i 0.00824156 0.162961i
\(481\) −11631.4 5136.82i −1.10259 0.486941i
\(482\) 2424.69 + 3409.23i 0.229132 + 0.322170i
\(483\) −8800.48 −0.829059
\(484\) −1079.70 + 3107.79i −0.101399 + 0.291866i
\(485\) 2857.16i 0.267499i
\(486\) −398.349 560.098i −0.0371800 0.0522769i
\(487\) 11483.4i 1.06851i 0.845324 + 0.534255i \(0.179408\pi\)
−0.845324 + 0.534255i \(0.820592\pi\)
\(488\) −11463.3 + 3344.03i −1.06335 + 0.310199i
\(489\) 3911.59i 0.361734i
\(490\) −4877.24 + 3468.76i −0.449656 + 0.319801i
\(491\) 18363.8i 1.68787i 0.536443 + 0.843936i \(0.319768\pi\)
−0.536443 + 0.843936i \(0.680232\pi\)
\(492\) −1205.92 + 3471.10i −0.110502 + 0.318068i
\(493\) 391.213i 0.0357390i
\(494\) −4216.59 + 865.005i −0.384035 + 0.0787822i
\(495\) 862.445 0.0783112
\(496\) 13034.8 16495.3i 1.18000 1.49327i
\(497\) 25793.0 2.32792
\(498\) 342.232 + 481.195i 0.0307948 + 0.0432989i
\(499\) 76.2986 0.00684488 0.00342244 0.999994i \(-0.498911\pi\)
0.00342244 + 0.999994i \(0.498911\pi\)
\(500\) 1991.09 5731.12i 0.178088 0.512607i
\(501\) −7344.32 −0.654930
\(502\) 6496.98 + 9135.06i 0.577638 + 0.812187i
\(503\) 2934.86 0.260157 0.130079 0.991504i \(-0.458477\pi\)
0.130079 + 0.991504i \(0.458477\pi\)
\(504\) 6221.25 1814.85i 0.549834 0.160396i
\(505\) 1804.31i 0.158991i
\(506\) −6443.82 + 4582.93i −0.566132 + 0.402641i
\(507\) −4871.49 + 4439.58i −0.426727 + 0.388893i
\(508\) 6969.16 20059.9i 0.608674 1.75200i
\(509\) 13001.0 1.13214 0.566069 0.824358i \(-0.308463\pi\)
0.566069 + 0.824358i \(0.308463\pi\)
\(510\) 520.197 + 731.422i 0.0451661 + 0.0635057i
\(511\) −5024.89 −0.435006
\(512\) −8715.39 7632.80i −0.752284 0.658839i
\(513\) 876.629i 0.0754466i
\(514\) 10922.3 7768.11i 0.937283 0.666609i
\(515\) 1101.78 0.0942727
\(516\) −205.754 + 592.239i −0.0175539 + 0.0505268i
\(517\) 2192.57i 0.186517i
\(518\) 14151.4 + 19897.5i 1.20034 + 1.68774i
\(519\) −7539.45 −0.637659
\(520\) 441.196 3322.06i 0.0372071 0.280158i
\(521\) 11843.0 0.995878 0.497939 0.867212i \(-0.334090\pi\)
0.497939 + 0.867212i \(0.334090\pi\)
\(522\) 172.416 + 242.425i 0.0144568 + 0.0203270i
\(523\) 5094.18i 0.425914i 0.977062 + 0.212957i \(0.0683094\pi\)
−0.977062 + 0.212957i \(0.931691\pi\)
\(524\) −11278.2 3918.24i −0.940250 0.326659i
\(525\) 10980.3 0.912798
\(526\) −9746.48 + 6931.83i −0.807921 + 0.574605i
\(527\) 10996.8i 0.908974i
\(528\) 3610.17 4568.62i 0.297562 0.376560i
\(529\) −3669.31 −0.301579
\(530\) −3453.23 4855.41i −0.283017 0.397935i
\(531\) 4612.89 0.376991
\(532\) 7807.87 + 2712.58i 0.636304 + 0.221063i
\(533\) −2899.26 + 6564.83i −0.235612 + 0.533498i
\(534\) 11319.9 8050.86i 0.917340 0.652425i
\(535\) 709.502i 0.0573354i
\(536\) −5473.87 18764.3i −0.441111 1.51212i
\(537\) 6826.09 0.548543
\(538\) 9919.63 + 13947.5i 0.794918 + 1.11769i
\(539\) −20309.4 −1.62299
\(540\) 644.708 + 223.982i 0.0513775 + 0.0178494i
\(541\) −4124.52 −0.327776 −0.163888 0.986479i \(-0.552404\pi\)
−0.163888 + 0.986479i \(0.552404\pi\)
\(542\) 5511.27 + 7749.10i 0.436770 + 0.614119i
\(543\) −10877.1 −0.859635
\(544\) 6052.09 + 306.078i 0.476988 + 0.0241231i
\(545\) −2950.72 −0.231917
\(546\) 12398.4 2543.44i 0.971797 0.199358i
\(547\) 6416.94i 0.501588i 0.968040 + 0.250794i \(0.0806917\pi\)
−0.968040 + 0.250794i \(0.919308\pi\)
\(548\) −12461.0 4329.16i −0.971365 0.337468i
\(549\) 4749.52i 0.369225i
\(550\) 8039.90 5718.09i 0.623314 0.443309i
\(551\) 379.429i 0.0293361i
\(552\) −6007.20 + 1752.40i −0.463194 + 0.135122i
\(553\) 25362.4i 1.95031i
\(554\) 8632.75 + 12138.1i 0.662041 + 0.930860i
\(555\) 2571.47i 0.196672i
\(556\) −5541.00 1925.04i −0.422646 0.146834i
\(557\) −14142.7 −1.07585 −0.537924 0.842994i \(-0.680791\pi\)
−0.537924 + 0.842994i \(0.680791\pi\)
\(558\) 4846.55 + 6814.48i 0.367690 + 0.516989i
\(559\) −494.672 + 1120.09i −0.0374282 + 0.0847492i
\(560\) −3989.89 + 5049.14i −0.301078 + 0.381009i
\(561\) 3045.73i 0.229217i
\(562\) −9729.92 13680.7i −0.730306 1.02684i
\(563\) 3830.12i 0.286714i 0.989671 + 0.143357i \(0.0457898\pi\)
−0.989671 + 0.143357i \(0.954210\pi\)
\(564\) 569.425 1639.03i 0.0425126 0.122368i
\(565\) 123.656 0.00920749
\(566\) 284.109 + 399.470i 0.0210989 + 0.0296660i
\(567\) 2577.62i 0.190917i
\(568\) 17606.3 5136.06i 1.30061 0.379409i
\(569\) 22320.1 1.64448 0.822238 0.569144i \(-0.192725\pi\)
0.822238 + 0.569144i \(0.192725\pi\)
\(570\) 504.528 + 709.390i 0.0370743 + 0.0521282i
\(571\) 19368.3i 1.41951i 0.704449 + 0.709754i \(0.251194\pi\)
−0.704449 + 0.709754i \(0.748806\pi\)
\(572\) 7753.71 8318.91i 0.566782 0.608096i
\(573\) 11188.2i 0.815696i
\(574\) 11230.3 7987.17i 0.816629 0.580798i
\(575\) −10602.5 −0.768965
\(576\) 3885.23 2477.62i 0.281050 0.179226i
\(577\) 3965.92i 0.286141i −0.989712 0.143071i \(-0.954302\pi\)
0.989712 0.143071i \(-0.0456976\pi\)
\(578\) 8741.10 6216.79i 0.629034 0.447378i
\(579\) −2303.45 −0.165334
\(580\) −279.047 96.9456i −0.0199772 0.00694043i
\(581\) 2214.50i 0.158129i
\(582\) −6252.59 + 4446.93i −0.445324 + 0.316720i
\(583\) 20218.5i 1.43630i
\(584\) −3429.99 + 1000.59i −0.243037 + 0.0708982i
\(585\) 1219.33 + 538.497i 0.0861760 + 0.0380583i
\(586\) −19710.2 + 14018.2i −1.38946 + 0.988200i
\(587\) 1149.02 0.0807926 0.0403963 0.999184i \(-0.487138\pi\)
0.0403963 + 0.999184i \(0.487138\pi\)
\(588\) −15182.0 5274.49i −1.06479 0.369925i
\(589\) 10665.6i 0.746125i
\(590\) −3732.86 + 2654.86i −0.260474 + 0.185253i
\(591\) 9015.07i 0.627463i
\(592\) 13621.8 + 10764.1i 0.945700 + 0.747302i
\(593\) 6509.04i 0.450749i −0.974272 0.225374i \(-0.927639\pi\)
0.974272 0.225374i \(-0.0723606\pi\)
\(594\) 1342.32 + 1887.37i 0.0927208 + 0.130370i
\(595\) 3366.07i 0.231925i
\(596\) −6568.05 + 18905.4i −0.451406 + 1.29932i
\(597\) 10603.4i 0.726917i
\(598\) −11971.8 + 2455.94i −0.818667 + 0.167944i
\(599\) 11194.9 0.763622 0.381811 0.924240i \(-0.375301\pi\)
0.381811 + 0.924240i \(0.375301\pi\)
\(600\) 7495.14 2186.46i 0.509979 0.148770i
\(601\) −2151.98 −0.146058 −0.0730292 0.997330i \(-0.523267\pi\)
−0.0730292 + 0.997330i \(0.523267\pi\)
\(602\) 1916.12 1362.77i 0.129726 0.0922630i
\(603\) 7774.54 0.525048
\(604\) 3014.18 + 1047.18i 0.203055 + 0.0705448i
\(605\) 1299.45 0.0873225
\(606\) 3948.53 2808.25i 0.264683 0.188246i
\(607\) −7666.01 −0.512609 −0.256305 0.966596i \(-0.582505\pi\)
−0.256305 + 0.966596i \(0.582505\pi\)
\(608\) 5869.79 + 296.858i 0.391532 + 0.0198013i
\(609\) 1115.67i 0.0742349i
\(610\) 2733.50 + 3843.43i 0.181437 + 0.255108i
\(611\) 1369.01 3099.86i 0.0906451 0.205249i
\(612\) −790.995 + 2276.79i −0.0522453 + 0.150382i
\(613\) 3102.78 0.204437 0.102219 0.994762i \(-0.467406\pi\)
0.102219 + 0.994762i \(0.467406\pi\)
\(614\) −19701.1 + 14011.7i −1.29490 + 0.920952i
\(615\) 1451.36 0.0951618
\(616\) −20963.8 + 6115.50i −1.37119 + 0.400001i
\(617\) 3290.36i 0.214692i −0.994222 0.107346i \(-0.965765\pi\)
0.994222 0.107346i \(-0.0342353\pi\)
\(618\) 1714.83 + 2411.14i 0.111619 + 0.156942i
\(619\) 28037.4 1.82054 0.910272 0.414011i \(-0.135873\pi\)
0.910272 + 0.414011i \(0.135873\pi\)
\(620\) −7843.89 2725.10i −0.508094 0.176520i
\(621\) 2488.94i 0.160834i
\(622\) 13593.0 9667.53i 0.876254 0.623204i
\(623\) −52095.2 −3.35016
\(624\) 7956.65 4204.99i 0.510450 0.269767i
\(625\) 11980.7 0.766762
\(626\) −6303.05 + 4482.81i −0.402429 + 0.286213i
\(627\) 2953.99i 0.188151i
\(628\) 12884.7 + 4476.36i 0.818719 + 0.284437i
\(629\) −9081.17 −0.575660
\(630\) −1483.50 2085.88i −0.0938163 0.131910i
\(631\) 19986.5i 1.26094i 0.776216 + 0.630468i \(0.217137\pi\)
−0.776216 + 0.630468i \(0.782863\pi\)
\(632\) 5050.32 + 17312.4i 0.317865 + 1.08963i
\(633\) −6478.29 −0.406775
\(634\) 1317.48 937.011i 0.0825298 0.0586963i
\(635\) −8387.61 −0.524176
\(636\) 5250.87 15114.0i 0.327375 0.942313i
\(637\) −28713.5 12680.9i −1.78598 0.788752i
\(638\) −580.993 816.904i −0.0360529 0.0506920i
\(639\) 7294.75i 0.451605i
\(640\) −1718.08 + 4241.03i −0.106114 + 0.261940i
\(641\) −20297.4 −1.25070 −0.625350 0.780344i \(-0.715044\pi\)
−0.625350 + 0.780344i \(0.715044\pi\)
\(642\) −1552.67 + 1104.28i −0.0954500 + 0.0678854i
\(643\) 9815.56 0.602003 0.301002 0.953624i \(-0.402679\pi\)
0.301002 + 0.953624i \(0.402679\pi\)
\(644\) 22168.2 + 7701.61i 1.35644 + 0.471251i
\(645\) 247.631 0.0151170
\(646\) −2505.22 + 1781.74i −0.152580 + 0.108517i
\(647\) −4770.57 −0.289877 −0.144938 0.989441i \(-0.546298\pi\)
−0.144938 + 0.989441i \(0.546298\pi\)
\(648\) 513.272 + 1759.48i 0.0311161 + 0.106665i
\(649\) −15544.1 −0.940152
\(650\) 14937.1 3064.25i 0.901357 0.184907i
\(651\) 31360.9i 1.88806i
\(652\) 3423.16 9853.20i 0.205616 0.591842i
\(653\) 23058.8i 1.38187i −0.722918 0.690933i \(-0.757200\pi\)
0.722918 0.690933i \(-0.242800\pi\)
\(654\) −4592.54 6457.33i −0.274591 0.386088i
\(655\) 4715.73i 0.281311i
\(656\) 6075.36 7688.28i 0.361590 0.457587i
\(657\) 1421.13i 0.0843891i
\(658\) −5302.87 + 3771.48i −0.314176 + 0.223446i
\(659\) 8574.94i 0.506878i −0.967351 0.253439i \(-0.918438\pi\)
0.967351 0.253439i \(-0.0815616\pi\)
\(660\) −2172.48 754.756i −0.128127 0.0445134i
\(661\) −23616.3 −1.38967 −0.694833 0.719171i \(-0.744522\pi\)
−0.694833 + 0.719171i \(0.744522\pi\)
\(662\) −1397.98 + 994.263i −0.0820756 + 0.0583733i
\(663\) −1901.71 + 4306.06i −0.111397 + 0.252237i
\(664\) −440.965 1511.62i −0.0257722 0.0883467i
\(665\) 3264.68i 0.190374i
\(666\) −5627.39 + 4002.28i −0.327413 + 0.232860i
\(667\) 1077.28i 0.0625374i
\(668\) 18500.2 + 6427.27i 1.07155 + 0.372273i
\(669\) 11033.8 0.637657
\(670\) −6291.35 + 4474.50i −0.362770 + 0.258007i
\(671\) 16004.5i 0.920786i
\(672\) −17259.4 872.875i −0.990769 0.0501070i
\(673\) −14768.2 −0.845874 −0.422937 0.906159i \(-0.639001\pi\)
−0.422937 + 0.906159i \(0.639001\pi\)
\(674\) 5.64747 4.01656i 0.000322749 0.000229543i
\(675\) 3105.43i 0.177079i
\(676\) 16156.4 6919.99i 0.919231 0.393718i
\(677\) 23267.6i 1.32089i 0.750872 + 0.660447i \(0.229633\pi\)
−0.750872 + 0.660447i \(0.770367\pi\)
\(678\) 192.459 + 270.607i 0.0109017 + 0.0153283i
\(679\) 28775.0 1.62634
\(680\) −670.273 2297.68i −0.0377997 0.129576i
\(681\) 8957.14i 0.504021i
\(682\) −16331.5 22962.8i −0.916956 1.28928i
\(683\) −13908.6 −0.779206 −0.389603 0.920983i \(-0.627388\pi\)
−0.389603 + 0.920983i \(0.627388\pi\)
\(684\) −767.169 + 2208.21i −0.0428851 + 0.123440i
\(685\) 5210.28i 0.290620i
\(686\) 17041.4 + 23961.0i 0.948461 + 1.33358i
\(687\) 333.993i 0.0185482i
\(688\) 1036.58 1311.77i 0.0574406 0.0726903i
\(689\) 12624.1 28584.9i 0.698027 1.58055i
\(690\) 1432.46 + 2014.11i 0.0790333 + 0.111124i
\(691\) −13598.7 −0.748651 −0.374326 0.927297i \(-0.622126\pi\)
−0.374326 + 0.927297i \(0.622126\pi\)
\(692\) 18991.7 + 6598.04i 1.04329 + 0.362456i
\(693\) 8685.85i 0.476115i
\(694\) 1479.47 + 2080.20i 0.0809219 + 0.113780i
\(695\) 2316.84i 0.126450i
\(696\) −222.158 761.552i −0.0120990 0.0414749i
\(697\) 5125.49i 0.278539i
\(698\) 11417.2 8120.04i 0.619120 0.440327i
\(699\) 13116.4i 0.709741i
\(700\) −27659.1 9609.24i −1.49345 0.518850i
\(701\) 12703.4i 0.684453i −0.939617 0.342227i \(-0.888819\pi\)
0.939617 0.342227i \(-0.111181\pi\)
\(702\) 719.333 + 3506.49i 0.0386745 + 0.188524i
\(703\) −8807.63 −0.472526
\(704\) −13092.1 + 8348.87i −0.700891 + 0.446960i
\(705\) −685.321 −0.0366109
\(706\) −7400.80 10405.9i −0.394522 0.554717i
\(707\) −18171.5 −0.966633
\(708\) −11619.8 4036.90i −0.616804 0.214288i
\(709\) −3667.61 −0.194273 −0.0971367 0.995271i \(-0.530968\pi\)
−0.0971367 + 0.995271i \(0.530968\pi\)
\(710\) −4198.36 5903.09i −0.221918 0.312027i
\(711\) −7172.96 −0.378350
\(712\) −35560.1 + 10373.5i −1.87173 + 0.546016i
\(713\) 30281.9i 1.59055i
\(714\) 7366.29 5239.01i 0.386101 0.274601i
\(715\) −4108.78 1814.58i −0.214908 0.0949111i
\(716\) −17194.8 5973.75i −0.897484 0.311801i
\(717\) −9971.37 −0.519369
\(718\) −5416.13 7615.34i −0.281516 0.395824i
\(719\) 13537.6 0.702181 0.351090 0.936342i \(-0.385811\pi\)
0.351090 + 0.936342i \(0.385811\pi\)
\(720\) −1427.99 1128.41i −0.0739140 0.0584076i
\(721\) 11096.3i 0.573158i
\(722\) 13379.8 9515.87i 0.689672 0.490504i
\(723\) 4437.31 0.228251
\(724\) 27399.2 + 9518.95i 1.40647 + 0.488631i
\(725\) 1344.11i 0.0688540i
\(726\) 2022.48 + 2843.70i 0.103390 + 0.145372i
\(727\) 11439.0 0.583561 0.291780 0.956485i \(-0.405752\pi\)
0.291780 + 0.956485i \(0.405752\pi\)
\(728\) −33457.1 4443.36i −1.70330 0.226212i
\(729\) −729.000 −0.0370370
\(730\) 817.907 + 1150.02i 0.0414686 + 0.0583068i
\(731\) 874.510i 0.0442475i
\(732\) −4156.47 + 11963.9i −0.209874 + 0.604099i
\(733\) 29164.6 1.46960 0.734802 0.678281i \(-0.237275\pi\)
0.734802 + 0.678281i \(0.237275\pi\)
\(734\) −29433.2 + 20933.3i −1.48011 + 1.05267i
\(735\) 6348.01i 0.318571i
\(736\) 16665.6 + 842.843i 0.834649 + 0.0422114i
\(737\) −26197.9 −1.30938
\(738\) 2258.92 + 3176.15i 0.112672 + 0.158422i
\(739\) 31446.7 1.56534 0.782671 0.622436i \(-0.213857\pi\)
0.782671 + 0.622436i \(0.213857\pi\)
\(740\) 2250.39 6477.48i 0.111792 0.321780i
\(741\) −1844.42 + 4176.35i −0.0914394 + 0.207047i
\(742\) −48899.7 + 34778.1i −2.41936 + 1.72068i
\(743\) 574.677i 0.0283753i −0.999899 0.0141876i \(-0.995484\pi\)
0.999899 0.0141876i \(-0.00451622\pi\)
\(744\) −6244.76 21406.9i −0.307721 1.05486i
\(745\) 7904.86 0.388740
\(746\) 14675.5 + 20634.4i 0.720252 + 1.01271i
\(747\) 626.303 0.0306763
\(748\) 2665.43 7672.13i 0.130291 0.375028i
\(749\) 7145.53 0.348587
\(750\) −3729.69 5244.12i −0.181586 0.255318i
\(751\) −10250.8 −0.498080 −0.249040 0.968493i \(-0.580115\pi\)
−0.249040 + 0.968493i \(0.580115\pi\)
\(752\) −2868.74 + 3630.35i −0.139112 + 0.176044i
\(753\) 11889.8 0.575417
\(754\) −311.347 1517.70i −0.0150379 0.0733043i
\(755\) 1260.31i 0.0607516i
\(756\) 2255.77 6492.98i 0.108521 0.312364i
\(757\) 873.168i 0.0419232i −0.999780 0.0209616i \(-0.993327\pi\)
0.999780 0.0209616i \(-0.00667277\pi\)
\(758\) −6196.86 + 4407.29i −0.296939 + 0.211187i
\(759\) 8387.00i 0.401092i
\(760\) −650.083 2228.47i −0.0310276 0.106362i
\(761\) 25191.5i 1.19999i −0.800004 0.599995i \(-0.795169\pi\)
0.800004 0.599995i \(-0.204831\pi\)
\(762\) −13054.6 18355.4i −0.620627 0.872631i
\(763\) 29717.3i 1.41001i
\(764\) 9791.19 28182.8i 0.463656 1.33458i
\(765\) 951.988 0.0449924
\(766\) −19693.3 27689.8i −0.928916 1.30610i
\(767\) −21976.3 9705.49i −1.03457 0.456903i
\(768\) −11955.1 + 2840.97i −0.561708 + 0.133483i
\(769\) 21012.5i 0.985347i 0.870214 + 0.492673i \(0.163980\pi\)
−0.870214 + 0.492673i \(0.836020\pi\)
\(770\) 4998.98 + 7028.80i 0.233962 + 0.328962i
\(771\) 14216.1i 0.664045i
\(772\) 5802.35 + 2015.83i 0.270507 + 0.0939785i
\(773\) −12118.6 −0.563874 −0.281937