Properties

Label 312.4.m.a.181.16
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.16
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.32798 + 1.60640i) q^{2} +3.00000i q^{3} +(2.83895 - 7.47933i) q^{4} +6.73184 q^{5} +(-4.81920 - 6.98393i) q^{6} -30.2729i q^{7} +(5.40578 + 21.9722i) q^{8} -9.00000 q^{9} +(-15.6716 + 10.8140i) q^{10} +17.0865 q^{11} +(22.4380 + 8.51686i) q^{12} +(28.4288 - 37.2667i) q^{13} +(48.6304 + 70.4746i) q^{14} +20.1955i q^{15} +(-47.8807 - 42.4669i) q^{16} -138.010 q^{17} +(20.9518 - 14.4576i) q^{18} -72.5929 q^{19} +(19.1114 - 50.3496i) q^{20} +90.8187 q^{21} +(-39.7769 + 27.4477i) q^{22} -90.4018 q^{23} +(-65.9166 + 16.2173i) q^{24} -79.6824 q^{25} +(-6.31642 + 132.424i) q^{26} -27.0000i q^{27} +(-226.421 - 85.9433i) q^{28} +265.087i q^{29} +(-32.4421 - 47.0147i) q^{30} +37.6473i q^{31} +(179.684 + 21.9464i) q^{32} +51.2595i q^{33} +(321.284 - 221.699i) q^{34} -203.792i q^{35} +(-25.5506 + 67.3140i) q^{36} -274.672 q^{37} +(168.995 - 116.613i) q^{38} +(111.800 + 85.2864i) q^{39} +(36.3908 + 147.913i) q^{40} -70.0720i q^{41} +(-211.424 + 145.891i) q^{42} +273.572i q^{43} +(48.5077 - 127.795i) q^{44} -60.5865 q^{45} +(210.453 - 145.222i) q^{46} -419.905i q^{47} +(127.401 - 143.642i) q^{48} -573.448 q^{49} +(185.499 - 128.002i) q^{50} -414.030i q^{51} +(-198.021 - 318.427i) q^{52} -426.970i q^{53} +(43.3728 + 62.8554i) q^{54} +115.023 q^{55} +(665.162 - 163.649i) q^{56} -217.779i q^{57} +(-425.837 - 617.117i) q^{58} -162.748 q^{59} +(151.049 + 57.3341i) q^{60} -629.954i q^{61} +(-60.4766 - 87.6419i) q^{62} +272.456i q^{63} +(-453.555 + 237.554i) q^{64} +(191.378 - 250.873i) q^{65} +(-82.3432 - 119.331i) q^{66} +180.038 q^{67} +(-391.804 + 1032.22i) q^{68} -271.206i q^{69} +(327.372 + 474.423i) q^{70} +690.958i q^{71} +(-48.6520 - 197.750i) q^{72} +63.7166i q^{73} +(639.431 - 441.234i) q^{74} -239.047i q^{75} +(-206.088 + 542.946i) q^{76} -517.257i q^{77} +(-397.272 - 18.9493i) q^{78} +27.2982 q^{79} +(-322.325 - 285.880i) q^{80} +81.0000 q^{81} +(112.564 + 163.126i) q^{82} +1090.69 q^{83} +(257.830 - 679.262i) q^{84} -929.060 q^{85} +(-439.467 - 636.870i) q^{86} -795.262 q^{87} +(92.3658 + 375.428i) q^{88} -1265.75i q^{89} +(141.044 - 97.3263i) q^{90} +(-1128.17 - 860.622i) q^{91} +(-256.647 + 676.145i) q^{92} -112.942 q^{93} +(674.536 + 977.530i) q^{94} -488.684 q^{95} +(-65.8393 + 539.052i) q^{96} -580.675i q^{97} +(1334.97 - 921.187i) q^{98} -153.778 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.32798 + 1.60640i −0.823064 + 0.567948i
\(3\) 3.00000i 0.577350i
\(4\) 2.83895 7.47933i 0.354869 0.934916i
\(5\) 6.73184 0.602114 0.301057 0.953606i \(-0.402661\pi\)
0.301057 + 0.953606i \(0.402661\pi\)
\(6\) −4.81920 6.98393i −0.327905 0.475196i
\(7\) 30.2729i 1.63458i −0.576225 0.817291i \(-0.695475\pi\)
0.576225 0.817291i \(-0.304525\pi\)
\(8\) 5.40578 + 21.9722i 0.238904 + 0.971043i
\(9\) −9.00000 −0.333333
\(10\) −15.6716 + 10.8140i −0.495578 + 0.341970i
\(11\) 17.0865 0.468343 0.234171 0.972195i \(-0.424762\pi\)
0.234171 + 0.972195i \(0.424762\pi\)
\(12\) 22.4380 + 8.51686i 0.539774 + 0.204884i
\(13\) 28.4288 37.2667i 0.606518 0.795070i
\(14\) 48.6304 + 70.4746i 0.928358 + 1.34537i
\(15\) 20.1955i 0.347631i
\(16\) −47.8807 42.4669i −0.748136 0.663546i
\(17\) −138.010 −1.96896 −0.984480 0.175497i \(-0.943847\pi\)
−0.984480 + 0.175497i \(0.943847\pi\)
\(18\) 20.9518 14.4576i 0.274355 0.189316i
\(19\) −72.5929 −0.876524 −0.438262 0.898847i \(-0.644406\pi\)
−0.438262 + 0.898847i \(0.644406\pi\)
\(20\) 19.1114 50.3496i 0.213672 0.562926i
\(21\) 90.8187 0.943726
\(22\) −39.7769 + 27.4477i −0.385476 + 0.265995i
\(23\) −90.4018 −0.819569 −0.409784 0.912182i \(-0.634396\pi\)
−0.409784 + 0.912182i \(0.634396\pi\)
\(24\) −65.9166 + 16.2173i −0.560632 + 0.137931i
\(25\) −79.6824 −0.637459
\(26\) −6.31642 + 132.424i −0.0476443 + 0.998864i
\(27\) 27.0000i 0.192450i
\(28\) −226.421 85.9433i −1.52820 0.580063i
\(29\) 265.087i 1.69743i 0.528850 + 0.848715i \(0.322623\pi\)
−0.528850 + 0.848715i \(0.677377\pi\)
\(30\) −32.4421 47.0147i −0.197436 0.286122i
\(31\) 37.6473i 0.218118i 0.994035 + 0.109059i \(0.0347837\pi\)
−0.994035 + 0.109059i \(0.965216\pi\)
\(32\) 179.684 + 21.9464i 0.992623 + 0.121238i
\(33\) 51.2595i 0.270398i
\(34\) 321.284 221.699i 1.62058 1.11827i
\(35\) 203.792i 0.984205i
\(36\) −25.5506 + 67.3140i −0.118290 + 0.311639i
\(37\) −274.672 −1.22043 −0.610214 0.792237i \(-0.708917\pi\)
−0.610214 + 0.792237i \(0.708917\pi\)
\(38\) 168.995 116.613i 0.721435 0.497820i
\(39\) 111.800 + 85.2864i 0.459034 + 0.350173i
\(40\) 36.3908 + 147.913i 0.143847 + 0.584679i
\(41\) 70.0720i 0.266912i −0.991055 0.133456i \(-0.957392\pi\)
0.991055 0.133456i \(-0.0426075\pi\)
\(42\) −211.424 + 145.891i −0.776747 + 0.535988i
\(43\) 273.572i 0.970219i 0.874454 + 0.485109i \(0.161220\pi\)
−0.874454 + 0.485109i \(0.838780\pi\)
\(44\) 48.5077 127.795i 0.166200 0.437861i
\(45\) −60.5865 −0.200705
\(46\) 210.453 145.222i 0.674558 0.465473i
\(47\) 419.905i 1.30318i −0.758571 0.651590i \(-0.774102\pi\)
0.758571 0.651590i \(-0.225898\pi\)
\(48\) 127.401 143.642i 0.383098 0.431936i
\(49\) −573.448 −1.67186
\(50\) 185.499 128.002i 0.524669 0.362044i
\(51\) 414.030i 1.13678i
\(52\) −198.021 318.427i −0.528089 0.849189i
\(53\) 426.970i 1.10658i −0.832988 0.553291i \(-0.813372\pi\)
0.832988 0.553291i \(-0.186628\pi\)
\(54\) 43.3728 + 62.8554i 0.109302 + 0.158399i
\(55\) 115.023 0.281996
\(56\) 665.162 163.649i 1.58725 0.390508i
\(57\) 217.779i 0.506061i
\(58\) −425.837 617.117i −0.964053 1.39709i
\(59\) −162.748 −0.359119 −0.179559 0.983747i \(-0.557467\pi\)
−0.179559 + 0.983747i \(0.557467\pi\)
\(60\) 151.049 + 57.3341i 0.325005 + 0.123363i
\(61\) 629.954i 1.32225i −0.750275 0.661126i \(-0.770079\pi\)
0.750275 0.661126i \(-0.229921\pi\)
\(62\) −60.4766 87.6419i −0.123880 0.179525i
\(63\) 272.456i 0.544861i
\(64\) −453.555 + 237.554i −0.885850 + 0.463972i
\(65\) 191.378 250.873i 0.365193 0.478723i
\(66\) −82.3432 119.331i −0.153572 0.222555i
\(67\) 180.038 0.328286 0.164143 0.986437i \(-0.447514\pi\)
0.164143 + 0.986437i \(0.447514\pi\)
\(68\) −391.804 + 1032.22i −0.698723 + 1.84081i
\(69\) 271.206i 0.473178i
\(70\) 327.372 + 474.423i 0.558977 + 0.810064i
\(71\) 690.958i 1.15495i 0.816408 + 0.577476i \(0.195962\pi\)
−0.816408 + 0.577476i \(0.804038\pi\)
\(72\) −48.6520 197.750i −0.0796347 0.323681i
\(73\) 63.7166i 0.102157i 0.998695 + 0.0510785i \(0.0162659\pi\)
−0.998695 + 0.0510785i \(0.983734\pi\)
\(74\) 639.431 441.234i 1.00449 0.693140i
\(75\) 239.047i 0.368037i
\(76\) −206.088 + 542.946i −0.311051 + 0.819476i
\(77\) 517.257i 0.765545i
\(78\) −397.272 18.9493i −0.576695 0.0275074i
\(79\) 27.2982 0.0388770 0.0194385 0.999811i \(-0.493812\pi\)
0.0194385 + 0.999811i \(0.493812\pi\)
\(80\) −322.325 285.880i −0.450463 0.399530i
\(81\) 81.0000 0.111111
\(82\) 112.564 + 163.126i 0.151592 + 0.219686i
\(83\) 1090.69 1.44240 0.721200 0.692727i \(-0.243591\pi\)
0.721200 + 0.692727i \(0.243591\pi\)
\(84\) 257.830 679.262i 0.334899 0.882305i
\(85\) −929.060 −1.18554
\(86\) −439.467 636.870i −0.551034 0.798552i
\(87\) −795.262 −0.980012
\(88\) 92.3658 + 375.428i 0.111889 + 0.454781i
\(89\) 1265.75i 1.50752i −0.657147 0.753762i \(-0.728237\pi\)
0.657147 0.753762i \(-0.271763\pi\)
\(90\) 141.044 97.3263i 0.165193 0.113990i
\(91\) −1128.17 860.622i −1.29961 0.991403i
\(92\) −256.647 + 676.145i −0.290840 + 0.766228i
\(93\) −112.942 −0.125930
\(94\) 674.536 + 977.530i 0.740140 + 1.07260i
\(95\) −488.684 −0.527767
\(96\) −65.8393 + 539.052i −0.0699968 + 0.573091i
\(97\) 580.675i 0.607821i −0.952701 0.303911i \(-0.901708\pi\)
0.952701 0.303911i \(-0.0982924\pi\)
\(98\) 1334.97 921.187i 1.37605 0.949530i
\(99\) −153.778 −0.156114
\(100\) −226.214 + 595.970i −0.226214 + 0.595970i
\(101\) 737.605i 0.726678i 0.931657 + 0.363339i \(0.118363\pi\)
−0.931657 + 0.363339i \(0.881637\pi\)
\(102\) 665.098 + 963.852i 0.645632 + 0.935642i
\(103\) 2022.15 1.93445 0.967227 0.253913i \(-0.0817178\pi\)
0.967227 + 0.253913i \(0.0817178\pi\)
\(104\) 972.510 + 423.188i 0.916947 + 0.399010i
\(105\) 611.376 0.568231
\(106\) 685.885 + 993.976i 0.628481 + 0.910788i
\(107\) 633.950i 0.572769i −0.958115 0.286384i \(-0.907547\pi\)
0.958115 0.286384i \(-0.0924535\pi\)
\(108\) −201.942 76.6517i −0.179925 0.0682946i
\(109\) −1806.68 −1.58760 −0.793800 0.608180i \(-0.791900\pi\)
−0.793800 + 0.608180i \(0.791900\pi\)
\(110\) −267.772 + 184.774i −0.232101 + 0.160159i
\(111\) 824.017i 0.704614i
\(112\) −1285.60 + 1449.49i −1.08462 + 1.22289i
\(113\) −49.6150 −0.0413043 −0.0206522 0.999787i \(-0.506574\pi\)
−0.0206522 + 0.999787i \(0.506574\pi\)
\(114\) 349.840 + 506.984i 0.287417 + 0.416521i
\(115\) −608.571 −0.493474
\(116\) 1982.68 + 752.571i 1.58695 + 0.602366i
\(117\) −255.859 + 335.400i −0.202173 + 0.265023i
\(118\) 378.874 261.439i 0.295578 0.203961i
\(119\) 4177.96i 3.21843i
\(120\) −443.740 + 109.173i −0.337564 + 0.0830504i
\(121\) −1039.05 −0.780655
\(122\) 1011.96 + 1466.52i 0.750971 + 1.08830i
\(123\) 210.216 0.154102
\(124\) 281.576 + 106.879i 0.203922 + 0.0774032i
\(125\) −1377.89 −0.985937
\(126\) −437.673 634.271i −0.309453 0.448455i
\(127\) −1107.91 −0.774102 −0.387051 0.922058i \(-0.626506\pi\)
−0.387051 + 0.922058i \(0.626506\pi\)
\(128\) 674.259 1281.61i 0.465599 0.884996i
\(129\) −820.717 −0.560156
\(130\) −42.5211 + 891.457i −0.0286873 + 0.601430i
\(131\) 203.564i 0.135767i 0.997693 + 0.0678835i \(0.0216246\pi\)
−0.997693 + 0.0678835i \(0.978375\pi\)
\(132\) 383.386 + 145.523i 0.252799 + 0.0959558i
\(133\) 2197.60i 1.43275i
\(134\) −419.125 + 289.213i −0.270200 + 0.186449i
\(135\) 181.760i 0.115877i
\(136\) −746.051 3032.38i −0.470392 1.91195i
\(137\) 2321.77i 1.44790i 0.689853 + 0.723949i \(0.257675\pi\)
−0.689853 + 0.723949i \(0.742325\pi\)
\(138\) 435.665 + 631.360i 0.268741 + 0.389456i
\(139\) 1031.99i 0.629729i −0.949137 0.314864i \(-0.898041\pi\)
0.949137 0.314864i \(-0.101959\pi\)
\(140\) −1524.23 578.556i −0.920149 0.349264i
\(141\) 1259.72 0.752392
\(142\) −1109.95 1608.53i −0.655953 0.950600i
\(143\) 485.748 636.756i 0.284058 0.372365i
\(144\) 430.926 + 382.202i 0.249379 + 0.221182i
\(145\) 1784.53i 1.02205i
\(146\) −102.354 148.331i −0.0580200 0.0840818i
\(147\) 1720.34i 0.965248i
\(148\) −779.781 + 2054.36i −0.433092 + 1.14100i
\(149\) 597.622 0.328585 0.164292 0.986412i \(-0.447466\pi\)
0.164292 + 0.986412i \(0.447466\pi\)
\(150\) 384.005 + 556.496i 0.209026 + 0.302918i
\(151\) 154.542i 0.0832878i −0.999133 0.0416439i \(-0.986741\pi\)
0.999133 0.0416439i \(-0.0132595\pi\)
\(152\) −392.421 1595.03i −0.209405 0.851142i
\(153\) 1242.09 0.656320
\(154\) 830.922 + 1204.16i 0.434790 + 0.630092i
\(155\) 253.435i 0.131332i
\(156\) 955.280 594.064i 0.490279 0.304892i
\(157\) 379.317i 0.192820i 0.995342 + 0.0964101i \(0.0307360\pi\)
−0.995342 + 0.0964101i \(0.969264\pi\)
\(158\) −63.5495 + 43.8518i −0.0319983 + 0.0220801i
\(159\) 1280.91 0.638885
\(160\) 1209.60 + 147.740i 0.597672 + 0.0729991i
\(161\) 2736.72i 1.33965i
\(162\) −188.566 + 130.118i −0.0914516 + 0.0631054i
\(163\) 3124.72 1.50152 0.750758 0.660577i \(-0.229688\pi\)
0.750758 + 0.660577i \(0.229688\pi\)
\(164\) −524.091 198.931i −0.249540 0.0947189i
\(165\) 345.070i 0.162810i
\(166\) −2539.11 + 1752.09i −1.18719 + 0.819208i
\(167\) 1062.01i 0.492101i −0.969257 0.246050i \(-0.920867\pi\)
0.969257 0.246050i \(-0.0791329\pi\)
\(168\) 490.946 + 1995.49i 0.225460 + 0.916399i
\(169\) −580.606 2118.89i −0.264272 0.964448i
\(170\) 2162.83 1492.44i 0.975774 0.673325i
\(171\) 653.336 0.292175
\(172\) 2046.14 + 776.659i 0.907073 + 0.344301i
\(173\) 754.609i 0.331629i −0.986157 0.165815i \(-0.946975\pi\)
0.986157 0.165815i \(-0.0530253\pi\)
\(174\) 1851.35 1277.51i 0.806613 0.556596i
\(175\) 2412.21i 1.04198i
\(176\) −818.113 725.611i −0.350384 0.310767i
\(177\) 488.245i 0.207337i
\(178\) 2033.31 + 2946.65i 0.856196 + 1.24079i
\(179\) 3541.04i 1.47860i −0.673375 0.739301i \(-0.735156\pi\)
0.673375 0.739301i \(-0.264844\pi\)
\(180\) −172.002 + 453.147i −0.0712239 + 0.187642i
\(181\) 1913.16i 0.785659i 0.919611 + 0.392830i \(0.128504\pi\)
−0.919611 + 0.392830i \(0.871496\pi\)
\(182\) 4008.85 + 191.216i 1.63273 + 0.0778785i
\(183\) 1889.86 0.763402
\(184\) −488.693 1986.33i −0.195798 0.795837i
\(185\) −1849.05 −0.734837
\(186\) 262.926 181.430i 0.103649 0.0715219i
\(187\) −2358.10 −0.922148
\(188\) −3140.61 1192.09i −1.21836 0.462459i
\(189\) −817.368 −0.314575
\(190\) 1137.64 785.022i 0.434386 0.299745i
\(191\) −3968.38 −1.50336 −0.751681 0.659527i \(-0.770757\pi\)
−0.751681 + 0.659527i \(0.770757\pi\)
\(192\) −712.661 1360.67i −0.267875 0.511446i
\(193\) 4077.07i 1.52059i −0.649578 0.760295i \(-0.725054\pi\)
0.649578 0.760295i \(-0.274946\pi\)
\(194\) 932.798 + 1351.80i 0.345211 + 0.500276i
\(195\) 752.619 + 574.134i 0.276391 + 0.210844i
\(196\) −1627.99 + 4289.00i −0.593291 + 1.56305i
\(197\) −876.471 −0.316985 −0.158492 0.987360i \(-0.550663\pi\)
−0.158492 + 0.987360i \(0.550663\pi\)
\(198\) 357.993 247.030i 0.128492 0.0886648i
\(199\) 4791.02 1.70667 0.853333 0.521366i \(-0.174577\pi\)
0.853333 + 0.521366i \(0.174577\pi\)
\(200\) −430.745 1750.80i −0.152291 0.619000i
\(201\) 540.114i 0.189536i
\(202\) −1184.89 1717.13i −0.412716 0.598103i
\(203\) 8024.96 2.77459
\(204\) −3096.66 1175.41i −1.06279 0.403408i
\(205\) 471.713i 0.160712i
\(206\) −4707.53 + 3248.39i −1.59218 + 1.09867i
\(207\) 813.617 0.273190
\(208\) −2943.79 + 577.069i −0.981323 + 0.192368i
\(209\) −1240.36 −0.410513
\(210\) −1423.27 + 982.116i −0.467690 + 0.322726i
\(211\) 1450.27i 0.473179i 0.971610 + 0.236590i \(0.0760297\pi\)
−0.971610 + 0.236590i \(0.923970\pi\)
\(212\) −3193.45 1212.15i −1.03456 0.392692i
\(213\) −2072.87 −0.666812
\(214\) 1018.38 + 1475.82i 0.325303 + 0.471426i
\(215\) 1841.65i 0.584182i
\(216\) 593.249 145.956i 0.186877 0.0459771i
\(217\) 1139.69 0.356531
\(218\) 4205.90 2902.25i 1.30670 0.901674i
\(219\) −191.150 −0.0589804
\(220\) 326.546 860.298i 0.100072 0.263642i
\(221\) −3923.46 + 5143.17i −1.19421 + 1.56546i
\(222\) 1323.70 + 1918.29i 0.400185 + 0.579943i
\(223\) 249.795i 0.0750113i −0.999296 0.0375056i \(-0.988059\pi\)
0.999296 0.0375056i \(-0.0119412\pi\)
\(224\) 664.382 5439.55i 0.198174 1.62252i
\(225\) 717.141 0.212486
\(226\) 115.503 79.7016i 0.0339961 0.0234587i
\(227\) 485.137 0.141849 0.0709243 0.997482i \(-0.477405\pi\)
0.0709243 + 0.997482i \(0.477405\pi\)
\(228\) −1628.84 618.263i −0.473125 0.179586i
\(229\) 720.569 0.207933 0.103966 0.994581i \(-0.466847\pi\)
0.103966 + 0.994581i \(0.466847\pi\)
\(230\) 1416.74 977.608i 0.406161 0.280268i
\(231\) 1551.77 0.441987
\(232\) −5824.55 + 1433.00i −1.64828 + 0.405523i
\(233\) −4035.27 −1.13459 −0.567295 0.823514i \(-0.692010\pi\)
−0.567295 + 0.823514i \(0.692010\pi\)
\(234\) 56.8478 1191.82i 0.0158814 0.332955i
\(235\) 2826.74i 0.784663i
\(236\) −462.035 + 1217.25i −0.127440 + 0.335746i
\(237\) 81.8945i 0.0224457i
\(238\) −6711.47 9726.19i −1.82790 2.64897i
\(239\) 3900.35i 1.05562i −0.849363 0.527808i \(-0.823014\pi\)
0.849363 0.527808i \(-0.176986\pi\)
\(240\) 857.641 966.975i 0.230669 0.260075i
\(241\) 6662.45i 1.78077i −0.455207 0.890386i \(-0.650435\pi\)
0.455207 0.890386i \(-0.349565\pi\)
\(242\) 2418.89 1669.13i 0.642529 0.443372i
\(243\) 243.000i 0.0641500i
\(244\) −4711.63 1788.41i −1.23619 0.469226i
\(245\) −3860.36 −1.00665
\(246\) −489.378 + 337.691i −0.126836 + 0.0875219i
\(247\) −2063.73 + 2705.29i −0.531627 + 0.696898i
\(248\) −827.193 + 203.513i −0.211802 + 0.0521092i
\(249\) 3272.08i 0.832769i
\(250\) 3207.69 2213.44i 0.811489 0.559961i
\(251\) 3768.47i 0.947663i 0.880615 + 0.473832i \(0.157130\pi\)
−0.880615 + 0.473832i \(0.842870\pi\)
\(252\) 2037.79 + 773.490i 0.509399 + 0.193354i
\(253\) −1544.65 −0.383839
\(254\) 2579.18 1779.74i 0.637135 0.439650i
\(255\) 2787.18i 0.684471i
\(256\) 489.121 + 4066.69i 0.119414 + 0.992845i
\(257\) −201.599 −0.0489316 −0.0244658 0.999701i \(-0.507788\pi\)
−0.0244658 + 0.999701i \(0.507788\pi\)
\(258\) 1910.61 1318.40i 0.461044 0.318140i
\(259\) 8315.12i 1.99489i
\(260\) −1333.05 2143.60i −0.317970 0.511308i
\(261\) 2385.79i 0.565810i
\(262\) −327.005 473.892i −0.0771086 0.111745i
\(263\) −1000.31 −0.234532 −0.117266 0.993101i \(-0.537413\pi\)
−0.117266 + 0.993101i \(0.537413\pi\)
\(264\) −1126.28 + 277.097i −0.262568 + 0.0645991i
\(265\) 2874.29i 0.666288i
\(266\) −3530.22 5115.95i −0.813728 1.17925i
\(267\) 3797.26 0.870370
\(268\) 511.120 1346.56i 0.116499 0.306920i
\(269\) 3570.59i 0.809303i 0.914471 + 0.404652i \(0.132607\pi\)
−0.914471 + 0.404652i \(0.867393\pi\)
\(270\) 291.979 + 423.132i 0.0658121 + 0.0953741i
\(271\) 4154.87i 0.931330i −0.884961 0.465665i \(-0.845815\pi\)
0.884961 0.465665i \(-0.154185\pi\)
\(272\) 6608.01 + 5860.86i 1.47305 + 1.30649i
\(273\) 2581.87 3384.51i 0.572387 0.750329i
\(274\) −3729.69 5405.03i −0.822332 1.19171i
\(275\) −1361.49 −0.298549
\(276\) −2028.43 769.940i −0.442382 0.167916i
\(277\) 2425.77i 0.526176i −0.964772 0.263088i \(-0.915259\pi\)
0.964772 0.263088i \(-0.0847409\pi\)
\(278\) 1657.79 + 2402.45i 0.357654 + 0.518307i
\(279\) 338.825i 0.0727059i
\(280\) 4477.76 1101.66i 0.955705 0.235130i
\(281\) 922.711i 0.195887i 0.995192 + 0.0979436i \(0.0312265\pi\)
−0.995192 + 0.0979436i \(0.968774\pi\)
\(282\) −2932.59 + 2023.61i −0.619267 + 0.427320i
\(283\) 6115.89i 1.28464i −0.766438 0.642318i \(-0.777973\pi\)
0.766438 0.642318i \(-0.222027\pi\)
\(284\) 5167.90 + 1961.60i 1.07978 + 0.409857i
\(285\) 1466.05i 0.304707i
\(286\) −107.925 + 2262.66i −0.0223139 + 0.467811i
\(287\) −2121.28 −0.436290
\(288\) −1617.16 197.518i −0.330874 0.0404127i
\(289\) 14133.7 2.87680
\(290\) −2866.66 4154.33i −0.580470 0.841210i
\(291\) 1742.03 0.350926
\(292\) 476.558 + 180.889i 0.0955083 + 0.0362524i
\(293\) 4447.28 0.886734 0.443367 0.896340i \(-0.353784\pi\)
0.443367 + 0.896340i \(0.353784\pi\)
\(294\) 2763.56 + 4004.92i 0.548211 + 0.794461i
\(295\) −1095.59 −0.216230
\(296\) −1484.82 6035.15i −0.291565 1.18509i
\(297\) 461.335i 0.0901326i
\(298\) −1391.25 + 960.021i −0.270446 + 0.186619i
\(299\) −2570.02 + 3368.97i −0.497083 + 0.651615i
\(300\) −1787.91 678.643i −0.344084 0.130605i
\(301\) 8281.83 1.58590
\(302\) 248.256 + 359.770i 0.0473032 + 0.0685512i
\(303\) −2212.82 −0.419548
\(304\) 3475.80 + 3082.80i 0.655759 + 0.581614i
\(305\) 4240.75i 0.796146i
\(306\) −2891.55 + 1995.29i −0.540193 + 0.372756i
\(307\) 3534.70 0.657120 0.328560 0.944483i \(-0.393437\pi\)
0.328560 + 0.944483i \(0.393437\pi\)
\(308\) −3868.74 1468.47i −0.715720 0.271668i
\(309\) 6066.46i 1.11686i
\(310\) −407.119 589.991i −0.0745896 0.108094i
\(311\) 3103.31 0.565829 0.282914 0.959145i \(-0.408699\pi\)
0.282914 + 0.959145i \(0.408699\pi\)
\(312\) −1269.56 + 2917.53i −0.230368 + 0.529399i
\(313\) −4535.21 −0.818994 −0.409497 0.912311i \(-0.634296\pi\)
−0.409497 + 0.912311i \(0.634296\pi\)
\(314\) −609.335 883.040i −0.109512 0.158703i
\(315\) 1834.13i 0.328068i
\(316\) 77.4982 204.172i 0.0137963 0.0363467i
\(317\) 10326.9 1.82971 0.914856 0.403781i \(-0.132304\pi\)
0.914856 + 0.403781i \(0.132304\pi\)
\(318\) −2981.93 + 2057.65i −0.525844 + 0.362854i
\(319\) 4529.41i 0.794979i
\(320\) −3053.26 + 1599.17i −0.533382 + 0.279364i
\(321\) 1901.85 0.330688
\(322\) −4396.28 6371.03i −0.760854 1.10262i
\(323\) 10018.5 1.72584
\(324\) 229.955 605.826i 0.0394299 0.103880i
\(325\) −2265.27 + 2969.49i −0.386630 + 0.506824i
\(326\) −7274.28 + 5019.56i −1.23584 + 0.852784i
\(327\) 5420.03i 0.916601i
\(328\) 1539.63 378.794i 0.259183 0.0637664i
\(329\) −12711.7 −2.13016
\(330\) −554.321 803.316i −0.0924678 0.134003i
\(331\) −1221.58 −0.202851 −0.101426 0.994843i \(-0.532340\pi\)
−0.101426 + 0.994843i \(0.532340\pi\)
\(332\) 3096.43 8157.65i 0.511863 1.34852i
\(333\) 2472.05 0.406809
\(334\) 1706.01 + 2472.34i 0.279488 + 0.405031i
\(335\) 1211.99 0.197666
\(336\) −4348.46 3856.79i −0.706036 0.626206i
\(337\) −10166.5 −1.64333 −0.821667 0.569968i \(-0.806956\pi\)
−0.821667 + 0.569968i \(0.806956\pi\)
\(338\) 4755.43 + 4000.05i 0.765270 + 0.643710i
\(339\) 148.845i 0.0238471i
\(340\) −2637.56 + 6948.75i −0.420711 + 1.10838i
\(341\) 643.259i 0.102154i
\(342\) −1520.95 + 1049.52i −0.240478 + 0.165940i
\(343\) 6976.31i 1.09821i
\(344\) −6010.99 + 1478.87i −0.942124 + 0.231789i
\(345\) 1825.71i 0.284907i
\(346\) 1212.20 + 1756.71i 0.188348 + 0.272952i
\(347\) 6327.78i 0.978942i −0.872020 0.489471i \(-0.837190\pi\)
0.872020 0.489471i \(-0.162810\pi\)
\(348\) −2257.71 + 5948.03i −0.347776 + 0.916229i
\(349\) 1706.72 0.261773 0.130886 0.991397i \(-0.458218\pi\)
0.130886 + 0.991397i \(0.458218\pi\)
\(350\) −3874.98 5615.58i −0.591790 0.857615i
\(351\) −1006.20 767.578i −0.153011 0.116724i
\(352\) 3070.17 + 374.987i 0.464888 + 0.0567810i
\(353\) 2307.75i 0.347958i −0.984749 0.173979i \(-0.944338\pi\)
0.984749 0.173979i \(-0.0556624\pi\)
\(354\) 784.317 + 1136.62i 0.117757 + 0.170652i
\(355\) 4651.42i 0.695413i
\(356\) −9466.99 3593.42i −1.40941 0.534974i
\(357\) −12533.9 −1.85816
\(358\) 5688.33 + 8243.46i 0.839770 + 1.21698i
\(359\) 9345.50i 1.37392i 0.726696 + 0.686959i \(0.241055\pi\)
−0.726696 + 0.686959i \(0.758945\pi\)
\(360\) −327.518 1331.22i −0.0479491 0.194893i
\(361\) −1589.27 −0.231706
\(362\) −3073.31 4453.80i −0.446214 0.646648i
\(363\) 3117.16i 0.450711i
\(364\) −9639.69 + 5994.68i −1.38807 + 0.863205i
\(365\) 428.930i 0.0615102i
\(366\) −4399.55 + 3035.88i −0.628329 + 0.433573i
\(367\) 9711.75 1.38133 0.690666 0.723174i \(-0.257317\pi\)
0.690666 + 0.723174i \(0.257317\pi\)
\(368\) 4328.50 + 3839.09i 0.613149 + 0.543821i
\(369\) 630.648i 0.0889707i
\(370\) 4304.54 2970.31i 0.604818 0.417349i
\(371\) −12925.6 −1.80880
\(372\) −320.636 + 844.728i −0.0446888 + 0.117734i
\(373\) 3122.79i 0.433490i −0.976228 0.216745i \(-0.930456\pi\)
0.976228 0.216745i \(-0.0695440\pi\)
\(374\) 5489.61 3788.06i 0.758987 0.523733i
\(375\) 4133.67i 0.569231i
\(376\) 9226.25 2269.92i 1.26544 0.311335i
\(377\) 9878.92 + 7536.12i 1.34958 + 1.02952i
\(378\) 1902.81 1313.02i 0.258916 0.178663i
\(379\) 427.606 0.0579543 0.0289771 0.999580i \(-0.490775\pi\)
0.0289771 + 0.999580i \(0.490775\pi\)
\(380\) −1387.35 + 3655.02i −0.187288 + 0.493418i
\(381\) 3323.72i 0.446928i
\(382\) 9238.31 6374.82i 1.23736 0.853832i
\(383\) 2619.58i 0.349489i −0.984614 0.174745i \(-0.944090\pi\)
0.984614 0.174745i \(-0.0559100\pi\)
\(384\) 3844.83 + 2022.78i 0.510953 + 0.268814i
\(385\) 3482.09i 0.460945i
\(386\) 6549.41 + 9491.32i 0.863617 + 1.25154i
\(387\) 2462.15i 0.323406i
\(388\) −4343.06 1648.51i −0.568262 0.215697i
\(389\) 7796.02i 1.01613i 0.861319 + 0.508064i \(0.169639\pi\)
−0.861319 + 0.508064i \(0.830361\pi\)
\(390\) −2674.37 127.563i −0.347236 0.0165626i
\(391\) 12476.3 1.61370
\(392\) −3099.93 12599.9i −0.399414 1.62345i
\(393\) −610.692 −0.0783851
\(394\) 2040.40 1407.96i 0.260899 0.180031i
\(395\) 183.767 0.0234084
\(396\) −436.570 + 1150.16i −0.0554001 + 0.145954i
\(397\) 11701.4 1.47928 0.739640 0.673003i \(-0.234996\pi\)
0.739640 + 0.673003i \(0.234996\pi\)
\(398\) −11153.4 + 7696.30i −1.40470 + 0.969298i
\(399\) −6592.79 −0.827199
\(400\) 3815.25 + 3383.86i 0.476906 + 0.422983i
\(401\) 12230.8i 1.52313i 0.648087 + 0.761567i \(0.275569\pi\)
−0.648087 + 0.761567i \(0.724431\pi\)
\(402\) −867.640 1257.37i −0.107647 0.156000i
\(403\) 1402.99 + 1070.27i 0.173419 + 0.132292i
\(404\) 5516.79 + 2094.03i 0.679383 + 0.257876i
\(405\) 545.279 0.0669015
\(406\) −18681.9 + 12891.3i −2.28367 + 1.57582i
\(407\) −4693.18 −0.571579
\(408\) 9097.14 2238.15i 1.10386 0.271581i
\(409\) 2580.82i 0.312013i 0.987756 + 0.156006i \(0.0498620\pi\)
−0.987756 + 0.156006i \(0.950138\pi\)
\(410\) 757.760 + 1098.14i 0.0912759 + 0.132276i
\(411\) −6965.31 −0.835945
\(412\) 5740.80 15124.4i 0.686478 1.80855i
\(413\) 4926.86i 0.587009i
\(414\) −1894.08 + 1306.99i −0.224853 + 0.155158i
\(415\) 7342.37 0.868489
\(416\) 5926.07 6072.31i 0.698436 0.715672i
\(417\) 3095.97 0.363574
\(418\) 2887.52 1992.51i 0.337879 0.233151i
\(419\) 8491.73i 0.990091i 0.868867 + 0.495046i \(0.164849\pi\)
−0.868867 + 0.495046i \(0.835151\pi\)
\(420\) 1735.67 4572.69i 0.201648 0.531248i
\(421\) −4939.11 −0.571776 −0.285888 0.958263i \(-0.592288\pi\)
−0.285888 + 0.958263i \(0.592288\pi\)
\(422\) −2329.72 3376.20i −0.268741 0.389457i
\(423\) 3779.15i 0.434394i
\(424\) 9381.47 2308.11i 1.07454 0.264367i
\(425\) 10997.0 1.25513
\(426\) 4825.60 3329.86i 0.548829 0.378715i
\(427\) −19070.5 −2.16133
\(428\) −4741.52 1799.75i −0.535491 0.203258i
\(429\) 1910.27 + 1457.25i 0.214985 + 0.164001i
\(430\) −2958.42 4287.31i −0.331785 0.480819i
\(431\) 5600.99i 0.625963i −0.949759 0.312981i \(-0.898672\pi\)
0.949759 0.312981i \(-0.101328\pi\)
\(432\) −1146.61 + 1292.78i −0.127699 + 0.143979i
\(433\) −4894.40 −0.543210 −0.271605 0.962409i \(-0.587554\pi\)
−0.271605 + 0.962409i \(0.587554\pi\)
\(434\) −2653.17 + 1830.80i −0.293448 + 0.202491i
\(435\) −5353.58 −0.590079
\(436\) −5129.07 + 13512.7i −0.563390 + 1.48427i
\(437\) 6562.53 0.718372
\(438\) 444.993 307.063i 0.0485447 0.0334978i
\(439\) −9177.47 −0.997760 −0.498880 0.866671i \(-0.666255\pi\)
−0.498880 + 0.866671i \(0.666255\pi\)
\(440\) 621.792 + 2527.32i 0.0673699 + 0.273830i
\(441\) 5161.03 0.557286
\(442\) 871.728 18275.8i 0.0938097 1.96672i
\(443\) 2378.64i 0.255107i 0.991832 + 0.127554i \(0.0407125\pi\)
−0.991832 + 0.127554i \(0.959287\pi\)
\(444\) −6163.09 2339.34i −0.658755 0.250046i
\(445\) 8520.86i 0.907702i
\(446\) 401.271 + 581.517i 0.0426025 + 0.0617391i
\(447\) 1792.87i 0.189708i
\(448\) 7191.44 + 13730.4i 0.758401 + 1.44799i
\(449\) 6013.75i 0.632086i 0.948745 + 0.316043i \(0.102354\pi\)
−0.948745 + 0.316043i \(0.897646\pi\)
\(450\) −1669.49 + 1152.02i −0.174890 + 0.120681i
\(451\) 1197.28i 0.125006i
\(452\) −140.855 + 371.087i −0.0146576 + 0.0386161i
\(453\) 463.626 0.0480862
\(454\) −1129.39 + 779.324i −0.116751 + 0.0805627i
\(455\) −7594.65 5793.57i −0.782512 0.596938i
\(456\) 4785.08 1177.26i 0.491407 0.120900i
\(457\) 15592.7i 1.59606i −0.602620 0.798028i \(-0.705877\pi\)
0.602620 0.798028i \(-0.294123\pi\)
\(458\) −1677.47 + 1157.52i −0.171142 + 0.118095i
\(459\) 3726.27i 0.378927i
\(460\) −1727.70 + 4551.70i −0.175119 + 0.461357i
\(461\) −5143.01 −0.519596 −0.259798 0.965663i \(-0.583656\pi\)
−0.259798 + 0.965663i \(0.583656\pi\)
\(462\) −3612.49 + 2492.77i −0.363784 + 0.251026i
\(463\) 14322.0i 1.43758i 0.695229 + 0.718788i \(0.255303\pi\)
−0.695229 + 0.718788i \(0.744697\pi\)
\(464\) 11257.4 12692.6i 1.12632 1.26991i
\(465\) −760.306 −0.0758244
\(466\) 9394.03 6482.27i 0.933841 0.644389i
\(467\) 1729.83i 0.171407i 0.996321 + 0.0857036i \(0.0273138\pi\)
−0.996321 + 0.0857036i \(0.972686\pi\)
\(468\) 1782.19 + 2865.84i 0.176030 + 0.283063i
\(469\) 5450.27i 0.536610i
\(470\) 4540.87 + 6580.57i 0.445648 + 0.645828i
\(471\) −1137.95 −0.111325
\(472\) −879.781 3575.94i −0.0857949 0.348720i
\(473\) 4674.39i 0.454395i
\(474\) −131.555 190.649i −0.0127480 0.0184742i
\(475\) 5784.37 0.558748
\(476\) 31248.3 + 11861.0i 3.00896 + 1.14212i
\(477\) 3842.73i 0.368861i
\(478\) 6265.52 + 9079.92i 0.599536 + 0.868840i
\(479\) 7282.92i 0.694708i 0.937734 + 0.347354i \(0.112920\pi\)
−0.937734 + 0.347354i \(0.887080\pi\)
\(480\) −443.219 + 3628.81i −0.0421461 + 0.345066i
\(481\) −7808.60 + 10236.1i −0.740211 + 0.970326i
\(482\) 10702.6 + 15510.0i 1.01139 + 1.46569i
\(483\) −8210.17 −0.773449
\(484\) −2949.82 + 7771.41i −0.277030 + 0.729847i
\(485\) 3909.01i 0.365978i
\(486\) −390.355 565.698i −0.0364339 0.0527996i
\(487\) 10707.6i 0.996324i −0.867084 0.498162i \(-0.834008\pi\)
0.867084 0.498162i \(-0.165992\pi\)
\(488\) 13841.5 3405.39i 1.28396 0.315891i
\(489\) 9374.16i 0.866901i
\(490\) 8986.82 6201.28i 0.828537 0.571725i
\(491\) 11047.7i 1.01543i −0.861526 0.507713i \(-0.830491\pi\)
0.861526 0.507713i \(-0.169509\pi\)
\(492\) 596.793 1572.27i 0.0546860 0.144072i
\(493\) 36584.7i 3.34217i
\(494\) 458.527 9613.04i 0.0417614 0.875528i
\(495\) −1035.21 −0.0939986
\(496\) 1598.76 1802.58i 0.144731 0.163182i
\(497\) 20917.3 1.88786
\(498\) −5256.27 7617.32i −0.472970 0.685423i
\(499\) −3115.74 −0.279518 −0.139759 0.990186i \(-0.544633\pi\)
−0.139759 + 0.990186i \(0.544633\pi\)
\(500\) −3911.76 + 10305.7i −0.349879 + 0.921768i
\(501\) 3186.03 0.284115
\(502\) −6053.67 8772.90i −0.538224 0.779988i
\(503\) −18379.5 −1.62923 −0.814615 0.580002i \(-0.803052\pi\)
−0.814615 + 0.580002i \(0.803052\pi\)
\(504\) −5986.46 + 1472.84i −0.529083 + 0.130169i
\(505\) 4965.44i 0.437543i
\(506\) 3595.91 2481.33i 0.315924 0.218001i
\(507\) 6356.68 1741.82i 0.556824 0.152578i
\(508\) −3145.30 + 8286.41i −0.274705 + 0.723720i
\(509\) −17510.5 −1.52483 −0.762415 0.647089i \(-0.775986\pi\)
−0.762415 + 0.647089i \(0.775986\pi\)
\(510\) 4477.33 + 6488.49i 0.388744 + 0.563363i
\(511\) 1928.89 0.166984
\(512\) −7671.40 8681.44i −0.662170 0.749354i
\(513\) 1960.01i 0.168687i
\(514\) 469.318 323.849i 0.0402738 0.0277906i
\(515\) 13612.8 1.16476
\(516\) −2329.98 + 6138.41i −0.198782 + 0.523699i
\(517\) 7174.71i 0.610335i
\(518\) −13357.4 19357.4i −1.13299 1.64192i
\(519\) 2263.83 0.191466
\(520\) 6546.78 + 2848.83i 0.552106 + 0.240249i
\(521\) −2070.02 −0.174067 −0.0870337 0.996205i \(-0.527739\pi\)
−0.0870337 + 0.996205i \(0.527739\pi\)
\(522\) 3832.53 + 5554.06i 0.321351 + 0.465698i
\(523\) 14029.5i 1.17297i 0.809959 + 0.586487i \(0.199490\pi\)
−0.809959 + 0.586487i \(0.800510\pi\)
\(524\) 1522.52 + 577.908i 0.126931 + 0.0481795i
\(525\) −7236.64 −0.601587
\(526\) 2328.71 1606.91i 0.193035 0.133202i
\(527\) 5195.69i 0.429465i
\(528\) 2176.83 2454.34i 0.179421 0.202294i
\(529\) −3994.51 −0.328307
\(530\) 4617.27 + 6691.29i 0.378417 + 0.548398i
\(531\) 1464.73 0.119706
\(532\) 16436.5 + 6238.87i 1.33950 + 0.508439i
\(533\) −2611.35 1992.06i −0.212214 0.161887i
\(534\) −8839.94 + 6099.93i −0.716370 + 0.494325i
\(535\) 4267.65i 0.344872i
\(536\) 973.247 + 3955.83i 0.0784288 + 0.318780i
\(537\) 10623.1 0.853672
\(538\) −5735.80 8312.25i −0.459643 0.666109i
\(539\) −9798.20 −0.783003
\(540\) −1359.44 516.007i −0.108335 0.0411211i
\(541\) 24526.4 1.94911 0.974557 0.224139i \(-0.0719569\pi\)
0.974557 + 0.224139i \(0.0719569\pi\)
\(542\) 6674.39 + 9672.45i 0.528948 + 0.766545i
\(543\) −5739.49 −0.453600
\(544\) −24798.2 3028.83i −1.95444 0.238713i
\(545\) −12162.3 −0.955915
\(546\) −573.649 + 12026.6i −0.0449632 + 0.942655i
\(547\) 19964.2i 1.56052i −0.625453 0.780262i \(-0.715086\pi\)
0.625453 0.780262i \(-0.284914\pi\)
\(548\) 17365.3 + 6591.39i 1.35366 + 0.513815i
\(549\) 5669.59i 0.440750i
\(550\) 3169.52 2187.10i 0.245725 0.169561i
\(551\) 19243.5i 1.48784i
\(552\) 5958.98 1466.08i 0.459477 0.113044i
\(553\) 826.394i 0.0635477i
\(554\) 3896.77 + 5647.15i 0.298841 + 0.433076i
\(555\) 5547.15i 0.424258i
\(556\) −7718.60 2929.77i −0.588744 0.223471i
\(557\) −14803.3 −1.12610 −0.563049 0.826424i \(-0.690372\pi\)
−0.563049 + 0.826424i \(0.690372\pi\)
\(558\) 544.289 + 788.777i 0.0412932 + 0.0598416i
\(559\) 10195.1 + 7777.34i 0.771392 + 0.588455i
\(560\) −8654.43 + 9757.71i −0.653065 + 0.736319i
\(561\) 7074.31i 0.532402i
\(562\) −1482.24 2148.05i −0.111254 0.161228i
\(563\) 14929.0i 1.11755i 0.829318 + 0.558777i \(0.188729\pi\)
−0.829318 + 0.558777i \(0.811271\pi\)
\(564\) 3576.28 9421.83i 0.267001 0.703423i
\(565\) −334.000 −0.0248699
\(566\) 9824.58 + 14237.7i 0.729607 + 1.05734i
\(567\) 2452.10i 0.181620i
\(568\) −15181.9 + 3735.17i −1.12151 + 0.275923i
\(569\) 2044.26 0.150615 0.0753073 0.997160i \(-0.476006\pi\)
0.0753073 + 0.997160i \(0.476006\pi\)
\(570\) 2355.07 + 3412.93i 0.173058 + 0.250793i
\(571\) 4689.23i 0.343674i 0.985125 + 0.171837i \(0.0549703\pi\)
−0.985125 + 0.171837i \(0.945030\pi\)
\(572\) −3383.49 5440.79i −0.247327 0.397711i
\(573\) 11905.2i 0.867967i
\(574\) 4938.29 3407.63i 0.359095 0.247790i
\(575\) 7203.43 0.522441
\(576\) 4082.00 2137.98i 0.295283 0.154657i
\(577\) 14221.4i 1.02607i 0.858367 + 0.513037i \(0.171480\pi\)
−0.858367 + 0.513037i \(0.828520\pi\)
\(578\) −32903.0 + 22704.4i −2.36779 + 1.63388i
\(579\) 12231.2 0.877913
\(580\) 13347.0 + 5066.18i 0.955528 + 0.362693i
\(581\) 33018.4i 2.35772i
\(582\) −4055.40 + 2798.39i −0.288834 + 0.199308i
\(583\) 7295.42i 0.518260i
\(584\) −1399.99 + 344.438i −0.0991989 + 0.0244057i
\(585\) −1722.40 + 2257.86i −0.121731 + 0.159574i
\(586\) −10353.2 + 7144.12i −0.729839 + 0.503619i
\(587\) −19391.9 −1.36352 −0.681762 0.731574i \(-0.738786\pi\)
−0.681762 + 0.731574i \(0.738786\pi\)
\(588\) −12867.0 4883.97i −0.902426 0.342537i
\(589\) 2732.92i 0.191185i
\(590\) 2550.52 1759.96i 0.177972 0.122808i
\(591\) 2629.41i 0.183011i
\(592\) 13151.5 + 11664.5i 0.913046 + 0.809810i
\(593\) 15694.8i 1.08686i −0.839454 0.543431i \(-0.817125\pi\)
0.839454 0.543431i \(-0.182875\pi\)
\(594\) 741.089 + 1073.98i 0.0511907 + 0.0741849i
\(595\) 28125.3i 1.93786i
\(596\) 1696.62 4469.81i 0.116605 0.307199i
\(597\) 14373.1i 0.985344i
\(598\) 571.016 11971.4i 0.0390478 0.818638i
\(599\) 4716.77 0.321740 0.160870 0.986976i \(-0.448570\pi\)
0.160870 + 0.986976i \(0.448570\pi\)
\(600\) 5252.39 1292.24i 0.357380 0.0879255i
\(601\) −16446.9 −1.11628 −0.558140 0.829747i \(-0.688485\pi\)
−0.558140 + 0.829747i \(0.688485\pi\)
\(602\) −19279.9 + 13303.9i −1.30530 + 0.900711i
\(603\) −1620.34 −0.109429
\(604\) −1155.87 438.738i −0.0778671 0.0295563i
\(605\) −6994.73 −0.470043
\(606\) 5151.38 3554.67i 0.345315 0.238281i
\(607\) −12626.9 −0.844331 −0.422165 0.906519i \(-0.638730\pi\)
−0.422165 + 0.906519i \(0.638730\pi\)
\(608\) −13043.8 1593.15i −0.870058 0.106268i
\(609\) 24074.9i 1.60191i
\(610\) 6812.34 + 9872.36i 0.452170 + 0.655279i
\(611\) −15648.5 11937.4i −1.03612 0.790402i
\(612\) 3526.23 9289.99i 0.232908 0.613604i
\(613\) 20622.8 1.35880 0.679402 0.733767i \(-0.262239\pi\)
0.679402 + 0.733767i \(0.262239\pi\)
\(614\) −8228.70 + 5678.14i −0.540852 + 0.373210i
\(615\) 1415.14 0.0927869
\(616\) 11365.3 2796.18i 0.743377 0.182892i
\(617\) 5795.05i 0.378120i 0.981966 + 0.189060i \(0.0605440\pi\)
−0.981966 + 0.189060i \(0.939456\pi\)
\(618\) −9745.17 14122.6i −0.634317 0.919245i
\(619\) −3388.09 −0.219998 −0.109999 0.993932i \(-0.535085\pi\)
−0.109999 + 0.993932i \(0.535085\pi\)
\(620\) 1895.52 + 719.491i 0.122784 + 0.0466055i
\(621\) 2440.85i 0.157726i
\(622\) −7224.44 + 4985.16i −0.465713 + 0.321361i
\(623\) −38318.0 −2.46417
\(624\) −1731.21 8831.37i −0.111064 0.566567i
\(625\) 684.572 0.0438126
\(626\) 10557.9 7285.37i 0.674085 0.465147i
\(627\) 3721.07i 0.237010i
\(628\) 2837.03 + 1076.86i 0.180271 + 0.0684259i
\(629\) 37907.5 2.40297
\(630\) −2946.35 4269.81i −0.186326 0.270021i
\(631\) 5179.44i 0.326768i 0.986563 + 0.163384i \(0.0522409\pi\)
−0.986563 + 0.163384i \(0.947759\pi\)
\(632\) 147.568 + 599.801i 0.00928787 + 0.0377513i
\(633\) −4350.82 −0.273190
\(634\) −24040.9 + 16589.2i −1.50597 + 1.03918i
\(635\) −7458.26 −0.466098
\(636\) 3636.44 9580.35i 0.226721 0.597304i
\(637\) −16302.4 + 21370.5i −1.01401 + 1.32924i
\(638\) −7276.05 10544.4i −0.451507 0.654319i
\(639\) 6218.62i 0.384984i
\(640\) 4539.00 8627.60i 0.280344 0.532868i
\(641\) 10964.8 0.675639 0.337820 0.941211i \(-0.390311\pi\)
0.337820 + 0.941211i \(0.390311\pi\)
\(642\) −4427.46 + 3055.13i −0.272178 + 0.187814i
\(643\) −23689.7 −1.45293 −0.726463 0.687206i \(-0.758837\pi\)
−0.726463 + 0.687206i \(0.758837\pi\)
\(644\) 20468.9 + 7769.43i 1.25246 + 0.475401i
\(645\) −5524.94 −0.337278
\(646\) −23322.9 + 16093.8i −1.42048 + 0.980188i
\(647\) 16797.2 1.02066 0.510329 0.859979i \(-0.329524\pi\)
0.510329 + 0.859979i \(0.329524\pi\)
\(648\) 437.868 + 1779.75i 0.0265449 + 0.107894i
\(649\) −2780.80 −0.168191
\(650\) 503.307 10551.9i 0.0303713 0.636735i
\(651\) 3419.07i 0.205843i
\(652\) 8870.94 23370.8i 0.532842 1.40379i
\(653\) 7732.84i 0.463414i −0.972786 0.231707i \(-0.925569\pi\)
0.972786 0.231707i \(-0.0744311\pi\)
\(654\) 8706.74 + 12617.7i 0.520582 + 0.754421i
\(655\) 1370.36i 0.0817471i
\(656\) −2975.74 + 3355.09i −0.177108 + 0.199687i
\(657\) 573.450i 0.0340524i
\(658\) 29592.7 20420.2i 1.75326 1.20982i
\(659\) 1290.92i 0.0763081i −0.999272 0.0381540i \(-0.987852\pi\)
0.999272 0.0381540i \(-0.0121478\pi\)
\(660\) 2580.89 + 979.639i 0.152214 + 0.0577763i
\(661\) −5515.38 −0.324544 −0.162272 0.986746i \(-0.551882\pi\)
−0.162272 + 0.986746i \(0.551882\pi\)
\(662\) 2843.80 1962.34i 0.166960 0.115209i
\(663\) −15429.5 11770.4i −0.903819 0.689477i
\(664\) 5896.05 + 23964.9i 0.344595 + 1.40063i
\(665\) 14793.9i 0.862679i
\(666\) −5754.87 + 3971.10i −0.334830 + 0.231047i
\(667\) 23964.4i 1.39116i
\(668\) −7943.13 3015.00i −0.460073 0.174631i
\(669\) 749.385 0.0433078
\(670\) −2821.48 + 1946.94i −0.162691 + 0.112264i
\(671\) 10763.7i 0.619267i
\(672\) 16318.7 + 1993.15i 0.936765 + 0.114416i
\(673\) 33159.3 1.89925 0.949625 0.313388i \(-0.101464\pi\)
0.949625 + 0.313388i \(0.101464\pi\)
\(674\) 23667.3 16331.4i 1.35257 0.933329i
\(675\) 2151.42i 0.122679i
\(676\) −17496.2 1672.89i −0.995460 0.0951804i
\(677\) 5403.55i 0.306758i 0.988167 + 0.153379i \(0.0490156\pi\)
−0.988167 + 0.153379i \(0.950984\pi\)
\(678\) 239.105 + 346.508i 0.0135439 + 0.0196277i
\(679\) −17578.7 −0.993534
\(680\) −5022.30 20413.5i −0.283230 1.15121i
\(681\) 1455.41i 0.0818964i
\(682\) −1033.33 1497.49i −0.0580181 0.0840791i
\(683\) 9734.72 0.545372 0.272686 0.962103i \(-0.412088\pi\)
0.272686 + 0.962103i \(0.412088\pi\)
\(684\) 1854.79 4886.51i 0.103684 0.273159i
\(685\) 15629.8i 0.871800i
\(686\) −11206.8 16240.7i −0.623726 0.903896i
\(687\) 2161.71i 0.120050i
\(688\) 11617.8 13098.8i 0.643784 0.725855i
\(689\) −15911.7 12138.2i −0.879810 0.671162i
\(690\) 2932.82 + 4250.21i 0.161813 + 0.234497i
\(691\) −23352.7 −1.28564 −0.642820 0.766017i \(-0.722236\pi\)
−0.642820 + 0.766017i \(0.722236\pi\)
\(692\) −5643.97 2142.30i −0.310045 0.117685i
\(693\) 4655.32i 0.255182i
\(694\) 10164.9 + 14730.9i 0.555988 + 0.805732i
\(695\) 6947.20i 0.379169i
\(696\) −4299.01 17473.7i −0.234129 0.951634i
\(697\) 9670.62i 0.525539i
\(698\) −3973.21 + 2741.68i −0.215456 + 0.148674i
\(699\) 12105.8i 0.655056i
\(700\) 18041.7 + 6848.16i 0.974163 + 0.369766i
\(701\) 18936.4i 1.02028i 0.860090 + 0.510142i \(0.170407\pi\)
−0.860090 + 0.510142i \(0.829593\pi\)
\(702\) 3575.45 + 170.543i 0.192232 + 0.00916915i
\(703\) 19939.2 1.06973
\(704\) −7749.66 + 4058.96i −0.414881 + 0.217298i
\(705\) 8480.21 0.453026
\(706\) 3707.17 + 5372.38i 0.197622 + 0.286391i
\(707\) 22329.4 1.18781
\(708\) −3651.74 1386.10i −0.193843 0.0735776i
\(709\) 10430.2 0.552488 0.276244 0.961088i \(-0.410910\pi\)
0.276244 + 0.961088i \(0.410910\pi\)
\(710\) −7472.04 10828.4i −0.394959 0.572369i
\(711\) −245.684 −0.0129590
\(712\) 27811.4 6842.39i 1.46387 0.360154i
\(713\) 3403.38i 0.178762i
\(714\) 29178.6 20134.4i 1.52938 1.05534i
\(715\) 3269.98 4286.54i 0.171035 0.224206i
\(716\) −26484.6 10052.9i −1.38237 0.524710i
\(717\) 11701.0 0.609461
\(718\) −15012.6 21756.1i −0.780314 1.13082i
\(719\) 18026.5 0.935013 0.467507 0.883990i \(-0.345152\pi\)
0.467507 + 0.883990i \(0.345152\pi\)
\(720\) 2900.93 + 2572.92i 0.150154 + 0.133177i
\(721\) 61216.4i 3.16202i
\(722\) 3699.79 2553.01i 0.190709 0.131597i
\(723\) 19987.3 1.02813
\(724\) 14309.2 + 5431.38i 0.734525 + 0.278806i
\(725\) 21122.8i 1.08204i
\(726\) 5007.40 + 7256.67i 0.255981 + 0.370964i
\(727\) −25211.7 −1.28618 −0.643088 0.765792i \(-0.722347\pi\)
−0.643088 + 0.765792i \(0.722347\pi\)
\(728\) 12811.1 29440.7i 0.652214 1.49882i
\(729\) −729.000 −0.0370370
\(730\) −689.034 998.539i −0.0349346 0.0506268i
\(731\) 37755.7i 1.91032i
\(732\) 5365.23 14134.9i 0.270908 0.713717i
\(733\) 20215.1 1.01864 0.509319 0.860578i \(-0.329897\pi\)
0.509319 + 0.860578i \(0.329897\pi\)
\(734\) −22608.7 + 15601.0i −1.13693 + 0.784526i
\(735\) 11581.1i 0.581189i
\(736\) −16243.8 1984.00i −0.813523 0.0993629i
\(737\) 3076.22 0.153750
\(738\) −1013.07 1468.13i −0.0505308 0.0732286i
\(739\) −9885.57 −0.492079 −0.246040 0.969260i \(-0.579129\pi\)
−0.246040 + 0.969260i \(0.579129\pi\)
\(740\) −5249.36 + 13829.6i −0.260771 + 0.687011i
\(741\) −8115.88 6191.19i −0.402354 0.306935i
\(742\) 30090.5 20763.7i 1.48876 1.02730i
\(743\) 17167.0i 0.847638i −0.905747 0.423819i \(-0.860689\pi\)
0.905747 0.423819i \(-0.139311\pi\)
\(744\) −610.538 2481.58i −0.0300852 0.122284i
\(745\) 4023.10 0.197845
\(746\) 5016.45 + 7269.78i 0.246200 + 0.356790i
\(747\) −9816.24 −0.480800
\(748\) −6694.55 + 17637.0i −0.327242 + 0.862131i
\(749\) −19191.5 −0.936238
\(750\) 6640.32 + 9623.08i 0.323294 + 0.468513i
\(751\) 6314.05 0.306795 0.153397 0.988165i \(-0.450979\pi\)
0.153397 + 0.988165i \(0.450979\pi\)
\(752\) −17832.1 + 20105.4i −0.864720 + 0.974956i
\(753\) −11305.4 −0.547134
\(754\) −35103.9 1674.40i −1.69550 0.0808729i
\(755\) 1040.35i 0.0501487i
\(756\) −2320.47 + 6113.36i −0.111633 + 0.294102i
\(757\) 19510.4i 0.936749i −0.883530 0.468375i \(-0.844840\pi\)
0.883530 0.468375i \(-0.155160\pi\)
\(758\) −995.458 + 686.907i −0.0477001 + 0.0329150i
\(759\) 4633.95i 0.221610i
\(760\) −2641.72 10737.5i −0.126086 0.512485i
\(761\) 22481.2i 1.07089i 0.844571 + 0.535443i \(0.179855\pi\)
−0.844571 + 0.535443i \(0.820145\pi\)
\(762\) 5339.23 + 7737.55i 0.253832 + 0.367850i
\(763\) 54693.3i 2.59506i
\(764\) −11266.1 + 29680.9i −0.533497 + 1.40552i
\(765\) 8361.54 0.395179
\(766\) 4208.10 + 6098.33i 0.198492 + 0.287652i
\(767\) −4626.74 + 6065.08i −0.217812 + 0.285525i
\(768\) −12200.1 + 1467.36i −0.573219 + 0.0689439i
\(769\) 7820.77i 0.366741i 0.983044 + 0.183371i \(0.0587008\pi\)
−0.983044 + 0.183371i \(0.941299\pi\)
\(770\) 5593.64 + 8106.23i 0.261793 + 0.379387i
\(771\) 604.798i 0.0282507i
\(772\) −30493.7 11574.6i −1.42162 0.539610i
\(773\) −2592.26 −0.120617 −0.0603085 0.998180i \(-0.519208\pi\)
−0.0603085 + 0.998180i \(0.519208\pi\)
\(774\) 3955.20 + 5731.83i 0.183678 +