Properties

Label 312.4.m.a.181.14
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.14
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.47275 + 1.37314i) q^{2} +3.00000i q^{3} +(4.22898 - 6.79086i) q^{4} -19.0411 q^{5} +(-4.11942 - 7.41825i) q^{6} -2.83206i q^{7} +(-1.13242 + 22.5991i) q^{8} -9.00000 q^{9} +(47.0838 - 26.1460i) q^{10} -28.0565 q^{11} +(20.3726 + 12.6869i) q^{12} +(-43.7302 + 16.8721i) q^{13} +(3.88880 + 7.00296i) q^{14} -57.1232i q^{15} +(-28.2314 - 57.4368i) q^{16} -86.5449 q^{17} +(22.2547 - 12.3582i) q^{18} +82.3327 q^{19} +(-80.5243 + 129.305i) q^{20} +8.49617 q^{21} +(69.3767 - 38.5255i) q^{22} +81.3529 q^{23} +(-67.7972 - 3.39727i) q^{24} +237.562 q^{25} +(84.9661 - 101.768i) q^{26} -27.0000i q^{27} +(-19.2321 - 11.9767i) q^{28} -70.2306i q^{29} +(78.4380 + 141.251i) q^{30} -184.991i q^{31} +(148.678 + 103.261i) q^{32} -84.1695i q^{33} +(214.004 - 118.838i) q^{34} +53.9253i q^{35} +(-38.0608 + 61.1177i) q^{36} -62.8138 q^{37} +(-203.588 + 113.054i) q^{38} +(-50.6163 - 131.191i) q^{39} +(21.5626 - 430.310i) q^{40} +405.889i q^{41} +(-21.0089 + 11.6664i) q^{42} +257.891i q^{43} +(-118.650 + 190.528i) q^{44} +171.370 q^{45} +(-201.165 + 111.709i) q^{46} -200.387i q^{47} +(172.310 - 84.6943i) q^{48} +334.979 q^{49} +(-587.431 + 326.205i) q^{50} -259.635i q^{51} +(-70.3581 + 368.317i) q^{52} -121.850i q^{53} +(37.0747 + 66.7642i) q^{54} +534.226 q^{55} +(64.0018 + 3.20709i) q^{56} +246.998i q^{57} +(96.4364 + 173.663i) q^{58} +513.774 q^{59} +(-387.915 - 241.573i) q^{60} -54.0234i q^{61} +(254.018 + 457.436i) q^{62} +25.4885i q^{63} +(-509.435 - 51.1835i) q^{64} +(832.670 - 321.263i) q^{65} +(115.576 + 208.130i) q^{66} +438.409 q^{67} +(-365.997 + 587.714i) q^{68} +244.059i q^{69} +(-74.0469 - 133.344i) q^{70} +181.243i q^{71} +(10.1918 - 203.392i) q^{72} +922.359i q^{73} +(155.323 - 86.2521i) q^{74} +712.686i q^{75} +(348.183 - 559.109i) q^{76} +79.4576i q^{77} +(305.304 + 254.898i) q^{78} +158.535 q^{79} +(537.557 + 1093.66i) q^{80} +81.0000 q^{81} +(-557.341 - 1003.66i) q^{82} +324.617 q^{83} +(35.9301 - 57.6962i) q^{84} +1647.91 q^{85} +(-354.119 - 637.699i) q^{86} +210.692 q^{87} +(31.7719 - 634.051i) q^{88} -990.251i q^{89} +(-423.754 + 235.314i) q^{90} +(47.7828 + 123.846i) q^{91} +(344.040 - 552.456i) q^{92} +554.973 q^{93} +(275.159 + 495.507i) q^{94} -1567.70 q^{95} +(-309.783 + 446.034i) q^{96} -1573.51i q^{97} +(-828.320 + 459.973i) q^{98} +252.509 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.47275 + 1.37314i −0.874249 + 0.485478i
\(3\) 3.00000i 0.577350i
\(4\) 4.22898 6.79086i 0.528623 0.848857i
\(5\) −19.0411 −1.70308 −0.851542 0.524286i \(-0.824332\pi\)
−0.851542 + 0.524286i \(0.824332\pi\)
\(6\) −4.11942 7.41825i −0.280291 0.504748i
\(7\) 2.83206i 0.152917i −0.997073 0.0764583i \(-0.975639\pi\)
0.997073 0.0764583i \(-0.0243612\pi\)
\(8\) −1.13242 + 22.5991i −0.0500466 + 0.998747i
\(9\) −9.00000 −0.333333
\(10\) 47.0838 26.1460i 1.48892 0.826809i
\(11\) −28.0565 −0.769032 −0.384516 0.923118i \(-0.625632\pi\)
−0.384516 + 0.923118i \(0.625632\pi\)
\(12\) 20.3726 + 12.6869i 0.490088 + 0.305200i
\(13\) −43.7302 + 16.8721i −0.932968 + 0.359960i
\(14\) 3.88880 + 7.00296i 0.0742376 + 0.133687i
\(15\) 57.1232i 0.983276i
\(16\) −28.2314 57.4368i −0.441116 0.897450i
\(17\) −86.5449 −1.23472 −0.617360 0.786681i \(-0.711798\pi\)
−0.617360 + 0.786681i \(0.711798\pi\)
\(18\) 22.2547 12.3582i 0.291416 0.161826i
\(19\) 82.3327 0.994127 0.497063 0.867714i \(-0.334412\pi\)
0.497063 + 0.867714i \(0.334412\pi\)
\(20\) −80.5243 + 129.305i −0.900289 + 1.44567i
\(21\) 8.49617 0.0882864
\(22\) 69.3767 38.5255i 0.672326 0.373348i
\(23\) 81.3529 0.737532 0.368766 0.929522i \(-0.379780\pi\)
0.368766 + 0.929522i \(0.379780\pi\)
\(24\) −67.7972 3.39727i −0.576627 0.0288944i
\(25\) 237.562 1.90049
\(26\) 84.9661 101.768i 0.640893 0.767630i
\(27\) 27.0000i 0.192450i
\(28\) −19.2321 11.9767i −0.129804 0.0808352i
\(29\) 70.2306i 0.449707i −0.974393 0.224853i \(-0.927810\pi\)
0.974393 0.224853i \(-0.0721903\pi\)
\(30\) 78.4380 + 141.251i 0.477359 + 0.859628i
\(31\) 184.991i 1.07179i −0.844286 0.535893i \(-0.819975\pi\)
0.844286 0.535893i \(-0.180025\pi\)
\(32\) 148.678 + 103.261i 0.821338 + 0.570443i
\(33\) 84.1695i 0.444001i
\(34\) 214.004 118.838i 1.07945 0.599429i
\(35\) 53.9253i 0.260430i
\(36\) −38.0608 + 61.1177i −0.176208 + 0.282952i
\(37\) −62.8138 −0.279095 −0.139548 0.990215i \(-0.544565\pi\)
−0.139548 + 0.990215i \(0.544565\pi\)
\(38\) −203.588 + 113.054i −0.869114 + 0.482626i
\(39\) −50.6163 131.191i −0.207823 0.538649i
\(40\) 21.5626 430.310i 0.0852335 1.70095i
\(41\) 405.889i 1.54608i 0.634359 + 0.773039i \(0.281264\pi\)
−0.634359 + 0.773039i \(0.718736\pi\)
\(42\) −21.0089 + 11.6664i −0.0771843 + 0.0428611i
\(43\) 257.891i 0.914603i 0.889312 + 0.457302i \(0.151184\pi\)
−0.889312 + 0.457302i \(0.848816\pi\)
\(44\) −118.650 + 190.528i −0.406528 + 0.652798i
\(45\) 171.370 0.567695
\(46\) −201.165 + 111.709i −0.644787 + 0.358056i
\(47\) 200.387i 0.621903i −0.950426 0.310952i \(-0.899352\pi\)
0.950426 0.310952i \(-0.100648\pi\)
\(48\) 172.310 84.6943i 0.518143 0.254679i
\(49\) 334.979 0.976617
\(50\) −587.431 + 326.205i −1.66151 + 0.922648i
\(51\) 259.635i 0.712866i
\(52\) −70.3581 + 368.317i −0.187633 + 0.982239i
\(53\) 121.850i 0.315798i −0.987455 0.157899i \(-0.949528\pi\)
0.987455 0.157899i \(-0.0504721\pi\)
\(54\) 37.0747 + 66.7642i 0.0934302 + 0.168249i
\(55\) 534.226 1.30973
\(56\) 64.0018 + 3.20709i 0.152725 + 0.00765295i
\(57\) 246.998i 0.573959i
\(58\) 96.4364 + 173.663i 0.218323 + 0.393156i
\(59\) 513.774 1.13369 0.566845 0.823825i \(-0.308164\pi\)
0.566845 + 0.823825i \(0.308164\pi\)
\(60\) −387.915 241.573i −0.834661 0.519782i
\(61\) 54.0234i 0.113393i −0.998391 0.0566966i \(-0.981943\pi\)
0.998391 0.0566966i \(-0.0180568\pi\)
\(62\) 254.018 + 457.436i 0.520328 + 0.937008i
\(63\) 25.4885i 0.0509722i
\(64\) −509.435 51.1835i −0.994991 0.0999677i
\(65\) 832.670 321.263i 1.58892 0.613042i
\(66\) 115.576 + 208.130i 0.215553 + 0.388167i
\(67\) 438.409 0.799405 0.399702 0.916645i \(-0.369113\pi\)
0.399702 + 0.916645i \(0.369113\pi\)
\(68\) −365.997 + 587.714i −0.652701 + 1.04810i
\(69\) 244.059i 0.425815i
\(70\) −74.0469 133.344i −0.126433 0.227681i
\(71\) 181.243i 0.302952i 0.988461 + 0.151476i \(0.0484027\pi\)
−0.988461 + 0.151476i \(0.951597\pi\)
\(72\) 10.1918 203.392i 0.0166822 0.332916i
\(73\) 922.359i 1.47882i 0.673255 + 0.739410i \(0.264896\pi\)
−0.673255 + 0.739410i \(0.735104\pi\)
\(74\) 155.323 86.2521i 0.243999 0.135495i
\(75\) 712.686i 1.09725i
\(76\) 348.183 559.109i 0.525518 0.843871i
\(77\) 79.4576i 0.117598i
\(78\) 305.304 + 254.898i 0.443191 + 0.370020i
\(79\) 158.535 0.225780 0.112890 0.993607i \(-0.463989\pi\)
0.112890 + 0.993607i \(0.463989\pi\)
\(80\) 537.557 + 1093.66i 0.751258 + 1.52843i
\(81\) 81.0000 0.111111
\(82\) −557.341 1003.66i −0.750586 1.35166i
\(83\) 324.617 0.429293 0.214646 0.976692i \(-0.431140\pi\)
0.214646 + 0.976692i \(0.431140\pi\)
\(84\) 35.9301 57.6962i 0.0466702 0.0749426i
\(85\) 1647.91 2.10283
\(86\) −354.119 637.699i −0.444020 0.799591i
\(87\) 210.692 0.259638
\(88\) 31.7719 634.051i 0.0384874 0.768069i
\(89\) 990.251i 1.17940i −0.807623 0.589699i \(-0.799246\pi\)
0.807623 0.589699i \(-0.200754\pi\)
\(90\) −423.754 + 235.314i −0.496306 + 0.275603i
\(91\) 47.7828 + 123.846i 0.0550439 + 0.142666i
\(92\) 344.040 552.456i 0.389876 0.626060i
\(93\) 554.973 0.618796
\(94\) 275.159 + 495.507i 0.301920 + 0.543698i
\(95\) −1567.70 −1.69308
\(96\) −309.783 + 446.034i −0.329345 + 0.474199i
\(97\) 1573.51i 1.64707i −0.567264 0.823536i \(-0.691998\pi\)
0.567264 0.823536i \(-0.308002\pi\)
\(98\) −828.320 + 459.973i −0.853806 + 0.474126i
\(99\) 252.509 0.256344
\(100\) 1004.64 1613.25i 1.00464 1.61325i
\(101\) 541.440i 0.533419i −0.963777 0.266709i \(-0.914064\pi\)
0.963777 0.266709i \(-0.0859364\pi\)
\(102\) 356.515 + 642.012i 0.346080 + 0.623222i
\(103\) −1900.29 −1.81787 −0.908937 0.416933i \(-0.863105\pi\)
−0.908937 + 0.416933i \(0.863105\pi\)
\(104\) −331.773 1007.37i −0.312817 0.949813i
\(105\) −161.776 −0.150359
\(106\) 167.316 + 301.303i 0.153313 + 0.276086i
\(107\) 2061.70i 1.86273i 0.364092 + 0.931363i \(0.381380\pi\)
−0.364092 + 0.931363i \(0.618620\pi\)
\(108\) −183.353 114.182i −0.163363 0.101733i
\(109\) 2009.01 1.76540 0.882699 0.469939i \(-0.155724\pi\)
0.882699 + 0.469939i \(0.155724\pi\)
\(110\) −1321.01 + 733.566i −1.14503 + 0.635843i
\(111\) 188.442i 0.161136i
\(112\) −162.664 + 79.9530i −0.137235 + 0.0674540i
\(113\) 462.450 0.384988 0.192494 0.981298i \(-0.438342\pi\)
0.192494 + 0.981298i \(0.438342\pi\)
\(114\) −339.162 610.764i −0.278645 0.501783i
\(115\) −1549.04 −1.25608
\(116\) −476.926 297.004i −0.381737 0.237725i
\(117\) 393.572 151.849i 0.310989 0.119987i
\(118\) −1270.43 + 705.483i −0.991127 + 0.550381i
\(119\) 245.100i 0.188809i
\(120\) 1290.93 + 64.6877i 0.982044 + 0.0492096i
\(121\) −543.833 −0.408589
\(122\) 74.1816 + 133.586i 0.0550499 + 0.0991340i
\(123\) −1217.67 −0.892628
\(124\) −1256.25 782.323i −0.909793 0.566570i
\(125\) −2143.30 −1.53362
\(126\) −34.9992 63.0267i −0.0247459 0.0445624i
\(127\) −1541.00 −1.07671 −0.538353 0.842719i \(-0.680953\pi\)
−0.538353 + 0.842719i \(0.680953\pi\)
\(128\) 1329.99 572.961i 0.918402 0.395649i
\(129\) −773.672 −0.528046
\(130\) −1617.84 + 1937.77i −1.09150 + 1.30734i
\(131\) 898.222i 0.599069i −0.954086 0.299534i \(-0.903169\pi\)
0.954086 0.299534i \(-0.0968313\pi\)
\(132\) −571.583 355.951i −0.376893 0.234709i
\(133\) 233.171i 0.152018i
\(134\) −1084.07 + 601.996i −0.698879 + 0.388093i
\(135\) 514.109i 0.327759i
\(136\) 98.0056 1955.83i 0.0617934 1.23317i
\(137\) 2844.60i 1.77395i −0.461819 0.886974i \(-0.652803\pi\)
0.461819 0.886974i \(-0.347197\pi\)
\(138\) −335.126 603.496i −0.206724 0.372268i
\(139\) 1961.68i 1.19703i −0.801111 0.598516i \(-0.795757\pi\)
0.801111 0.598516i \(-0.204243\pi\)
\(140\) 366.199 + 228.049i 0.221068 + 0.137669i
\(141\) 601.161 0.359056
\(142\) −248.872 448.169i −0.147077 0.264856i
\(143\) 1226.92 473.373i 0.717482 0.276821i
\(144\) 254.083 + 516.931i 0.147039 + 0.299150i
\(145\) 1337.27i 0.765889i
\(146\) −1266.53 2280.76i −0.717935 1.29286i
\(147\) 1004.94i 0.563850i
\(148\) −265.639 + 426.560i −0.147536 + 0.236912i
\(149\) −310.758 −0.170861 −0.0854304 0.996344i \(-0.527227\pi\)
−0.0854304 + 0.996344i \(0.527227\pi\)
\(150\) −978.616 1762.29i −0.532691 0.959271i
\(151\) 2270.36i 1.22357i −0.791024 0.611785i \(-0.790452\pi\)
0.791024 0.611785i \(-0.209548\pi\)
\(152\) −93.2355 + 1860.64i −0.0497526 + 0.992881i
\(153\) 778.904 0.411573
\(154\) −109.106 196.479i −0.0570911 0.102810i
\(155\) 3522.42i 1.82534i
\(156\) −1104.95 211.074i −0.567096 0.108330i
\(157\) 1677.20i 0.852580i −0.904586 0.426290i \(-0.859820\pi\)
0.904586 0.426290i \(-0.140180\pi\)
\(158\) −392.019 + 217.691i −0.197388 + 0.109611i
\(159\) 365.549 0.182326
\(160\) −2830.99 1966.20i −1.39881 0.971512i
\(161\) 230.396i 0.112781i
\(162\) −200.293 + 111.224i −0.0971388 + 0.0539420i
\(163\) 332.627 0.159837 0.0799183 0.996801i \(-0.474534\pi\)
0.0799183 + 0.996801i \(0.474534\pi\)
\(164\) 2756.33 + 1716.50i 1.31240 + 0.817291i
\(165\) 1602.68i 0.756171i
\(166\) −802.696 + 445.744i −0.375309 + 0.208412i
\(167\) 960.805i 0.445205i 0.974909 + 0.222603i \(0.0714553\pi\)
−0.974909 + 0.222603i \(0.928545\pi\)
\(168\) −9.62126 + 192.005i −0.00441843 + 0.0881758i
\(169\) 1627.66 1475.64i 0.740857 0.671663i
\(170\) −4074.86 + 2262.80i −1.83840 + 1.02088i
\(171\) −740.994 −0.331376
\(172\) 1751.30 + 1090.61i 0.776367 + 0.483480i
\(173\) 3431.96i 1.50825i −0.656731 0.754125i \(-0.728061\pi\)
0.656731 0.754125i \(-0.271939\pi\)
\(174\) −520.988 + 289.309i −0.226989 + 0.126049i
\(175\) 672.788i 0.290617i
\(176\) 792.076 + 1611.48i 0.339233 + 0.690168i
\(177\) 1541.32i 0.654536i
\(178\) 1359.75 + 2448.64i 0.572571 + 1.03109i
\(179\) 3102.57i 1.29551i 0.761847 + 0.647757i \(0.224293\pi\)
−0.761847 + 0.647757i \(0.775707\pi\)
\(180\) 724.718 1163.75i 0.300096 0.481892i
\(181\) 851.643i 0.349736i −0.984592 0.174868i \(-0.944050\pi\)
0.984592 0.174868i \(-0.0559498\pi\)
\(182\) −288.213 240.629i −0.117383 0.0980032i
\(183\) 162.070 0.0654676
\(184\) −92.1260 + 1838.50i −0.0369110 + 0.736608i
\(185\) 1196.04 0.475323
\(186\) −1372.31 + 762.055i −0.540982 + 0.300412i
\(187\) 2428.15 0.949539
\(188\) −1360.80 847.433i −0.527907 0.328752i
\(189\) −76.4655 −0.0294288
\(190\) 3876.53 2152.67i 1.48017 0.821953i
\(191\) 1091.38 0.413454 0.206727 0.978399i \(-0.433719\pi\)
0.206727 + 0.978399i \(0.433719\pi\)
\(192\) 153.550 1528.31i 0.0577164 0.574458i
\(193\) 4462.90i 1.66449i 0.554407 + 0.832246i \(0.312945\pi\)
−0.554407 + 0.832246i \(0.687055\pi\)
\(194\) 2160.65 + 3890.90i 0.799617 + 1.43995i
\(195\) 963.789 + 2498.01i 0.353940 + 0.917365i
\(196\) 1416.62 2274.80i 0.516262 0.829008i
\(197\) 127.527 0.0461216 0.0230608 0.999734i \(-0.492659\pi\)
0.0230608 + 0.999734i \(0.492659\pi\)
\(198\) −624.390 + 346.729i −0.224109 + 0.124449i
\(199\) 251.192 0.0894800 0.0447400 0.998999i \(-0.485754\pi\)
0.0447400 + 0.998999i \(0.485754\pi\)
\(200\) −269.021 + 5368.68i −0.0951132 + 1.89811i
\(201\) 1315.23i 0.461537i
\(202\) 743.472 + 1338.85i 0.258963 + 0.466341i
\(203\) −198.897 −0.0687677
\(204\) −1763.14 1097.99i −0.605121 0.376837i
\(205\) 7728.55i 2.63310i
\(206\) 4698.94 2609.36i 1.58927 0.882538i
\(207\) −732.176 −0.245844
\(208\) 2203.65 + 2035.40i 0.734594 + 0.678507i
\(209\) −2309.97 −0.764515
\(210\) 400.031 222.141i 0.131451 0.0729961i
\(211\) 1553.27i 0.506785i −0.967363 0.253393i \(-0.918454\pi\)
0.967363 0.253393i \(-0.0815465\pi\)
\(212\) −827.462 515.299i −0.268068 0.166938i
\(213\) −543.729 −0.174910
\(214\) −2830.99 5098.06i −0.904312 1.62849i
\(215\) 4910.51i 1.55765i
\(216\) 610.175 + 30.5755i 0.192209 + 0.00963146i
\(217\) −523.905 −0.163894
\(218\) −4967.78 + 2758.65i −1.54340 + 0.857061i
\(219\) −2767.08 −0.853798
\(220\) 2259.23 3627.85i 0.692351 1.11177i
\(221\) 3784.63 1460.20i 1.15195 0.444450i
\(222\) 258.756 + 465.969i 0.0782279 + 0.140873i
\(223\) 3227.16i 0.969087i 0.874767 + 0.484543i \(0.161014\pi\)
−0.874767 + 0.484543i \(0.838986\pi\)
\(224\) 292.441 421.064i 0.0872301 0.125596i
\(225\) −2138.06 −0.633498
\(226\) −1143.52 + 635.009i −0.336576 + 0.186903i
\(227\) −3741.71 −1.09404 −0.547018 0.837121i \(-0.684237\pi\)
−0.547018 + 0.837121i \(0.684237\pi\)
\(228\) 1677.33 + 1044.55i 0.487209 + 0.303408i
\(229\) 840.871 0.242648 0.121324 0.992613i \(-0.461286\pi\)
0.121324 + 0.992613i \(0.461286\pi\)
\(230\) 3830.40 2127.05i 1.09813 0.609799i
\(231\) −238.373 −0.0678951
\(232\) 1587.15 + 79.5309i 0.449143 + 0.0225063i
\(233\) 1164.24 0.327348 0.163674 0.986514i \(-0.447665\pi\)
0.163674 + 0.986514i \(0.447665\pi\)
\(234\) −764.695 + 915.913i −0.213631 + 0.255877i
\(235\) 3815.58i 1.05915i
\(236\) 2172.74 3488.96i 0.599294 0.962340i
\(237\) 475.606i 0.130354i
\(238\) −336.556 606.071i −0.0916626 0.165066i
\(239\) 5869.21i 1.58848i −0.607601 0.794242i \(-0.707868\pi\)
0.607601 0.794242i \(-0.292132\pi\)
\(240\) −3280.97 + 1612.67i −0.882441 + 0.433739i
\(241\) 4566.64i 1.22059i 0.792173 + 0.610297i \(0.208950\pi\)
−0.792173 + 0.610297i \(0.791050\pi\)
\(242\) 1344.76 746.757i 0.357209 0.198361i
\(243\) 243.000i 0.0641500i
\(244\) −366.865 228.464i −0.0962547 0.0599422i
\(245\) −6378.36 −1.66326
\(246\) 3010.98 1672.02i 0.780379 0.433351i
\(247\) −3600.42 + 1389.13i −0.927488 + 0.357846i
\(248\) 4180.62 + 209.488i 1.07044 + 0.0536392i
\(249\) 973.850i 0.247852i
\(250\) 5299.84 2943.04i 1.34076 0.744538i
\(251\) 3708.86i 0.932674i −0.884607 0.466337i \(-0.845573\pi\)
0.884607 0.466337i \(-0.154427\pi\)
\(252\) 173.089 + 107.790i 0.0432681 + 0.0269451i
\(253\) −2282.48 −0.567186
\(254\) 3810.51 2116.01i 0.941309 0.522717i
\(255\) 4943.72i 1.21407i
\(256\) −2501.97 + 3243.05i −0.610833 + 0.791760i
\(257\) 2558.76 0.621056 0.310528 0.950564i \(-0.399494\pi\)
0.310528 + 0.950564i \(0.399494\pi\)
\(258\) 1913.10 1062.36i 0.461644 0.256355i
\(259\) 177.892i 0.0426783i
\(260\) 1339.69 7013.15i 0.319555 1.67284i
\(261\) 632.076i 0.149902i
\(262\) 1233.38 + 2221.08i 0.290835 + 0.523735i
\(263\) 4193.20 0.983132 0.491566 0.870840i \(-0.336425\pi\)
0.491566 + 0.870840i \(0.336425\pi\)
\(264\) 1902.15 + 95.3156i 0.443445 + 0.0222207i
\(265\) 2320.14i 0.537831i
\(266\) 320.176 + 576.573i 0.0738016 + 0.132902i
\(267\) 2970.75 0.680925
\(268\) 1854.02 2977.17i 0.422584 0.678580i
\(269\) 475.756i 0.107834i −0.998545 0.0539170i \(-0.982829\pi\)
0.998545 0.0539170i \(-0.0171706\pi\)
\(270\) −705.942 1271.26i −0.159120 0.286543i
\(271\) 3254.66i 0.729544i 0.931097 + 0.364772i \(0.118853\pi\)
−0.931097 + 0.364772i \(0.881147\pi\)
\(272\) 2443.29 + 4970.86i 0.544655 + 1.10810i
\(273\) −371.539 + 143.348i −0.0823684 + 0.0317796i
\(274\) 3906.04 + 7033.99i 0.861213 + 1.55087i
\(275\) −6665.16 −1.46154
\(276\) 1657.37 + 1032.12i 0.361456 + 0.225095i
\(277\) 8173.58i 1.77293i 0.462791 + 0.886467i \(0.346848\pi\)
−0.462791 + 0.886467i \(0.653152\pi\)
\(278\) 2693.66 + 4850.74i 0.581132 + 1.04650i
\(279\) 1664.92i 0.357262i
\(280\) −1218.66 61.0664i −0.260103 0.0130336i
\(281\) 1965.24i 0.417211i −0.978000 0.208605i \(-0.933108\pi\)
0.978000 0.208605i \(-0.0668924\pi\)
\(282\) −1486.52 + 825.477i −0.313904 + 0.174314i
\(283\) 3637.36i 0.764024i 0.924157 + 0.382012i \(0.124769\pi\)
−0.924157 + 0.382012i \(0.875231\pi\)
\(284\) 1230.80 + 766.474i 0.257163 + 0.160147i
\(285\) 4703.10i 0.977501i
\(286\) −2383.85 + 2855.26i −0.492868 + 0.590332i
\(287\) 1149.50 0.236421
\(288\) −1338.10 929.350i −0.273779 0.190148i
\(289\) 2577.02 0.524532
\(290\) −1836.25 3306.72i −0.371822 0.669577i
\(291\) 4720.54 0.950938
\(292\) 6263.60 + 3900.64i 1.25531 + 0.781738i
\(293\) −308.003 −0.0614121 −0.0307060 0.999528i \(-0.509776\pi\)
−0.0307060 + 0.999528i \(0.509776\pi\)
\(294\) −1379.92 2484.96i −0.273737 0.492945i
\(295\) −9782.80 −1.93077
\(296\) 71.1319 1419.53i 0.0139678 0.278746i
\(297\) 757.526i 0.148000i
\(298\) 768.426 426.714i 0.149375 0.0829492i
\(299\) −3557.58 + 1372.60i −0.688094 + 0.265482i
\(300\) 4839.75 + 3013.93i 0.931409 + 0.580032i
\(301\) 730.360 0.139858
\(302\) 3117.52 + 5614.03i 0.594016 + 1.06971i
\(303\) 1624.32 0.307969
\(304\) −2324.37 4728.92i −0.438525 0.892179i
\(305\) 1028.66i 0.193118i
\(306\) −1926.04 + 1069.54i −0.359817 + 0.199810i
\(307\) −6355.37 −1.18150 −0.590749 0.806855i \(-0.701168\pi\)
−0.590749 + 0.806855i \(0.701168\pi\)
\(308\) 539.585 + 336.025i 0.0998237 + 0.0621649i
\(309\) 5700.87i 1.04955i
\(310\) −4836.78 8710.07i −0.886163 1.59580i
\(311\) 5572.23 1.01599 0.507994 0.861361i \(-0.330387\pi\)
0.507994 + 0.861361i \(0.330387\pi\)
\(312\) 3022.10 995.319i 0.548375 0.180605i
\(313\) 6281.26 1.13431 0.567153 0.823613i \(-0.308045\pi\)
0.567153 + 0.823613i \(0.308045\pi\)
\(314\) 2303.03 + 4147.29i 0.413909 + 0.745367i
\(315\) 485.328i 0.0868099i
\(316\) 670.443 1076.59i 0.119353 0.191655i
\(317\) 9250.23 1.63894 0.819471 0.573121i \(-0.194267\pi\)
0.819471 + 0.573121i \(0.194267\pi\)
\(318\) −903.910 + 501.949i −0.159399 + 0.0885154i
\(319\) 1970.43i 0.345839i
\(320\) 9700.19 + 974.587i 1.69455 + 0.170253i
\(321\) −6185.09 −1.07545
\(322\) 316.365 + 569.711i 0.0547527 + 0.0985986i
\(323\) −7125.47 −1.22747
\(324\) 342.547 550.059i 0.0587358 0.0943174i
\(325\) −10388.6 + 4008.17i −1.77310 + 0.684103i
\(326\) −822.504 + 456.743i −0.139737 + 0.0775971i
\(327\) 6027.03i 1.01925i
\(328\) −9172.70 459.638i −1.54414 0.0773758i
\(329\) −567.507 −0.0950993
\(330\) −2200.70 3963.02i −0.367104 0.661082i
\(331\) 7929.83 1.31681 0.658403 0.752665i \(-0.271232\pi\)
0.658403 + 0.752665i \(0.271232\pi\)
\(332\) 1372.80 2204.43i 0.226934 0.364408i
\(333\) 565.325 0.0930318
\(334\) −1319.32 2375.83i −0.216137 0.389220i
\(335\) −8347.76 −1.36145
\(336\) −239.859 487.993i −0.0389446 0.0792327i
\(337\) 10771.2 1.74107 0.870537 0.492103i \(-0.163772\pi\)
0.870537 + 0.492103i \(0.163772\pi\)
\(338\) −1998.54 + 5883.90i −0.321616 + 0.946870i
\(339\) 1387.35i 0.222273i
\(340\) 6968.97 11190.7i 1.11160 1.78500i
\(341\) 5190.20i 0.824238i
\(342\) 1832.29 1017.49i 0.289705 0.160875i
\(343\) 1920.08i 0.302257i
\(344\) −5828.08 292.042i −0.913457 0.0457727i
\(345\) 4647.13i 0.725198i
\(346\) 4712.56 + 8486.39i 0.732222 + 1.31859i
\(347\) 11340.5i 1.75443i −0.480097 0.877215i \(-0.659399\pi\)
0.480097 0.877215i \(-0.340601\pi\)
\(348\) 891.012 1430.78i 0.137251 0.220396i
\(349\) −9723.74 −1.49140 −0.745702 0.666280i \(-0.767886\pi\)
−0.745702 + 0.666280i \(0.767886\pi\)
\(350\) 923.832 + 1663.64i 0.141088 + 0.254072i
\(351\) 455.547 + 1180.72i 0.0692744 + 0.179550i
\(352\) −4171.38 2897.15i −0.631635 0.438689i
\(353\) 462.908i 0.0697963i 0.999391 + 0.0348982i \(0.0111107\pi\)
−0.999391 + 0.0348982i \(0.988889\pi\)
\(354\) −2116.45 3811.30i −0.317763 0.572227i
\(355\) 3451.06i 0.515953i
\(356\) −6724.65 4187.75i −1.00114 0.623456i
\(357\) −735.300 −0.109009
\(358\) −4260.26 7671.87i −0.628943 1.13260i
\(359\) 9586.17i 1.40930i 0.709555 + 0.704650i \(0.248896\pi\)
−0.709555 + 0.704650i \(0.751104\pi\)
\(360\) −194.063 + 3872.79i −0.0284112 + 0.566983i
\(361\) −80.3333 −0.0117121
\(362\) 1169.42 + 2105.90i 0.169789 + 0.305756i
\(363\) 1631.50i 0.235899i
\(364\) 1043.10 + 199.258i 0.150201 + 0.0286922i
\(365\) 17562.7i 2.51856i
\(366\) −400.759 + 222.545i −0.0572350 + 0.0317831i
\(367\) 10913.6 1.55228 0.776138 0.630564i \(-0.217176\pi\)
0.776138 + 0.630564i \(0.217176\pi\)
\(368\) −2296.71 4672.65i −0.325338 0.661898i
\(369\) 3653.00i 0.515359i
\(370\) −2957.51 + 1642.33i −0.415551 + 0.230759i
\(371\) −345.085 −0.0482908
\(372\) 2346.97 3768.74i 0.327109 0.525269i
\(373\) 9886.46i 1.37239i 0.727418 + 0.686195i \(0.240720\pi\)
−0.727418 + 0.686195i \(0.759280\pi\)
\(374\) −6004.20 + 3334.18i −0.830133 + 0.460980i
\(375\) 6429.89i 0.885435i
\(376\) 4528.56 + 226.923i 0.621124 + 0.0311241i
\(377\) 1184.94 + 3071.20i 0.161877 + 0.419562i
\(378\) 189.080 104.998i 0.0257281 0.0142870i
\(379\) −5858.78 −0.794051 −0.397026 0.917807i \(-0.629958\pi\)
−0.397026 + 0.917807i \(0.629958\pi\)
\(380\) −6629.78 + 10646.0i −0.895001 + 1.43718i
\(381\) 4623.00i 0.621636i
\(382\) −2698.72 + 1498.62i −0.361461 + 0.200723i
\(383\) 5711.41i 0.761982i −0.924579 0.380991i \(-0.875583\pi\)
0.924579 0.380991i \(-0.124417\pi\)
\(384\) 1718.88 + 3989.96i 0.228428 + 0.530239i
\(385\) 1512.96i 0.200279i
\(386\) −6128.18 11035.6i −0.808073 1.45518i
\(387\) 2321.01i 0.304868i
\(388\) −10685.5 6654.36i −1.39813 0.870680i
\(389\) 2371.13i 0.309051i 0.987989 + 0.154526i \(0.0493849\pi\)
−0.987989 + 0.154526i \(0.950615\pi\)
\(390\) −5813.32 4853.53i −0.754792 0.630175i
\(391\) −7040.68 −0.910645
\(392\) −379.339 + 7570.22i −0.0488763 + 0.975393i
\(393\) 2694.66 0.345872
\(394\) −315.343 + 175.113i −0.0403217 + 0.0223910i
\(395\) −3018.68 −0.384523
\(396\) 1067.85 1714.75i 0.135509 0.217599i
\(397\) 15051.3 1.90278 0.951390 0.307989i \(-0.0996562\pi\)
0.951390 + 0.307989i \(0.0996562\pi\)
\(398\) −621.134 + 344.921i −0.0782278 + 0.0434405i
\(399\) 699.512 0.0877679
\(400\) −6706.71 13644.8i −0.838339 1.70560i
\(401\) 1988.23i 0.247600i −0.992307 0.123800i \(-0.960492\pi\)
0.992307 0.123800i \(-0.0395081\pi\)
\(402\) −1805.99 3252.22i −0.224066 0.403498i
\(403\) 3121.19 + 8089.70i 0.385800 + 0.999942i
\(404\) −3676.84 2289.74i −0.452796 0.281977i
\(405\) −1542.33 −0.189232
\(406\) 491.823 273.113i 0.0601201 0.0333852i
\(407\) 1762.34 0.214633
\(408\) 5867.50 + 294.017i 0.711972 + 0.0356765i
\(409\) 2230.74i 0.269689i 0.990867 + 0.134845i \(0.0430535\pi\)
−0.990867 + 0.134845i \(0.956946\pi\)
\(410\) 10612.4 + 19110.8i 1.27831 + 2.30198i
\(411\) 8533.81 1.02419
\(412\) −8036.29 + 12904.6i −0.960969 + 1.54312i
\(413\) 1455.04i 0.173360i
\(414\) 1810.49 1005.38i 0.214929 0.119352i
\(415\) −6181.05 −0.731122
\(416\) −8243.95 2007.12i −0.971618 0.236556i
\(417\) 5885.03 0.691106
\(418\) 5711.97 3171.90i 0.668377 0.371155i
\(419\) 13926.1i 1.62371i −0.583860 0.811855i \(-0.698458\pi\)
0.583860 0.811855i \(-0.301542\pi\)
\(420\) −684.148 + 1098.60i −0.0794833 + 0.127633i
\(421\) −2376.40 −0.275104 −0.137552 0.990495i \(-0.543923\pi\)
−0.137552 + 0.990495i \(0.543923\pi\)
\(422\) 2132.86 + 3840.86i 0.246033 + 0.443057i
\(423\) 1803.48i 0.207301i
\(424\) 2753.68 + 137.985i 0.315403 + 0.0158046i
\(425\) −20559.8 −2.34658
\(426\) 1344.51 746.616i 0.152914 0.0849147i
\(427\) −152.997 −0.0173397
\(428\) 14000.7 + 8718.87i 1.58119 + 0.984679i
\(429\) 1420.12 + 3680.75i 0.159823 + 0.414239i
\(430\) 6742.81 + 12142.5i 0.756203 + 1.36177i
\(431\) 150.457i 0.0168150i −0.999965 0.00840748i \(-0.997324\pi\)
0.999965 0.00840748i \(-0.00267622\pi\)
\(432\) −1550.79 + 762.249i −0.172714 + 0.0848929i
\(433\) −3807.80 −0.422612 −0.211306 0.977420i \(-0.567772\pi\)
−0.211306 + 0.977420i \(0.567772\pi\)
\(434\) 1295.49 719.394i 0.143284 0.0795668i
\(435\) −4011.80 −0.442186
\(436\) 8496.07 13642.9i 0.933229 1.49857i
\(437\) 6698.00 0.733201
\(438\) 6842.29 3799.58i 0.746432 0.414500i
\(439\) −13823.6 −1.50288 −0.751438 0.659804i \(-0.770639\pi\)
−0.751438 + 0.659804i \(0.770639\pi\)
\(440\) −604.970 + 12073.0i −0.0655473 + 1.30809i
\(441\) −3014.82 −0.325539
\(442\) −7353.39 + 8807.52i −0.791323 + 0.947808i
\(443\) 2783.09i 0.298485i −0.988801 0.149242i \(-0.952317\pi\)
0.988801 0.149242i \(-0.0476834\pi\)
\(444\) −1279.68 796.916i −0.136781 0.0851801i
\(445\) 18855.4i 2.00861i
\(446\) −4431.33 7979.95i −0.470470 0.847223i
\(447\) 932.273i 0.0986466i
\(448\) −144.954 + 1442.75i −0.0152867 + 0.152151i
\(449\) 5168.19i 0.543211i −0.962409 0.271606i \(-0.912445\pi\)
0.962409 0.271606i \(-0.0875547\pi\)
\(450\) 5286.88 2935.85i 0.553835 0.307549i
\(451\) 11387.8i 1.18898i
\(452\) 1955.69 3140.43i 0.203514 0.326800i
\(453\) 6811.07 0.706429
\(454\) 9252.31 5137.89i 0.956459 0.531130i
\(455\) −909.834 2358.17i −0.0937444 0.242973i
\(456\) −5581.92 279.707i −0.573240 0.0287247i
\(457\) 13075.6i 1.33841i −0.743079 0.669203i \(-0.766635\pi\)
0.743079 0.669203i \(-0.233365\pi\)
\(458\) −2079.26 + 1154.63i −0.212134 + 0.117800i
\(459\) 2336.71i 0.237622i
\(460\) −6550.88 + 10519.3i −0.663992 + 1.06623i
\(461\) −12458.9 −1.25872 −0.629359 0.777114i \(-0.716683\pi\)
−0.629359 + 0.777114i \(0.716683\pi\)
\(462\) 589.436 327.319i 0.0593572 0.0329616i
\(463\) 4329.02i 0.434529i −0.976113 0.217264i \(-0.930287\pi\)
0.976113 0.217264i \(-0.0697134\pi\)
\(464\) −4033.82 + 1982.71i −0.403589 + 0.198373i
\(465\) −10567.3 −1.05386
\(466\) −2878.88 + 1598.67i −0.286184 + 0.158920i
\(467\) 13755.4i 1.36300i 0.731817 + 0.681501i \(0.238673\pi\)
−0.731817 + 0.681501i \(0.761327\pi\)
\(468\) 633.223 3314.86i 0.0625443 0.327413i
\(469\) 1241.60i 0.122242i
\(470\) −5239.32 9434.97i −0.514195 0.925963i
\(471\) 5031.60 0.492237
\(472\) −581.810 + 11610.8i −0.0567372 + 1.13227i
\(473\) 7235.51i 0.703359i
\(474\) −653.074 1176.06i −0.0632841 0.113962i
\(475\) 19559.1 1.88933
\(476\) 1664.44 + 1036.52i 0.160272 + 0.0998087i
\(477\) 1096.65i 0.105266i
\(478\) 8059.24 + 14513.1i 0.771174 + 1.38873i
\(479\) 8537.70i 0.814400i −0.913339 0.407200i \(-0.866505\pi\)
0.913339 0.407200i \(-0.133495\pi\)
\(480\) 5898.60 8492.96i 0.560902 0.807601i
\(481\) 2746.86 1059.80i 0.260387 0.100463i
\(482\) −6270.63 11292.2i −0.592571 1.06710i
\(483\) 691.187 0.0651141
\(484\) −2299.86 + 3693.09i −0.215990 + 0.346834i
\(485\) 29961.3i 2.80510i
\(486\) −333.673 600.878i −0.0311434 0.0560831i
\(487\) 7301.19i 0.679360i 0.940541 + 0.339680i \(0.110319\pi\)
−0.940541 + 0.339680i \(0.889681\pi\)
\(488\) 1220.88 + 61.1774i 0.113251 + 0.00567494i
\(489\) 997.881i 0.0922817i
\(490\) 15772.1 8758.38i 1.45410 0.807476i
\(491\) 13177.7i 1.21120i 0.795769 + 0.605601i \(0.207067\pi\)
−0.795769 + 0.605601i \(0.792933\pi\)
\(492\) −5149.49 + 8269.00i −0.471863 + 0.757714i
\(493\) 6078.10i 0.555262i
\(494\) 6995.49 8378.84i 0.637129 0.763121i
\(495\) −4808.03 −0.436575
\(496\) −10625.3 + 5222.56i −0.961874 + 0.472782i
\(497\) 513.291 0.0463264
\(498\) −1337.23 2408.09i −0.120327 0.216685i
\(499\) −938.020 −0.0841514 −0.0420757 0.999114i \(-0.513397\pi\)
−0.0420757 + 0.999114i \(0.513397\pi\)
\(500\) −9063.96 + 14554.8i −0.810705 + 1.30182i
\(501\) −2882.41 −0.257039
\(502\) 5092.78 + 9171.08i 0.452792 + 0.815389i
\(503\) 16687.1 1.47921 0.739603 0.673044i \(-0.235013\pi\)
0.739603 + 0.673044i \(0.235013\pi\)
\(504\) −576.016 28.8638i −0.0509083 0.00255098i
\(505\) 10309.6i 0.908457i
\(506\) 5643.99 3134.16i 0.495862 0.275356i
\(507\) 4426.93 + 4882.99i 0.387785 + 0.427734i
\(508\) −6516.86 + 10464.7i −0.569171 + 0.913969i
\(509\) −663.007 −0.0577353 −0.0288677 0.999583i \(-0.509190\pi\)
−0.0288677 + 0.999583i \(0.509190\pi\)
\(510\) −6788.41 12224.6i −0.589404 1.06140i
\(511\) 2612.17 0.226136
\(512\) 1733.59 11454.8i 0.149638 0.988741i
\(513\) 2222.98i 0.191320i
\(514\) −6327.18 + 3513.54i −0.542957 + 0.301509i
\(515\) 36183.5 3.09599
\(516\) −3271.84 + 5253.89i −0.279137 + 0.448236i
\(517\) 5622.16i 0.478263i
\(518\) −244.271 439.883i −0.0207194 0.0373115i
\(519\) 10295.9 0.870789
\(520\) 6317.31 + 19181.4i 0.532754 + 1.61761i
\(521\) 6252.16 0.525743 0.262871 0.964831i \(-0.415331\pi\)
0.262871 + 0.964831i \(0.415331\pi\)
\(522\) −867.927 1562.96i −0.0727742 0.131052i
\(523\) 11560.3i 0.966534i −0.875473 0.483267i \(-0.839450\pi\)
0.875473 0.483267i \(-0.160550\pi\)
\(524\) −6099.69 3798.56i −0.508524 0.316681i
\(525\) 2018.36 0.167788
\(526\) −10368.7 + 5757.84i −0.859502 + 0.477289i
\(527\) 16010.0i 1.32335i
\(528\) −4834.43 + 2376.23i −0.398469 + 0.195856i
\(529\) −5548.71 −0.456046
\(530\) −3185.88 5737.13i −0.261105 0.470198i
\(531\) −4623.96 −0.377896
\(532\) −1583.43 986.074i −0.129042 0.0803604i
\(533\) −6848.20 17749.6i −0.556526 1.44244i
\(534\) −7345.93 + 4079.25i −0.595298 + 0.330574i
\(535\) 39256.9i 3.17238i
\(536\) −496.465 + 9907.62i −0.0400075 + 0.798403i
\(537\) −9307.70 −0.747965
\(538\) 653.278 + 1176.42i 0.0523510 + 0.0942737i
\(539\) −9398.35 −0.751050
\(540\) 3491.24 + 2174.16i 0.278220 + 0.173261i
\(541\) 5360.74 0.426019 0.213009 0.977050i \(-0.431674\pi\)
0.213009 + 0.977050i \(0.431674\pi\)
\(542\) −4469.10 8047.96i −0.354178 0.637803i
\(543\) 2554.93 0.201920
\(544\) −12867.3 8936.73i −1.01412 0.704336i
\(545\) −38253.7 −3.00662
\(546\) 721.886 864.639i 0.0565822 0.0677713i
\(547\) 11075.7i 0.865748i −0.901454 0.432874i \(-0.857499\pi\)
0.901454 0.432874i \(-0.142501\pi\)
\(548\) −19317.3 12029.8i −1.50583 0.937749i
\(549\) 486.211i 0.0377978i
\(550\) 16481.3 9152.18i 1.27775 0.709546i
\(551\) 5782.27i 0.447066i
\(552\) −5515.50 276.378i −0.425281 0.0213106i
\(553\) 448.981i 0.0345255i
\(554\) −11223.5 20211.2i −0.860720 1.54999i
\(555\) 3588.13i 0.274428i
\(556\) −13321.5 8295.90i −1.01611 0.632778i
\(557\) −6357.69 −0.483634 −0.241817 0.970322i \(-0.577743\pi\)
−0.241817 + 0.970322i \(0.577743\pi\)
\(558\) −2286.16 4116.93i −0.173443 0.312336i
\(559\) −4351.16 11277.6i −0.329221 0.853295i
\(560\) 3097.30 1522.39i 0.233723 0.114880i
\(561\) 7284.44i 0.548217i
\(562\) 2698.54 + 4859.54i 0.202547 + 0.364746i
\(563\) 2931.63i 0.219456i −0.993962 0.109728i \(-0.965002\pi\)
0.993962 0.109728i \(-0.0349979\pi\)
\(564\) 2542.30 4082.40i 0.189805 0.304787i
\(565\) −8805.55 −0.655667
\(566\) −4994.60 8994.29i −0.370917 0.667947i
\(567\) 229.396i 0.0169907i
\(568\) −4095.93 205.244i −0.302573 0.0151617i
\(569\) 21921.1 1.61508 0.807540 0.589813i \(-0.200799\pi\)
0.807540 + 0.589813i \(0.200799\pi\)
\(570\) 6458.01 + 11629.6i 0.474555 + 0.854579i
\(571\) 12573.2i 0.921491i −0.887532 0.460746i \(-0.847582\pi\)
0.887532 0.460746i \(-0.152418\pi\)
\(572\) 1974.00 10333.7i 0.144296 0.755374i
\(573\) 3274.15i 0.238708i
\(574\) −2842.42 + 1578.42i −0.206691 + 0.114777i
\(575\) 19326.3 1.40168
\(576\) 4584.92 + 460.651i 0.331664 + 0.0333226i
\(577\) 23277.6i 1.67948i 0.542992 + 0.839738i \(0.317291\pi\)
−0.542992 + 0.839738i \(0.682709\pi\)
\(578\) −6372.34 + 3538.61i −0.458571 + 0.254648i
\(579\) −13388.7 −0.960994
\(580\) 9081.18 + 5655.27i 0.650130 + 0.404866i
\(581\) 919.332i 0.0656460i
\(582\) −11672.7 + 6481.95i −0.831356 + 0.461659i
\(583\) 3418.67i 0.242859i
\(584\) −20844.4 1044.50i −1.47697 0.0740099i
\(585\) −7494.03 + 2891.37i −0.529641 + 0.204347i
\(586\) 761.614 422.931i 0.0536894 0.0298142i
\(587\) 5861.63 0.412156 0.206078 0.978536i \(-0.433930\pi\)
0.206078 + 0.978536i \(0.433930\pi\)
\(588\) 6824.39 + 4249.87i 0.478628 + 0.298064i
\(589\) 15230.8i 1.06549i
\(590\) 24190.4 13433.1i 1.68797 0.937345i
\(591\) 382.582i 0.0266283i
\(592\) 1773.33 + 3607.83i 0.123114 + 0.250474i
\(593\) 1078.02i 0.0746523i 0.999303 + 0.0373262i \(0.0118840\pi\)
−0.999303 + 0.0373262i \(0.988116\pi\)
\(594\) −1040.19 1873.17i −0.0718509 0.129389i
\(595\) 4666.96i 0.321558i
\(596\) −1314.19 + 2110.31i −0.0903209 + 0.145036i
\(597\) 753.575i 0.0516613i
\(598\) 6912.24 8279.13i 0.472680 0.566152i
\(599\) 13150.3 0.897005 0.448502 0.893782i \(-0.351958\pi\)
0.448502 + 0.893782i \(0.351958\pi\)
\(600\) −16106.0 807.062i −1.09588 0.0549136i
\(601\) 11153.1 0.756980 0.378490 0.925605i \(-0.376443\pi\)
0.378490 + 0.925605i \(0.376443\pi\)
\(602\) −1806.00 + 1002.89i −0.122271 + 0.0678980i
\(603\) −3945.68 −0.266468
\(604\) −15417.7 9601.30i −1.03864 0.646807i
\(605\) 10355.1 0.695862
\(606\) −4016.54 + 2230.42i −0.269242 + 0.149512i
\(607\) 11496.2 0.768728 0.384364 0.923182i \(-0.374421\pi\)
0.384364 + 0.923182i \(0.374421\pi\)
\(608\) 12241.1 + 8501.76i 0.816514 + 0.567092i
\(609\) 596.691i 0.0397030i
\(610\) −1412.50 2543.63i −0.0937546 0.168833i
\(611\) 3380.95 + 8762.96i 0.223860 + 0.580215i
\(612\) 3293.97 5289.43i 0.217567 0.349367i
\(613\) 6120.51 0.403271 0.201636 0.979461i \(-0.435374\pi\)
0.201636 + 0.979461i \(0.435374\pi\)
\(614\) 15715.2 8726.80i 1.03292 0.573591i
\(615\) 23185.7 1.52022
\(616\) −1795.67 89.9797i −0.117450 0.00588537i
\(617\) 22638.2i 1.47711i −0.674191 0.738557i \(-0.735508\pi\)
0.674191 0.738557i \(-0.264492\pi\)
\(618\) 7828.08 + 14096.8i 0.509533 + 0.917568i
\(619\) 27610.9 1.79285 0.896427 0.443192i \(-0.146154\pi\)
0.896427 + 0.443192i \(0.146154\pi\)
\(620\) 23920.3 + 14896.3i 1.54945 + 0.964917i
\(621\) 2196.53i 0.141938i
\(622\) −13778.7 + 7651.44i −0.888226 + 0.493239i
\(623\) −2804.44 −0.180349
\(624\) −6106.20 + 6610.94i −0.391736 + 0.424118i
\(625\) 11115.4 0.711386
\(626\) −15532.0 + 8625.04i −0.991666 + 0.550680i
\(627\) 6929.90i 0.441393i
\(628\) −11389.6 7092.84i −0.723719 0.450693i
\(629\) 5436.22 0.344605
\(630\) 666.423 + 1200.09i 0.0421443 + 0.0758935i
\(631\) 22149.7i 1.39741i 0.715410 + 0.698705i \(0.246240\pi\)
−0.715410 + 0.698705i \(0.753760\pi\)
\(632\) −179.529 + 3582.75i −0.0112995 + 0.225497i
\(633\) 4659.82 0.292593
\(634\) −22873.5 + 12701.8i −1.43284 + 0.795670i
\(635\) 29342.3 1.83372
\(636\) 1545.90 2482.39i 0.0963818 0.154769i
\(637\) −14648.7 + 5651.81i −0.911152 + 0.351543i
\(638\) −2705.67 4872.37i −0.167897 0.302349i
\(639\) 1631.19i 0.100984i
\(640\) −25324.4 + 10909.8i −1.56412 + 0.673824i
\(641\) 6671.81 0.411109 0.205554 0.978646i \(-0.434100\pi\)
0.205554 + 0.978646i \(0.434100\pi\)
\(642\) 15294.2 8492.98i 0.940207 0.522105i
\(643\) −17866.6 −1.09579 −0.547894 0.836548i \(-0.684570\pi\)
−0.547894 + 0.836548i \(0.684570\pi\)
\(644\) −1564.58 974.339i −0.0957349 0.0596186i
\(645\) 14731.5 0.899307
\(646\) 17619.5 9784.26i 1.07311 0.595908i
\(647\) 19665.9 1.19497 0.597486 0.801879i \(-0.296166\pi\)
0.597486 + 0.801879i \(0.296166\pi\)
\(648\) −91.7264 + 1830.52i −0.00556073 + 0.110972i
\(649\) −14414.7 −0.871844
\(650\) 20184.7 24176.2i 1.21801 1.45888i
\(651\) 1571.71i 0.0946242i
\(652\) 1406.67 2258.82i 0.0844932 0.135678i
\(653\) 18833.2i 1.12864i 0.825557 + 0.564319i \(0.190861\pi\)
−0.825557 + 0.564319i \(0.809139\pi\)
\(654\) −8275.95 14903.3i −0.494825 0.891081i
\(655\) 17103.1i 1.02026i
\(656\) 23312.9 11458.8i 1.38753 0.682000i
\(657\) 8301.23i 0.492940i
\(658\) 1403.30 779.266i 0.0831405 0.0461686i
\(659\) 20442.3i 1.20838i −0.796842 0.604188i \(-0.793498\pi\)
0.796842 0.604188i \(-0.206502\pi\)
\(660\) 10883.5 + 6777.69i 0.641881 + 0.399729i
\(661\) 25515.2 1.50140 0.750701 0.660642i \(-0.229716\pi\)
0.750701 + 0.660642i \(0.229716\pi\)
\(662\) −19608.5 + 10888.8i −1.15122 + 0.639280i
\(663\) 4380.59 + 11353.9i 0.256603 + 0.665080i
\(664\) −367.604 + 7336.03i −0.0214846 + 0.428755i
\(665\) 4439.82i 0.258900i
\(666\) −1397.91 + 776.269i −0.0813330 + 0.0451649i
\(667\) 5713.46i 0.331673i
\(668\) 6524.68 + 4063.22i 0.377916 + 0.235346i
\(669\) −9681.47 −0.559502
\(670\) 20641.9 11462.6i 1.19025 0.660956i
\(671\) 1515.71i 0.0872031i
\(672\) 1263.19 + 877.324i 0.0725130 + 0.0503623i
\(673\) 24925.2 1.42763 0.713815 0.700335i \(-0.246966\pi\)
0.713815 + 0.700335i \(0.246966\pi\)
\(674\) −26634.4 + 14790.3i −1.52213 + 0.845253i
\(675\) 6414.17i 0.365750i
\(676\) −3137.52 17293.7i −0.178512 0.983938i
\(677\) 14340.1i 0.814082i −0.913410 0.407041i \(-0.866561\pi\)
0.913410 0.407041i \(-0.133439\pi\)
\(678\) −1905.03 3430.57i −0.107909 0.194322i
\(679\) −4456.28 −0.251865
\(680\) −1866.13 + 37241.2i −0.105239 + 2.10020i
\(681\) 11225.1i 0.631642i
\(682\) −7126.87 12834.1i −0.400149 0.720589i
\(683\) −6419.43 −0.359638 −0.179819 0.983700i \(-0.557551\pi\)
−0.179819 + 0.983700i \(0.557551\pi\)
\(684\) −3133.65 + 5031.98i −0.175173 + 0.281290i
\(685\) 54164.3i 3.02118i
\(686\) 2636.53 + 4747.87i 0.146739 + 0.264248i
\(687\) 2522.61i 0.140093i
\(688\) 14812.4 7280.62i 0.820811 0.403446i
\(689\) 2055.86 + 5328.50i 0.113675 + 0.294630i
\(690\) 6381.16 + 11491.2i 0.352067 + 0.634004i
\(691\) −3199.00 −0.176115 −0.0880576 0.996115i \(-0.528066\pi\)
−0.0880576 + 0.996115i \(0.528066\pi\)
\(692\) −23306.0 14513.7i −1.28029 0.797295i
\(693\) 715.118i 0.0391993i
\(694\) 15572.0 + 28042.1i 0.851737 + 1.53381i
\(695\) 37352.4i 2.03864i
\(696\) −238.593 + 4761.44i −0.0129940 + 0.259313i
\(697\) 35127.6i 1.90897i
\(698\) 24044.4 13352.0i 1.30386 0.724043i
\(699\) 3492.73i 0.188995i
\(700\) −4568.81 2845.21i −0.246692 0.153627i
\(701\) 23873.0i 1.28626i 0.765756 + 0.643131i \(0.222365\pi\)
−0.765756 + 0.643131i \(0.777635\pi\)
\(702\) −2747.74 2294.09i −0.147730 0.123340i
\(703\) −5171.63 −0.277456
\(704\) 14293.0 + 1436.03i 0.765180 + 0.0768784i
\(705\) −11446.7 −0.611502
\(706\) −635.637 1144.66i −0.0338846 0.0610194i
\(707\) −1533.39 −0.0815686
\(708\) 10466.9 + 6518.22i 0.555607 + 0.346002i
\(709\) −5639.64 −0.298732 −0.149366 0.988782i \(-0.547723\pi\)
−0.149366 + 0.988782i \(0.547723\pi\)
\(710\) 4738.79 + 8533.61i 0.250484 + 0.451071i
\(711\) −1426.82 −0.0752601
\(712\) 22378.7 + 1121.38i 1.17792 + 0.0590248i
\(713\) 15049.5i 0.790477i
\(714\) 1818.21 1009.67i 0.0953010 0.0529214i
\(715\) −23361.8 + 9013.52i −1.22193 + 0.471449i
\(716\) 21069.1 + 13120.7i 1.09971 + 0.684837i
\(717\) 17607.6 0.917112
\(718\) −13163.1 23704.2i −0.684184 1.23208i
\(719\) −34340.6 −1.78121 −0.890603 0.454782i \(-0.849717\pi\)
−0.890603 + 0.454782i \(0.849717\pi\)
\(720\) −4838.01 9842.92i −0.250419 0.509478i
\(721\) 5381.72i 0.277983i
\(722\) 198.644 110.309i 0.0102393 0.00568597i
\(723\) −13699.9 −0.704710
\(724\) −5783.39 3601.58i −0.296876 0.184878i
\(725\) 16684.1i 0.854666i
\(726\) 2240.27 + 4034.28i 0.114524 + 0.206235i
\(727\) −34048.5 −1.73698 −0.868492 0.495703i \(-0.834911\pi\)
−0.868492 + 0.495703i \(0.834911\pi\)
\(728\) −2852.92 + 939.599i −0.145242 + 0.0478350i
\(729\) −729.000 −0.0370370
\(730\) 24116.0 + 43428.1i 1.22270 + 2.20184i
\(731\) 22319.1i 1.12928i
\(732\) 685.392 1100.60i 0.0346077 0.0555727i
\(733\) −19102.4 −0.962570 −0.481285 0.876564i \(-0.659830\pi\)
−0.481285 + 0.876564i \(0.659830\pi\)
\(734\) −26986.6 + 14985.9i −1.35707 + 0.753595i
\(735\) 19135.1i 0.960284i
\(736\) 12095.4 + 8400.59i 0.605763 + 0.420720i
\(737\) −12300.2 −0.614768
\(738\) 5016.07 + 9032.95i 0.250195 + 0.450552i
\(739\) −7293.49 −0.363052 −0.181526 0.983386i \(-0.558104\pi\)
−0.181526 + 0.983386i \(0.558104\pi\)
\(740\) 5058.04 8122.15i 0.251266 0.403481i
\(741\) −4167.38 10801.3i −0.206603 0.535485i
\(742\) 853.308 473.849i 0.0422182 0.0234441i
\(743\) 33749.8i 1.66643i 0.552948 + 0.833216i \(0.313503\pi\)
−0.552948 + 0.833216i \(0.686497\pi\)
\(744\) −628.465 + 12541.9i −0.0309686 + 0.618020i
\(745\) 5917.16 0.290990
\(746\) −13575.5 24446.7i −0.666265 1.19981i
\(747\) −2921.55 −0.143098
\(748\) 10268.6 16489.2i 0.501948 0.806023i
\(749\) 5838.84 0.284842
\(750\) 8829.13 + 15899.5i 0.429859 + 0.774091i
\(751\) 32882.7 1.59775 0.798874 0.601499i \(-0.205430\pi\)
0.798874 + 0.601499i \(0.205430\pi\)
\(752\) −11509.6 + 5657.21i −0.558127 + 0.274332i
\(753\) 11126.6 0.538479
\(754\) −7147.24 5967.22i −0.345208 0.288214i
\(755\) 43230.0i 2.08384i
\(756\) −323.371 + 519.266i −0.0155567 + 0.0249809i
\(757\) 27470.3i 1.31892i −0.751738 0.659462i \(-0.770784\pi\)
0.751738 0.659462i \(-0.229216\pi\)
\(758\) 14487.3 8044.92i 0.694199 0.385494i
\(759\) 6847.43i 0.327465i
\(760\) 1775.30 35428.6i 0.0847329 1.69096i
\(761\) 2117.52i 0.100867i 0.998727 + 0.0504336i \(0.0160603\pi\)
−0.998727 + 0.0504336i \(0.983940\pi\)
\(762\) 6348.02 + 11431.5i 0.301791 + 0.543465i
\(763\) 5689.63i 0.269959i
\(764\) 4615.43 7411.42i 0.218561 0.350963i
\(765\) −14831.2 −0.700944
\(766\) 7842.55 + 14122.9i 0.369925 + 0.666162i
\(767\) −22467.4 + 8668.45i −1.05770 + 0.408083i
\(768\) −9729.14 7505.91i −0.457123 0.352664i
\(769\) 29856.9i 1.40009i −0.714101 0.700043i \(-0.753164\pi\)
0.714101 0.700043i \(-0.246836\pi\)
\(770\) 2077.50 + 3741.16i 0.0972310 + 0.175094i
\(771\) 7676.29i 0.358567i
\(772\) 30306.9 + 18873.5i 1.41291 + 0.879888i
\(773\) −8725.41 −0.405991 −0.202995 0.979180i \(-0.565068\pi\)
−0.202995 + 0.979180i \(0.565068\pi\)
\(774\) 3187.08 + 5739.29i 0.148007 +