Properties

Label 312.4.m.a.181.10
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.10
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.56970 + 1.18180i) q^{2} -3.00000i q^{3} +(5.20671 - 6.07373i) q^{4} -8.43796 q^{5} +(3.54539 + 7.70910i) q^{6} +8.36709i q^{7} +(-6.20176 + 21.7609i) q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+(-2.56970 + 1.18180i) q^{2} -3.00000i q^{3} +(5.20671 - 6.07373i) q^{4} -8.43796 q^{5} +(3.54539 + 7.70910i) q^{6} +8.36709i q^{7} +(-6.20176 + 21.7609i) q^{8} -9.00000 q^{9} +(21.6830 - 9.97196i) q^{10} +57.7885 q^{11} +(-18.2212 - 15.6201i) q^{12} +(-18.9697 - 42.8620i) q^{13} +(-9.88821 - 21.5009i) q^{14} +25.3139i q^{15} +(-9.78034 - 63.2483i) q^{16} -72.1970 q^{17} +(23.1273 - 10.6362i) q^{18} -144.199 q^{19} +(-43.9340 + 51.2499i) q^{20} +25.1013 q^{21} +(-148.499 + 68.2943i) q^{22} +168.461 q^{23} +(65.2828 + 18.6053i) q^{24} -53.8009 q^{25} +(99.4005 + 87.7242i) q^{26} +27.0000i q^{27} +(50.8194 + 43.5650i) q^{28} +96.0104i q^{29} +(-29.9159 - 65.0490i) q^{30} +59.3688i q^{31} +(99.8792 + 150.971i) q^{32} -173.366i q^{33} +(185.525 - 85.3222i) q^{34} -70.6012i q^{35} +(-46.8604 + 54.6636i) q^{36} +187.632 q^{37} +(370.547 - 170.413i) q^{38} +(-128.586 + 56.9090i) q^{39} +(52.3302 - 183.618i) q^{40} +211.432i q^{41} +(-64.5027 + 29.6646i) q^{42} +160.852i q^{43} +(300.888 - 350.992i) q^{44} +75.9416 q^{45} +(-432.893 + 199.086i) q^{46} +539.374i q^{47} +(-189.745 + 29.3410i) q^{48} +272.992 q^{49} +(138.252 - 63.5817i) q^{50} +216.591i q^{51} +(-359.102 - 107.953i) q^{52} +583.906i q^{53} +(-31.9085 - 69.3819i) q^{54} -487.617 q^{55} +(-182.076 - 51.8907i) q^{56} +432.596i q^{57} +(-113.465 - 246.718i) q^{58} +236.128 q^{59} +(153.750 + 131.802i) q^{60} +438.613i q^{61} +(-70.1619 - 152.560i) q^{62} -75.3038i q^{63} +(-435.076 - 269.912i) q^{64} +(160.065 + 361.668i) q^{65} +(204.883 + 445.497i) q^{66} -639.558 q^{67} +(-375.909 + 438.505i) q^{68} -505.382i q^{69} +(83.4363 + 181.424i) q^{70} +79.3300i q^{71} +(55.8159 - 195.848i) q^{72} -40.6482i q^{73} +(-482.158 + 221.743i) q^{74} +161.403i q^{75} +(-750.800 + 875.822i) q^{76} +483.522i q^{77} +(263.173 - 298.202i) q^{78} +807.497 q^{79} +(82.5261 + 533.686i) q^{80} +81.0000 q^{81} +(-249.870 - 543.317i) q^{82} -1390.02 q^{83} +(130.695 - 152.458i) q^{84} +609.195 q^{85} +(-190.094 - 413.340i) q^{86} +288.031 q^{87} +(-358.391 + 1257.53i) q^{88} -1051.90i q^{89} +(-195.147 + 89.7476i) q^{90} +(358.630 - 158.721i) q^{91} +(877.125 - 1023.18i) q^{92} +178.106 q^{93} +(-637.431 - 1386.03i) q^{94} +1216.74 q^{95} +(452.912 - 299.638i) q^{96} +1002.06i q^{97} +(-701.507 + 322.621i) q^{98} -520.097 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52} - 1616 q^{55} + 608 q^{56} - 2120 q^{62} - 2856 q^{64} + 696 q^{65} - 396 q^{66} - 2536 q^{68} - 3936 q^{74} - 156 q^{78} + 3160 q^{79} + 6804 q^{81} + 4276 q^{82} - 2088 q^{87} + 1780 q^{88} + 324 q^{90} + 4792 q^{92} - 860 q^{94} + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.56970 + 1.18180i −0.908526 + 0.417828i
\(3\) 3.00000i 0.577350i
\(4\) 5.20671 6.07373i 0.650839 0.759216i
\(5\) −8.43796 −0.754714 −0.377357 0.926068i \(-0.623167\pi\)
−0.377357 + 0.926068i \(0.623167\pi\)
\(6\) 3.54539 + 7.70910i 0.241233 + 0.524538i
\(7\) 8.36709i 0.451781i 0.974153 + 0.225890i \(0.0725291\pi\)
−0.974153 + 0.225890i \(0.927471\pi\)
\(8\) −6.20176 + 21.7609i −0.274082 + 0.961706i
\(9\) −9.00000 −0.333333
\(10\) 21.6830 9.97196i 0.685677 0.315341i
\(11\) 57.7885 1.58399 0.791995 0.610527i \(-0.209042\pi\)
0.791995 + 0.610527i \(0.209042\pi\)
\(12\) −18.2212 15.6201i −0.438334 0.375762i
\(13\) −18.9697 42.8620i −0.404711 0.914445i
\(14\) −9.88821 21.5009i −0.188767 0.410454i
\(15\) 25.3139i 0.435734i
\(16\) −9.78034 63.2483i −0.152818 0.988254i
\(17\) −72.1970 −1.03002 −0.515010 0.857184i \(-0.672212\pi\)
−0.515010 + 0.857184i \(0.672212\pi\)
\(18\) 23.1273 10.6362i 0.302842 0.139276i
\(19\) −144.199 −1.74113 −0.870563 0.492056i \(-0.836245\pi\)
−0.870563 + 0.492056i \(0.836245\pi\)
\(20\) −43.9340 + 51.2499i −0.491197 + 0.572991i
\(21\) 25.1013 0.260836
\(22\) −148.499 + 68.2943i −1.43910 + 0.661836i
\(23\) 168.461 1.52724 0.763619 0.645668i \(-0.223421\pi\)
0.763619 + 0.645668i \(0.223421\pi\)
\(24\) 65.2828 + 18.6053i 0.555241 + 0.158241i
\(25\) −53.8009 −0.430407
\(26\) 99.4005 + 87.7242i 0.749771 + 0.661697i
\(27\) 27.0000i 0.192450i
\(28\) 50.8194 + 43.5650i 0.342999 + 0.294036i
\(29\) 96.0104i 0.614782i 0.951583 + 0.307391i \(0.0994560\pi\)
−0.951583 + 0.307391i \(0.900544\pi\)
\(30\) −29.9159 65.0490i −0.182062 0.395876i
\(31\) 59.3688i 0.343966i 0.985100 + 0.171983i \(0.0550174\pi\)
−0.985100 + 0.171983i \(0.944983\pi\)
\(32\) 99.8792 + 150.971i 0.551760 + 0.834003i
\(33\) 173.366i 0.914517i
\(34\) 185.525 85.3222i 0.935800 0.430372i
\(35\) 70.6012i 0.340965i
\(36\) −46.8604 + 54.6636i −0.216946 + 0.253072i
\(37\) 187.632 0.833689 0.416845 0.908978i \(-0.363136\pi\)
0.416845 + 0.908978i \(0.363136\pi\)
\(38\) 370.547 170.413i 1.58186 0.727492i
\(39\) −128.586 + 56.9090i −0.527955 + 0.233660i
\(40\) 52.3302 183.618i 0.206853 0.725813i
\(41\) 211.432i 0.805370i 0.915339 + 0.402685i \(0.131923\pi\)
−0.915339 + 0.402685i \(0.868077\pi\)
\(42\) −64.5027 + 29.6646i −0.236976 + 0.108985i
\(43\) 160.852i 0.570456i 0.958460 + 0.285228i \(0.0920694\pi\)
−0.958460 + 0.285228i \(0.907931\pi\)
\(44\) 300.888 350.992i 1.03092 1.20259i
\(45\) 75.9416 0.251571
\(46\) −432.893 + 199.086i −1.38753 + 0.638123i
\(47\) 539.374i 1.67395i 0.547239 + 0.836976i \(0.315679\pi\)
−0.547239 + 0.836976i \(0.684321\pi\)
\(48\) −189.745 + 29.3410i −0.570569 + 0.0882294i
\(49\) 272.992 0.795894
\(50\) 138.252 63.5817i 0.391036 0.179836i
\(51\) 216.591i 0.594682i
\(52\) −359.102 107.953i −0.957663 0.287893i
\(53\) 583.906i 1.51332i 0.653811 + 0.756658i \(0.273169\pi\)
−0.653811 + 0.756658i \(0.726831\pi\)
\(54\) −31.9085 69.3819i −0.0804111 0.174846i
\(55\) −487.617 −1.19546
\(56\) −182.076 51.8907i −0.434480 0.123825i
\(57\) 432.596i 1.00524i
\(58\) −113.465 246.718i −0.256874 0.558546i
\(59\) 236.128 0.521038 0.260519 0.965469i \(-0.416106\pi\)
0.260519 + 0.965469i \(0.416106\pi\)
\(60\) 153.750 + 131.802i 0.330816 + 0.283593i
\(61\) 438.613i 0.920634i 0.887755 + 0.460317i \(0.152264\pi\)
−0.887755 + 0.460317i \(0.847736\pi\)
\(62\) −70.1619 152.560i −0.143719 0.312502i
\(63\) 75.3038i 0.150594i
\(64\) −435.076 269.912i −0.849758 0.527172i
\(65\) 160.065 + 361.668i 0.305441 + 0.690144i
\(66\) 204.883 + 445.497i 0.382111 + 0.830863i
\(67\) −639.558 −1.16619 −0.583093 0.812405i \(-0.698158\pi\)
−0.583093 + 0.812405i \(0.698158\pi\)
\(68\) −375.909 + 438.505i −0.670377 + 0.782008i
\(69\) 505.382i 0.881751i
\(70\) 83.4363 + 181.424i 0.142465 + 0.309776i
\(71\) 79.3300i 0.132602i 0.997800 + 0.0663009i \(0.0211197\pi\)
−0.997800 + 0.0663009i \(0.978880\pi\)
\(72\) 55.8159 195.848i 0.0913606 0.320569i
\(73\) 40.6482i 0.0651713i −0.999469 0.0325857i \(-0.989626\pi\)
0.999469 0.0325857i \(-0.0103742\pi\)
\(74\) −482.158 + 221.743i −0.757429 + 0.348339i
\(75\) 161.403i 0.248496i
\(76\) −750.800 + 875.822i −1.13319 + 1.32189i
\(77\) 483.522i 0.715616i
\(78\) 263.173 298.202i 0.382031 0.432881i
\(79\) 807.497 1.15001 0.575004 0.818151i \(-0.305001\pi\)
0.575004 + 0.818151i \(0.305001\pi\)
\(80\) 82.5261 + 533.686i 0.115334 + 0.745849i
\(81\) 81.0000 0.111111
\(82\) −249.870 543.317i −0.336506 0.731699i
\(83\) −1390.02 −1.83825 −0.919124 0.393969i \(-0.871102\pi\)
−0.919124 + 0.393969i \(0.871102\pi\)
\(84\) 130.695 152.458i 0.169762 0.198031i
\(85\) 609.195 0.777370
\(86\) −190.094 413.340i −0.238353 0.518275i
\(87\) 288.031 0.354945
\(88\) −358.391 + 1257.53i −0.434143 + 1.52333i
\(89\) 1051.90i 1.25282i −0.779494 0.626409i \(-0.784524\pi\)
0.779494 0.626409i \(-0.215476\pi\)
\(90\) −195.147 + 89.7476i −0.228559 + 0.105114i
\(91\) 358.630 158.721i 0.413128 0.182840i
\(92\) 877.125 1023.18i 0.993985 1.15950i
\(93\) 178.106 0.198589
\(94\) −637.431 1386.03i −0.699425 1.52083i
\(95\) 1216.74 1.31405
\(96\) 452.912 299.638i 0.481512 0.318559i
\(97\) 1002.06i 1.04890i 0.851441 + 0.524450i \(0.175729\pi\)
−0.851441 + 0.524450i \(0.824271\pi\)
\(98\) −701.507 + 322.621i −0.723091 + 0.332547i
\(99\) −520.097 −0.527997
\(100\) −280.126 + 326.772i −0.280126 + 0.326772i
\(101\) 709.387i 0.698878i 0.936959 + 0.349439i \(0.113628\pi\)
−0.936959 + 0.349439i \(0.886372\pi\)
\(102\) −255.967 556.574i −0.248475 0.540284i
\(103\) 535.679 0.512446 0.256223 0.966618i \(-0.417522\pi\)
0.256223 + 0.966618i \(0.417522\pi\)
\(104\) 1050.36 146.978i 0.990351 0.138580i
\(105\) −211.804 −0.196856
\(106\) −690.059 1500.46i −0.632306 1.37489i
\(107\) 1877.42i 1.69623i 0.529810 + 0.848116i \(0.322263\pi\)
−0.529810 + 0.848116i \(0.677737\pi\)
\(108\) 163.991 + 140.581i 0.146111 + 0.125254i
\(109\) −1084.63 −0.953110 −0.476555 0.879145i \(-0.658115\pi\)
−0.476555 + 0.879145i \(0.658115\pi\)
\(110\) 1253.03 576.265i 1.08611 0.499497i
\(111\) 562.896i 0.481331i
\(112\) 529.204 81.8330i 0.446474 0.0690401i
\(113\) 393.209 0.327345 0.163672 0.986515i \(-0.447666\pi\)
0.163672 + 0.986515i \(0.447666\pi\)
\(114\) −511.240 1111.64i −0.420018 0.913287i
\(115\) −1421.46 −1.15263
\(116\) 583.141 + 499.898i 0.466752 + 0.400124i
\(117\) 170.727 + 385.758i 0.134904 + 0.304815i
\(118\) −606.778 + 279.055i −0.473377 + 0.217705i
\(119\) 604.079i 0.465343i
\(120\) −550.853 156.991i −0.419048 0.119427i
\(121\) 2008.51 1.50903
\(122\) −518.352 1127.10i −0.384667 0.836419i
\(123\) 634.297 0.464980
\(124\) 360.590 + 309.116i 0.261144 + 0.223866i
\(125\) 1508.71 1.07955
\(126\) 88.9939 + 193.508i 0.0629223 + 0.136818i
\(127\) −1119.16 −0.781966 −0.390983 0.920398i \(-0.627865\pi\)
−0.390983 + 0.920398i \(0.627865\pi\)
\(128\) 1437.00 + 179.421i 0.992295 + 0.123897i
\(129\) 482.555 0.329353
\(130\) −838.738 740.213i −0.565863 0.499392i
\(131\) 2927.91i 1.95277i −0.216041 0.976384i \(-0.569314\pi\)
0.216041 0.976384i \(-0.430686\pi\)
\(132\) −1052.98 902.664i −0.694316 0.595203i
\(133\) 1206.52i 0.786607i
\(134\) 1643.47 755.828i 1.05951 0.487266i
\(135\) 227.825i 0.145245i
\(136\) 447.749 1571.07i 0.282310 0.990577i
\(137\) 366.021i 0.228257i 0.993466 + 0.114129i \(0.0364076\pi\)
−0.993466 + 0.114129i \(0.963592\pi\)
\(138\) 597.259 + 1298.68i 0.368421 + 0.801093i
\(139\) 1679.55i 1.02488i −0.858724 0.512439i \(-0.828742\pi\)
0.858724 0.512439i \(-0.171258\pi\)
\(140\) −428.812 367.600i −0.258866 0.221913i
\(141\) 1618.12 0.966457
\(142\) −93.7519 203.854i −0.0554048 0.120472i
\(143\) −1096.23 2476.93i −0.641058 1.44847i
\(144\) 88.0231 + 569.235i 0.0509393 + 0.329418i
\(145\) 810.132i 0.463985i
\(146\) 48.0379 + 104.454i 0.0272304 + 0.0592099i
\(147\) 818.975i 0.459510i
\(148\) 976.945 1139.63i 0.542597 0.632950i
\(149\) −693.976 −0.381562 −0.190781 0.981633i \(-0.561102\pi\)
−0.190781 + 0.981633i \(0.561102\pi\)
\(150\) −190.745 414.756i −0.103829 0.225765i
\(151\) 1464.84i 0.789448i 0.918800 + 0.394724i \(0.129160\pi\)
−0.918800 + 0.394724i \(0.870840\pi\)
\(152\) 894.285 3137.89i 0.477211 1.67445i
\(153\) 649.773 0.343340
\(154\) −571.425 1242.51i −0.299005 0.650156i
\(155\) 500.951i 0.259596i
\(156\) −323.860 + 1077.31i −0.166215 + 0.552907i
\(157\) 3120.49i 1.58625i 0.609056 + 0.793127i \(0.291549\pi\)
−0.609056 + 0.793127i \(0.708451\pi\)
\(158\) −2075.03 + 954.298i −1.04481 + 0.480506i
\(159\) 1751.72 0.873713
\(160\) −842.776 1273.88i −0.416421 0.629434i
\(161\) 1409.53i 0.689976i
\(162\) −208.146 + 95.7256i −0.100947 + 0.0464254i
\(163\) −2488.19 −1.19565 −0.597824 0.801628i \(-0.703968\pi\)
−0.597824 + 0.801628i \(0.703968\pi\)
\(164\) 1284.18 + 1100.87i 0.611450 + 0.524166i
\(165\) 1462.85i 0.690199i
\(166\) 3571.93 1642.72i 1.67010 0.768072i
\(167\) 2905.66i 1.34639i −0.739466 0.673194i \(-0.764922\pi\)
0.739466 0.673194i \(-0.235078\pi\)
\(168\) −155.672 + 546.227i −0.0714903 + 0.250847i
\(169\) −1477.30 + 1626.16i −0.672419 + 0.740171i
\(170\) −1565.45 + 719.945i −0.706261 + 0.324808i
\(171\) 1297.79 0.580376
\(172\) 976.968 + 837.507i 0.433100 + 0.371275i
\(173\) 2339.59i 1.02818i 0.857735 + 0.514092i \(0.171871\pi\)
−0.857735 + 0.514092i \(0.828129\pi\)
\(174\) −740.154 + 340.395i −0.322476 + 0.148306i
\(175\) 450.157i 0.194449i
\(176\) −565.192 3655.02i −0.242062 1.56539i
\(177\) 708.384i 0.300822i
\(178\) 1243.13 + 2703.06i 0.523463 + 1.13822i
\(179\) 4222.06i 1.76297i 0.472214 + 0.881484i \(0.343455\pi\)
−0.472214 + 0.881484i \(0.656545\pi\)
\(180\) 395.406 461.249i 0.163732 0.190997i
\(181\) 3070.52i 1.26094i −0.776215 0.630469i \(-0.782863\pi\)
0.776215 0.630469i \(-0.217137\pi\)
\(182\) −733.996 + 831.694i −0.298942 + 0.338732i
\(183\) 1315.84 0.531528
\(184\) −1044.75 + 3665.86i −0.418588 + 1.46875i
\(185\) −1583.23 −0.629197
\(186\) −457.680 + 210.486i −0.180423 + 0.0829761i
\(187\) −4172.16 −1.63154
\(188\) 3276.01 + 2808.36i 1.27089 + 1.08947i
\(189\) −225.911 −0.0869452
\(190\) −3126.66 + 1437.94i −1.19385 + 0.549049i
\(191\) −623.978 −0.236385 −0.118192 0.992991i \(-0.537710\pi\)
−0.118192 + 0.992991i \(0.537710\pi\)
\(192\) −809.737 + 1305.23i −0.304363 + 0.490608i
\(193\) 197.490i 0.0736560i −0.999322 0.0368280i \(-0.988275\pi\)
0.999322 0.0368280i \(-0.0117254\pi\)
\(194\) −1184.23 2574.98i −0.438260 0.952953i
\(195\) 1085.00 480.196i 0.398455 0.176346i
\(196\) 1421.39 1658.08i 0.517999 0.604256i
\(197\) 3571.39 1.29163 0.645815 0.763494i \(-0.276518\pi\)
0.645815 + 0.763494i \(0.276518\pi\)
\(198\) 1336.49 614.649i 0.479699 0.220612i
\(199\) 2395.86 0.853458 0.426729 0.904379i \(-0.359666\pi\)
0.426729 + 0.904379i \(0.359666\pi\)
\(200\) 333.660 1170.76i 0.117967 0.413925i
\(201\) 1918.67i 0.673298i
\(202\) −838.352 1822.91i −0.292011 0.634949i
\(203\) −803.328 −0.277747
\(204\) 1315.51 + 1127.73i 0.451492 + 0.387042i
\(205\) 1784.06i 0.607824i
\(206\) −1376.53 + 633.064i −0.465571 + 0.214115i
\(207\) −1516.14 −0.509079
\(208\) −2525.42 + 1619.00i −0.841857 + 0.539701i
\(209\) −8333.02 −2.75793
\(210\) 544.271 250.309i 0.178849 0.0822521i
\(211\) 197.614i 0.0644754i −0.999480 0.0322377i \(-0.989737\pi\)
0.999480 0.0322377i \(-0.0102633\pi\)
\(212\) 3546.49 + 3040.23i 1.14893 + 0.984924i
\(213\) 237.990 0.0765577
\(214\) −2218.73 4824.40i −0.708734 1.54107i
\(215\) 1357.26i 0.430531i
\(216\) −587.545 167.448i −0.185080 0.0527471i
\(217\) −496.744 −0.155397
\(218\) 2787.18 1281.82i 0.865925 0.398236i
\(219\) −121.945 −0.0376267
\(220\) −2538.88 + 2961.65i −0.778051 + 0.907612i
\(221\) 1369.55 + 3094.51i 0.416860 + 0.941897i
\(222\) 665.229 + 1446.47i 0.201114 + 0.437302i
\(223\) 2694.89i 0.809252i −0.914482 0.404626i \(-0.867402\pi\)
0.914482 0.404626i \(-0.132598\pi\)
\(224\) −1263.19 + 835.698i −0.376786 + 0.249274i
\(225\) 484.208 0.143469
\(226\) −1010.43 + 464.693i −0.297401 + 0.136774i
\(227\) −825.056 −0.241237 −0.120619 0.992699i \(-0.538488\pi\)
−0.120619 + 0.992699i \(0.538488\pi\)
\(228\) 2627.47 + 2252.40i 0.763194 + 0.654249i
\(229\) 838.916 0.242084 0.121042 0.992647i \(-0.461376\pi\)
0.121042 + 0.992647i \(0.461376\pi\)
\(230\) 3652.73 1679.88i 1.04719 0.481600i
\(231\) 1450.57 0.413161
\(232\) −2089.28 595.434i −0.591240 0.168501i
\(233\) 486.416 0.136765 0.0683824 0.997659i \(-0.478216\pi\)
0.0683824 + 0.997659i \(0.478216\pi\)
\(234\) −894.605 789.518i −0.249924 0.220566i
\(235\) 4551.21i 1.26336i
\(236\) 1229.45 1434.18i 0.339112 0.395581i
\(237\) 2422.49i 0.663957i
\(238\) 713.899 + 1552.30i 0.194434 + 0.422776i
\(239\) 690.902i 0.186990i 0.995620 + 0.0934952i \(0.0298040\pi\)
−0.995620 + 0.0934952i \(0.970196\pi\)
\(240\) 1601.06 247.578i 0.430616 0.0665880i
\(241\) 1005.08i 0.268643i 0.990938 + 0.134322i \(0.0428855\pi\)
−0.990938 + 0.134322i \(0.957114\pi\)
\(242\) −5161.28 + 2373.66i −1.37099 + 0.630514i
\(243\) 243.000i 0.0641500i
\(244\) 2664.02 + 2283.73i 0.698960 + 0.599184i
\(245\) −2303.49 −0.600673
\(246\) −1629.95 + 749.610i −0.422447 + 0.194282i
\(247\) 2735.40 + 6180.64i 0.704653 + 1.59216i
\(248\) −1291.92 368.191i −0.330794 0.0942748i
\(249\) 4170.06i 1.06131i
\(250\) −3876.94 + 1782.99i −0.980797 + 0.451066i
\(251\) 2502.31i 0.629262i 0.949214 + 0.314631i \(0.101881\pi\)
−0.949214 + 0.314631i \(0.898119\pi\)
\(252\) −457.375 392.085i −0.114333 0.0980121i
\(253\) 9735.09 2.41913
\(254\) 2875.91 1322.62i 0.710437 0.326728i
\(255\) 1827.59i 0.448815i
\(256\) −3904.69 + 1237.18i −0.953293 + 0.302046i
\(257\) −1805.64 −0.438259 −0.219130 0.975696i \(-0.570322\pi\)
−0.219130 + 0.975696i \(0.570322\pi\)
\(258\) −1240.02 + 570.282i −0.299226 + 0.137613i
\(259\) 1569.93i 0.376645i
\(260\) 3030.09 + 910.907i 0.722761 + 0.217277i
\(261\) 864.094i 0.204927i
\(262\) 3460.20 + 7523.85i 0.815922 + 1.77414i
\(263\) −7806.91 −1.83040 −0.915199 0.403002i \(-0.867967\pi\)
−0.915199 + 0.403002i \(0.867967\pi\)
\(264\) 3772.60 + 1075.17i 0.879497 + 0.250653i
\(265\) 4926.98i 1.14212i
\(266\) 1425.86 + 3100.40i 0.328667 + 0.714653i
\(267\) −3155.69 −0.723315
\(268\) −3329.99 + 3884.50i −0.758999 + 0.885387i
\(269\) 5945.63i 1.34763i −0.738902 0.673813i \(-0.764655\pi\)
0.738902 0.673813i \(-0.235345\pi\)
\(270\) 269.243 + 585.441i 0.0606874 + 0.131959i
\(271\) 1898.73i 0.425608i −0.977095 0.212804i \(-0.931740\pi\)
0.977095 0.212804i \(-0.0682596\pi\)
\(272\) 706.111 + 4566.34i 0.157405 + 1.01792i
\(273\) −476.163 1075.89i −0.105563 0.238520i
\(274\) −432.562 940.563i −0.0953724 0.207378i
\(275\) −3109.07 −0.681761
\(276\) −3069.55 2631.38i −0.669439 0.573878i
\(277\) 2881.71i 0.625073i 0.949906 + 0.312536i \(0.101179\pi\)
−0.949906 + 0.312536i \(0.898821\pi\)
\(278\) 1984.89 + 4315.95i 0.428223 + 0.931128i
\(279\) 534.319i 0.114655i
\(280\) 1536.35 + 437.852i 0.327908 + 0.0934523i
\(281\) 2630.79i 0.558505i 0.960218 + 0.279252i \(0.0900866\pi\)
−0.960218 + 0.279252i \(0.909913\pi\)
\(282\) −4158.09 + 1912.29i −0.878051 + 0.403813i
\(283\) 6320.15i 1.32754i −0.747937 0.663770i \(-0.768955\pi\)
0.747937 0.663770i \(-0.231045\pi\)
\(284\) 481.829 + 413.048i 0.100673 + 0.0863024i
\(285\) 3650.22i 0.758669i
\(286\) 5744.21 + 5069.45i 1.18763 + 1.04812i
\(287\) −1769.07 −0.363850
\(288\) −898.913 1358.74i −0.183920 0.278001i
\(289\) 299.405 0.0609414
\(290\) 957.411 + 2081.79i 0.193866 + 0.421542i
\(291\) 3006.17 0.605583
\(292\) −246.886 211.643i −0.0494791 0.0424160i
\(293\) −4914.81 −0.979953 −0.489976 0.871736i \(-0.662995\pi\)
−0.489976 + 0.871736i \(0.662995\pi\)
\(294\) 967.863 + 2104.52i 0.191996 + 0.417477i
\(295\) −1992.44 −0.393235
\(296\) −1163.65 + 4083.05i −0.228499 + 0.801764i
\(297\) 1560.29i 0.304839i
\(298\) 1783.31 820.139i 0.346659 0.159427i
\(299\) −3195.64 7220.56i −0.618089 1.39657i
\(300\) 980.316 + 840.377i 0.188662 + 0.161731i
\(301\) −1345.86 −0.257721
\(302\) −1731.14 3764.19i −0.329854 0.717234i
\(303\) 2128.16 0.403497
\(304\) 1410.31 + 9120.31i 0.266075 + 1.72068i
\(305\) 3701.00i 0.694815i
\(306\) −1669.72 + 767.900i −0.311933 + 0.143457i
\(307\) 34.9320 0.00649405 0.00324702 0.999995i \(-0.498966\pi\)
0.00324702 + 0.999995i \(0.498966\pi\)
\(308\) 2936.78 + 2517.56i 0.543307 + 0.465751i
\(309\) 1607.04i 0.295861i
\(310\) 592.023 + 1287.29i 0.108467 + 0.235850i
\(311\) −6754.52 −1.23155 −0.615777 0.787920i \(-0.711158\pi\)
−0.615777 + 0.787920i \(0.711158\pi\)
\(312\) −440.933 3151.09i −0.0800093 0.571780i
\(313\) 3933.85 0.710397 0.355199 0.934791i \(-0.384413\pi\)
0.355199 + 0.934791i \(0.384413\pi\)
\(314\) −3687.78 8018.71i −0.662782 1.44115i
\(315\) 635.411i 0.113655i
\(316\) 4204.40 4904.52i 0.748469 0.873104i
\(317\) 4978.06 0.882005 0.441003 0.897506i \(-0.354623\pi\)
0.441003 + 0.897506i \(0.354623\pi\)
\(318\) −4501.39 + 2070.18i −0.793791 + 0.365062i
\(319\) 5548.30i 0.973809i
\(320\) 3671.16 + 2277.51i 0.641324 + 0.397864i
\(321\) 5632.25 0.979320
\(322\) −1665.77 3622.06i −0.288292 0.626861i
\(323\) 10410.7 1.79340
\(324\) 421.744 491.972i 0.0723154 0.0843573i
\(325\) 1020.58 + 2306.01i 0.174190 + 0.393583i
\(326\) 6393.91 2940.54i 1.08628 0.499575i
\(327\) 3253.90i 0.550278i
\(328\) −4600.96 1311.25i −0.774529 0.220737i
\(329\) −4512.99 −0.756259
\(330\) −1728.79 3759.09i −0.288385 0.627064i
\(331\) 9305.29 1.54521 0.772606 0.634886i \(-0.218953\pi\)
0.772606 + 0.634886i \(0.218953\pi\)
\(332\) −7237.43 + 8442.60i −1.19640 + 1.39563i
\(333\) −1688.69 −0.277896
\(334\) 3433.90 + 7466.68i 0.562560 + 1.22323i
\(335\) 5396.57 0.880137
\(336\) −245.499 1587.61i −0.0398603 0.257772i
\(337\) −9088.98 −1.46916 −0.734582 0.678520i \(-0.762622\pi\)
−0.734582 + 0.678520i \(0.762622\pi\)
\(338\) 1874.44 5924.61i 0.301645 0.953420i
\(339\) 1179.63i 0.188993i
\(340\) 3171.90 3700.09i 0.505943 0.590192i
\(341\) 3430.83i 0.544839i
\(342\) −3334.92 + 1533.72i −0.527286 + 0.242497i
\(343\) 5154.06i 0.811350i
\(344\) −3500.28 997.563i −0.548612 0.156352i
\(345\) 4264.39i 0.665470i
\(346\) −2764.92 6012.05i −0.429605 0.934132i
\(347\) 3.22515i 0.000498948i 1.00000 0.000249474i \(7.94101e-5\pi\)
−1.00000 0.000249474i \(0.999921\pi\)
\(348\) 1499.69 1749.42i 0.231012 0.269480i
\(349\) 12260.0 1.88041 0.940207 0.340604i \(-0.110632\pi\)
0.940207 + 0.340604i \(0.110632\pi\)
\(350\) 531.994 + 1156.77i 0.0812465 + 0.176662i
\(351\) 1157.27 512.181i 0.175985 0.0778866i
\(352\) 5771.87 + 8724.37i 0.873982 + 1.32105i
\(353\) 8026.84i 1.21027i 0.796123 + 0.605135i \(0.206881\pi\)
−0.796123 + 0.605135i \(0.793119\pi\)
\(354\) 837.166 + 1820.33i 0.125692 + 0.273304i
\(355\) 669.383i 0.100076i
\(356\) −6388.94 5476.92i −0.951160 0.815383i
\(357\) −1812.24 −0.268666
\(358\) −4989.61 10849.4i −0.736618 1.60170i
\(359\) 5963.70i 0.876747i −0.898793 0.438374i \(-0.855555\pi\)
0.898793 0.438374i \(-0.144445\pi\)
\(360\) −470.972 + 1652.56i −0.0689511 + 0.241938i
\(361\) 13934.2 2.03152
\(362\) 3628.73 + 7890.30i 0.526855 + 1.14559i
\(363\) 6025.54i 0.871236i
\(364\) 903.256 3004.64i 0.130065 0.432653i
\(365\) 342.988i 0.0491857i
\(366\) −3381.31 + 1555.06i −0.482907 + 0.222088i
\(367\) −9542.35 −1.35724 −0.678619 0.734490i \(-0.737421\pi\)
−0.678619 + 0.734490i \(0.737421\pi\)
\(368\) −1647.60 10654.8i −0.233389 1.50930i
\(369\) 1902.89i 0.268457i
\(370\) 4068.43 1871.06i 0.571642 0.262896i
\(371\) −4885.60 −0.683686
\(372\) 927.348 1081.77i 0.129249 0.150772i
\(373\) 7120.07i 0.988373i −0.869356 0.494186i \(-0.835466\pi\)
0.869356 0.494186i \(-0.164534\pi\)
\(374\) 10721.2 4930.64i 1.48230 0.681705i
\(375\) 4526.14i 0.623277i
\(376\) −11737.3 3345.07i −1.60985 0.458800i
\(377\) 4115.20 1821.29i 0.562184 0.248809i
\(378\) 580.525 266.982i 0.0789920 0.0363282i
\(379\) −1748.05 −0.236917 −0.118458 0.992959i \(-0.537795\pi\)
−0.118458 + 0.992959i \(0.537795\pi\)
\(380\) 6335.22 7390.15i 0.855236 0.997650i
\(381\) 3357.49i 0.451468i
\(382\) 1603.44 737.416i 0.214762 0.0987682i
\(383\) 5565.09i 0.742462i −0.928541 0.371231i \(-0.878936\pi\)
0.928541 0.371231i \(-0.121064\pi\)
\(384\) 538.264 4310.99i 0.0715317 0.572902i
\(385\) 4079.94i 0.540085i
\(386\) 233.393 + 507.489i 0.0307756 + 0.0669184i
\(387\) 1447.66i 0.190152i
\(388\) 6086.21 + 5217.41i 0.796342 + 0.682665i
\(389\) 561.404i 0.0731731i −0.999330 0.0365865i \(-0.988352\pi\)
0.999330 0.0365865i \(-0.0116485\pi\)
\(390\) −2220.64 + 2516.21i −0.288324 + 0.326701i
\(391\) −12162.3 −1.57308
\(392\) −1693.03 + 5940.56i −0.218140 + 0.765417i
\(393\) −8783.73 −1.12743
\(394\) −9177.40 + 4220.66i −1.17348 + 0.539680i
\(395\) −6813.63 −0.867926
\(396\) −2707.99 + 3158.93i −0.343641 + 0.400864i
\(397\) −5649.99 −0.714269 −0.357134 0.934053i \(-0.616246\pi\)
−0.357134 + 0.934053i \(0.616246\pi\)
\(398\) −6156.65 + 2831.42i −0.775389 + 0.356599i
\(399\) −3619.57 −0.454148
\(400\) 526.191 + 3402.81i 0.0657739 + 0.425352i
\(401\) 5458.35i 0.679743i −0.940472 0.339871i \(-0.889616\pi\)
0.940472 0.339871i \(-0.110384\pi\)
\(402\) −2267.48 4930.42i −0.281323 0.611709i
\(403\) 2544.66 1126.21i 0.314538 0.139207i
\(404\) 4308.62 + 3693.57i 0.530599 + 0.454857i
\(405\) −683.475 −0.0838571
\(406\) 2064.31 949.371i 0.252340 0.116050i
\(407\) 10843.0 1.32056
\(408\) −4713.22 1343.25i −0.571910 0.162992i
\(409\) 12750.8i 1.54154i −0.637116 0.770768i \(-0.719873\pi\)
0.637116 0.770768i \(-0.280127\pi\)
\(410\) 2108.39 + 4584.49i 0.253966 + 0.552224i
\(411\) 1098.06 0.131784
\(412\) 2789.12 3253.57i 0.333520 0.389058i
\(413\) 1975.71i 0.235395i
\(414\) 3896.04 1791.78i 0.462512 0.212708i
\(415\) 11728.9 1.38735
\(416\) 4576.23 7144.89i 0.539347 0.842084i
\(417\) −5038.66 −0.591713
\(418\) 21413.4 9847.94i 2.50565 1.15234i
\(419\) 4624.93i 0.539242i 0.962966 + 0.269621i \(0.0868985\pi\)
−0.962966 + 0.269621i \(0.913102\pi\)
\(420\) −1102.80 + 1286.44i −0.128122 + 0.149456i
\(421\) 1108.40 0.128314 0.0641568 0.997940i \(-0.479564\pi\)
0.0641568 + 0.997940i \(0.479564\pi\)
\(422\) 233.540 + 507.808i 0.0269396 + 0.0585775i
\(423\) 4854.37i 0.557984i
\(424\) −12706.3 3621.25i −1.45536 0.414772i
\(425\) 3884.26 0.443328
\(426\) −611.562 + 281.256i −0.0695547 + 0.0319880i
\(427\) −3669.92 −0.415924
\(428\) 11402.9 + 9775.17i 1.28781 + 1.10397i
\(429\) −7430.80 + 3288.69i −0.836276 + 0.370115i
\(430\) 1604.00 + 3487.75i 0.179888 + 0.391149i
\(431\) 2059.16i 0.230130i 0.993358 + 0.115065i \(0.0367077\pi\)
−0.993358 + 0.115065i \(0.963292\pi\)
\(432\) 1707.70 264.069i 0.190190 0.0294098i
\(433\) 8396.61 0.931906 0.465953 0.884809i \(-0.345712\pi\)
0.465953 + 0.884809i \(0.345712\pi\)
\(434\) 1276.48 587.051i 0.141182 0.0649293i
\(435\) −2430.40 −0.267882
\(436\) −5647.37 + 6587.76i −0.620321 + 0.723616i
\(437\) −24291.8 −2.65911
\(438\) 313.361 144.114i 0.0341848 0.0157215i
\(439\) −827.173 −0.0899290 −0.0449645 0.998989i \(-0.514317\pi\)
−0.0449645 + 0.998989i \(0.514317\pi\)
\(440\) 3024.09 10611.0i 0.327654 1.14968i
\(441\) −2456.93 −0.265298
\(442\) −7176.42 6333.42i −0.772279 0.681561i
\(443\) 14728.4i 1.57961i 0.613358 + 0.789805i \(0.289818\pi\)
−0.613358 + 0.789805i \(0.710182\pi\)
\(444\) −3418.88 2930.84i −0.365434 0.313269i
\(445\) 8875.86i 0.945520i
\(446\) 3184.81 + 6925.06i 0.338129 + 0.735227i
\(447\) 2081.93i 0.220295i
\(448\) 2258.38 3640.32i 0.238166 0.383904i
\(449\) 1124.15i 0.118156i −0.998253 0.0590781i \(-0.981184\pi\)
0.998253 0.0590781i \(-0.0188161\pi\)
\(450\) −1244.27 + 572.236i −0.130345 + 0.0599454i
\(451\) 12218.4i 1.27570i
\(452\) 2047.32 2388.24i 0.213049 0.248525i
\(453\) 4394.51 0.455788
\(454\) 2120.15 975.049i 0.219170 0.100796i
\(455\) −3026.11 + 1339.28i −0.311794 + 0.137992i
\(456\) −9413.68 2682.86i −0.966746 0.275518i
\(457\) 17029.0i 1.74307i −0.490334 0.871535i \(-0.663125\pi\)
0.490334 0.871535i \(-0.336875\pi\)
\(458\) −2155.76 + 991.429i −0.219939 + 0.101149i
\(459\) 1949.32i 0.198227i
\(460\) −7401.15 + 8633.58i −0.750174 + 0.875093i
\(461\) −7086.48 −0.715944 −0.357972 0.933732i \(-0.616532\pi\)
−0.357972 + 0.933732i \(0.616532\pi\)
\(462\) −3727.52 + 1714.27i −0.375368 + 0.172630i
\(463\) 9841.61i 0.987859i 0.869502 + 0.493929i \(0.164440\pi\)
−0.869502 + 0.493929i \(0.835560\pi\)
\(464\) 6072.49 939.015i 0.607561 0.0939497i
\(465\) −1502.85 −0.149878
\(466\) −1249.94 + 574.845i −0.124254 + 0.0571442i
\(467\) 13523.9i 1.34007i 0.742331 + 0.670034i \(0.233720\pi\)
−0.742331 + 0.670034i \(0.766280\pi\)
\(468\) 3231.92 + 971.581i 0.319221 + 0.0959644i
\(469\) 5351.24i 0.526860i
\(470\) 5378.61 + 11695.3i 0.527866 + 1.14779i
\(471\) 9361.46 0.915825
\(472\) −1464.41 + 5138.37i −0.142807 + 0.501086i
\(473\) 9295.37i 0.903598i
\(474\) 2862.89 + 6225.08i 0.277420 + 0.603222i
\(475\) 7758.01 0.749393
\(476\) −3669.01 3145.26i −0.353296 0.302863i
\(477\) 5255.16i 0.504438i
\(478\) −816.506 1775.41i −0.0781299 0.169886i
\(479\) 8823.16i 0.841630i 0.907147 + 0.420815i \(0.138256\pi\)
−0.907147 + 0.420815i \(0.861744\pi\)
\(480\) −3821.65 + 2528.33i −0.363404 + 0.240421i
\(481\) −3559.32 8042.28i −0.337403 0.762363i
\(482\) −1187.80 2582.76i −0.112247 0.244069i
\(483\) 4228.58 0.398358
\(484\) 10457.7 12199.2i 0.982132 1.14568i
\(485\) 8455.30i 0.791619i
\(486\) 287.177 + 624.437i 0.0268037 + 0.0582820i
\(487\) 8482.21i 0.789252i 0.918842 + 0.394626i \(0.129126\pi\)
−0.918842 + 0.394626i \(0.870874\pi\)
\(488\) −9544.63 2720.17i −0.885379 0.252329i
\(489\) 7464.58i 0.690307i
\(490\) 5919.28 2722.26i 0.545727 0.250978i
\(491\) 6293.37i 0.578444i −0.957262 0.289222i \(-0.906603\pi\)
0.957262 0.289222i \(-0.0933965\pi\)
\(492\) 3302.60 3852.54i 0.302627 0.353021i
\(493\) 6931.66i 0.633238i
\(494\) −14333.4 12649.7i −1.30545 1.15210i
\(495\) 4388.55 0.398487
\(496\) 3754.97 580.647i 0.339926 0.0525642i
\(497\) −663.761 −0.0599069
\(498\) −4928.17 10715.8i −0.443447 0.964230i
\(499\) 503.304 0.0451523 0.0225761 0.999745i \(-0.492813\pi\)
0.0225761 + 0.999745i \(0.492813\pi\)
\(500\) 7855.44 9163.52i 0.702612 0.819610i
\(501\) −8716.99 −0.777338
\(502\) −2957.23 6430.20i −0.262923 0.571701i
\(503\) 4401.21 0.390139 0.195070 0.980789i \(-0.437507\pi\)
0.195070 + 0.980789i \(0.437507\pi\)
\(504\) 1638.68 + 467.017i 0.144827 + 0.0412749i
\(505\) 5985.78i 0.527453i
\(506\) −25016.2 + 11504.9i −2.19784 + 1.01078i
\(507\) 4878.47 + 4431.91i 0.427338 + 0.388221i
\(508\) −5827.16 + 6797.49i −0.508934 + 0.593681i
\(509\) 4188.23 0.364715 0.182358 0.983232i \(-0.441627\pi\)
0.182358 + 0.983232i \(0.441627\pi\)
\(510\) 2159.84 + 4696.35i 0.187528 + 0.407760i
\(511\) 340.107 0.0294431
\(512\) 8571.78 7793.73i 0.739888 0.672730i
\(513\) 3893.36i 0.335080i
\(514\) 4639.95 2133.90i 0.398170 0.183117i
\(515\) −4520.03 −0.386750
\(516\) 2512.52 2930.91i 0.214356 0.250050i
\(517\) 31169.6i 2.65153i
\(518\) −1855.34 4034.26i −0.157373 0.342191i
\(519\) 7018.77 0.593622
\(520\) −8862.92 + 1240.19i −0.747432 + 0.104588i
\(521\) 280.072 0.0235512 0.0117756 0.999931i \(-0.496252\pi\)
0.0117756 + 0.999931i \(0.496252\pi\)
\(522\) 1021.18 + 2220.46i 0.0856245 + 0.186182i
\(523\) 10351.8i 0.865493i 0.901516 + 0.432747i \(0.142456\pi\)
−0.901516 + 0.432747i \(0.857544\pi\)
\(524\) −17783.3 15244.8i −1.48257 1.27094i
\(525\) −1350.47 −0.112265
\(526\) 20061.4 9226.19i 1.66296 0.764793i
\(527\) 4286.25i 0.354292i
\(528\) −10965.1 + 1695.57i −0.903776 + 0.139755i
\(529\) 16212.0 1.33245
\(530\) 5822.69 + 12660.8i 0.477210 + 1.03765i
\(531\) −2125.15 −0.173679
\(532\) −7328.09 6282.01i −0.597205 0.511954i
\(533\) 9062.41 4010.80i 0.736466 0.325942i
\(534\) 8109.18 3729.39i 0.657151 0.302222i
\(535\) 15841.6i 1.28017i
\(536\) 3966.39 13917.4i 0.319630 1.12153i
\(537\) 12666.2 1.01785
\(538\) 7026.53 + 15278.5i 0.563076 + 1.22435i
\(539\) 15775.8 1.26069
\(540\) −1383.75 1186.22i −0.110272 0.0945309i
\(541\) −16992.5 −1.35040 −0.675199 0.737635i \(-0.735942\pi\)
−0.675199 + 0.737635i \(0.735942\pi\)
\(542\) 2243.92 + 4879.17i 0.177831 + 0.386676i
\(543\) −9211.55 −0.728002
\(544\) −7210.98 10899.6i −0.568324 0.859040i
\(545\) 9152.09 0.719325
\(546\) 2495.08 + 2201.99i 0.195567 + 0.172594i
\(547\) 162.426i 0.0126963i 0.999980 + 0.00634813i \(0.00202069\pi\)
−0.999980 + 0.00634813i \(0.997979\pi\)
\(548\) 2223.11 + 1905.76i 0.173297 + 0.148559i
\(549\) 3947.52i 0.306878i
\(550\) 7989.38 3674.29i 0.619397 0.284859i
\(551\) 13844.6i 1.07041i
\(552\) 10997.6 + 3134.26i 0.847985 + 0.241672i
\(553\) 6756.41i 0.519551i
\(554\) −3405.60 7405.13i −0.261173 0.567895i
\(555\) 4749.69i 0.363267i
\(556\) −10201.2 8744.95i −0.778103 0.667030i
\(557\) 135.037 0.0102723 0.00513617 0.999987i \(-0.498365\pi\)
0.00513617 + 0.999987i \(0.498365\pi\)
\(558\) 631.457 + 1373.04i 0.0479063 + 0.104167i
\(559\) 6894.42 3051.30i 0.521651 0.230870i
\(560\) −4465.40 + 690.504i −0.336960 + 0.0521056i
\(561\) 12516.5i 0.941971i
\(562\) −3109.06 6760.34i −0.233359 0.507416i
\(563\) 15659.2i 1.17221i 0.810234 + 0.586106i \(0.199340\pi\)
−0.810234 + 0.586106i \(0.800660\pi\)
\(564\) 8425.09 9828.03i 0.629008 0.733750i
\(565\) −3317.88 −0.247052
\(566\) 7469.14 + 16240.9i 0.554684 + 1.20610i
\(567\) 677.734i 0.0501978i
\(568\) −1726.29 491.986i −0.127524 0.0363438i
\(569\) −13692.7 −1.00884 −0.504418 0.863460i \(-0.668293\pi\)
−0.504418 + 0.863460i \(0.668293\pi\)
\(570\) 4313.82 + 9379.97i 0.316993 + 0.689270i
\(571\) 23805.8i 1.74473i −0.488856 0.872365i \(-0.662586\pi\)
0.488856 0.872365i \(-0.337414\pi\)
\(572\) −20752.0 6238.47i −1.51693 0.456020i
\(573\) 1871.93i 0.136477i
\(574\) 4545.98 2090.69i 0.330567 0.152027i
\(575\) −9063.32 −0.657333
\(576\) 3915.69 + 2429.21i 0.283253 + 0.175724i
\(577\) 10653.4i 0.768642i 0.923200 + 0.384321i \(0.125564\pi\)
−0.923200 + 0.384321i \(0.874436\pi\)
\(578\) −769.381 + 353.836i −0.0553669 + 0.0254631i
\(579\) −592.469 −0.0425253
\(580\) −4920.52 4218.12i −0.352265 0.301979i
\(581\) 11630.4i 0.830484i
\(582\) −7724.94 + 3552.68i −0.550188 + 0.253030i
\(583\) 33743.1i 2.39708i
\(584\) 884.542 + 252.090i 0.0626757 + 0.0178623i
\(585\) −1440.59 3255.01i −0.101814 0.230048i
\(586\) 12629.6 5808.31i 0.890313 0.409452i
\(587\) 15680.9 1.10259 0.551294 0.834311i \(-0.314134\pi\)
0.551294 + 0.834311i \(0.314134\pi\)
\(588\) −4974.23 4264.17i −0.348867 0.299067i
\(589\) 8560.89i 0.598888i
\(590\) 5119.97 2354.66i 0.357264 0.164305i
\(591\) 10714.2i 0.745723i
\(592\) −1835.11 11867.4i −0.127403 0.823897i
\(593\) 7750.92i 0.536749i −0.963315 0.268375i \(-0.913514\pi\)
0.963315 0.268375i \(-0.0864865\pi\)
\(594\) −1843.95 4009.48i −0.127370 0.276954i
\(595\) 5097.19i 0.351201i
\(596\) −3613.33 + 4215.02i −0.248335 + 0.289688i
\(597\) 7187.59i 0.492744i
\(598\) 16745.1 + 14778.1i 1.14508 + 1.01057i
\(599\) 5641.89 0.384844 0.192422 0.981312i \(-0.438366\pi\)
0.192422 + 0.981312i \(0.438366\pi\)
\(600\) −3512.27 1000.98i −0.238980 0.0681081i
\(601\) 10995.2 0.746264 0.373132 0.927778i \(-0.378284\pi\)
0.373132 + 0.927778i \(0.378284\pi\)
\(602\) 3458.45 1590.53i 0.234146 0.107683i
\(603\) 5756.02 0.388729
\(604\) 8897.01 + 7626.97i 0.599361 + 0.513803i
\(605\) −16947.8 −1.13888
\(606\) −5468.73 + 2515.06i −0.366588 + 0.168593i
\(607\) −1343.46 −0.0898344 −0.0449172 0.998991i \(-0.514302\pi\)
−0.0449172 + 0.998991i \(0.514302\pi\)
\(608\) −14402.4 21769.7i −0.960684 1.45210i
\(609\) 2409.98i 0.160357i
\(610\) 4373.83 + 9510.45i 0.290313 + 0.631257i
\(611\) 23118.7 10231.7i 1.53074 0.677467i
\(612\) 3383.18 3946.54i 0.223459 0.260669i
\(613\) 9486.08 0.625023 0.312511 0.949914i \(-0.398830\pi\)
0.312511 + 0.949914i \(0.398830\pi\)
\(614\) −89.7647 + 41.2825i −0.00590001 + 0.00271340i
\(615\) −5352.17 −0.350927
\(616\) −10521.9 2998.69i −0.688213 0.196137i
\(617\) 23208.1i 1.51430i 0.653242 + 0.757149i \(0.273408\pi\)
−0.653242 + 0.757149i \(0.726592\pi\)
\(618\) 1899.19 + 4129.60i 0.123619 + 0.268797i
\(619\) −15457.5 −1.00370 −0.501849 0.864955i \(-0.667347\pi\)
−0.501849 + 0.864955i \(0.667347\pi\)
\(620\) −3042.64 2608.31i −0.197089 0.168955i
\(621\) 4548.43i 0.293917i
\(622\) 17357.1 7982.47i 1.11890 0.514579i
\(623\) 8801.32 0.565999
\(624\) 4857.01 + 7576.26i 0.311596 + 0.486046i
\(625\) −6005.36 −0.384343
\(626\) −10108.8 + 4649.01i −0.645415 + 0.296824i
\(627\) 24999.1i 1.59229i
\(628\) 18953.0 + 16247.5i 1.20431 + 1.03240i
\(629\) −13546.5 −0.858717
\(630\) −750.927 1632.81i −0.0474883 0.103259i
\(631\) 16138.7i 1.01818i 0.860713 + 0.509091i \(0.170018\pi\)
−0.860713 + 0.509091i \(0.829982\pi\)
\(632\) −5007.91 + 17571.9i −0.315196 + 1.10597i
\(633\) −592.842 −0.0372249
\(634\) −12792.1 + 5883.06i −0.801325 + 0.368527i
\(635\) 9443.45 0.590161
\(636\) 9120.69 10639.5i 0.568646 0.663337i
\(637\) −5178.56 11701.0i −0.322107 0.727801i
\(638\) −6556.97 14257.5i −0.406885 0.884731i
\(639\) 713.970i 0.0442006i
\(640\) −12125.3 1513.95i −0.748899 0.0935065i
\(641\) −4067.71 −0.250647 −0.125324 0.992116i \(-0.539997\pi\)
−0.125324 + 0.992116i \(0.539997\pi\)
\(642\) −14473.2 + 6656.18i −0.889738 + 0.409188i
\(643\) 14570.0 0.893603 0.446801 0.894633i \(-0.352563\pi\)
0.446801 + 0.894633i \(0.352563\pi\)
\(644\) 8561.07 + 7338.99i 0.523841 + 0.449063i
\(645\) −4071.78 −0.248567
\(646\) −26752.4 + 12303.3i −1.62935 + 0.749332i
\(647\) 19304.6 1.17302 0.586509 0.809943i \(-0.300502\pi\)
0.586509 + 0.809943i \(0.300502\pi\)
\(648\) −502.343 + 1762.64i −0.0304535 + 0.106856i
\(649\) 13645.5 0.825319
\(650\) −5347.84 4719.64i −0.322707 0.284799i
\(651\) 1490.23i 0.0897186i
\(652\) −12955.3 + 15112.6i −0.778173 + 0.907754i
\(653\) 1649.08i 0.0988260i 0.998778 + 0.0494130i \(0.0157351\pi\)
−0.998778 + 0.0494130i \(0.984265\pi\)
\(654\) −3845.45 8361.54i −0.229922 0.499942i
\(655\) 24705.6i 1.47378i
\(656\) 13372.7 2067.88i 0.795910 0.123075i
\(657\) 365.834i 0.0217238i
\(658\) 11597.0 5333.44i 0.687081 0.315987i
\(659\) 16643.2i 0.983803i −0.870651 0.491902i \(-0.836302\pi\)
0.870651 0.491902i \(-0.163698\pi\)
\(660\) 8884.96 + 7616.64i 0.524010 + 0.449208i
\(661\) −5394.04 −0.317403 −0.158702 0.987327i \(-0.550731\pi\)
−0.158702 + 0.987327i \(0.550731\pi\)
\(662\) −23911.8 + 10997.0i −1.40387 + 0.645634i
\(663\) 9283.52 4108.66i 0.543804 0.240674i
\(664\) 8620.58 30248.1i 0.503830 1.76785i
\(665\) 10180.6i 0.593663i
\(666\) 4339.42 1995.69i 0.252476 0.116113i
\(667\) 16174.0i 0.938918i
\(668\) −17648.2 15128.9i −1.02220 0.876282i
\(669\) −8084.67 −0.467222
\(670\) −13867.6 + 6377.65i −0.799627 + 0.367746i
\(671\) 25346.8i 1.45827i
\(672\) 2507.10 + 3789.56i 0.143919 + 0.217538i
\(673\) −29896.5 −1.71237 −0.856186 0.516668i \(-0.827172\pi\)
−0.856186 + 0.516668i \(0.827172\pi\)
\(674\) 23356.0 10741.3i 1.33477 0.613859i
\(675\) 1452.62i 0.0828319i
\(676\) 2184.94 + 17439.7i 0.124314 + 0.992243i
\(677\) 5527.06i 0.313770i 0.987617 + 0.156885i \(0.0501452\pi\)
−0.987617 + 0.156885i \(0.949855\pi\)
\(678\) 1394.08 + 3031.28i 0.0789665 + 0.171705i
\(679\) −8384.29 −0.473873
\(680\) −3778.08 + 13256.7i −0.213063 + 0.747602i
\(681\) 2475.17i 0.139278i
\(682\) −4054.55 8816.21i −0.227649 0.495000i
\(683\) −1482.94 −0.0830790 −0.0415395 0.999137i \(-0.513226\pi\)
−0.0415395 + 0.999137i \(0.513226\pi\)
\(684\) 6757.20 7882.40i 0.377731 0.440630i
\(685\) 3088.47i 0.172269i
\(686\) −6091.05 13244.4i −0.339005 0.737133i
\(687\) 2516.75i 0.139767i
\(688\) 10173.6 1573.18i 0.563756 0.0871759i
\(689\) 25027.4 11076.5i 1.38384 0.612455i
\(690\) −5039.64 10958.2i −0.278052 0.604596i
\(691\) −18752.3 −1.03237 −0.516187 0.856476i \(-0.672649\pi\)
−0.516187 + 0.856476i \(0.672649\pi\)
\(692\) 14210.0 + 12181.6i 0.780614 + 0.669182i
\(693\) 4351.70i 0.238539i
\(694\) −3.81147 8.28766i −0.000208475 0.000453307i
\(695\) 14172.0i 0.773489i
\(696\) −1786.30 + 6267.83i −0.0972839 + 0.341353i
\(697\) 15264.8i 0.829547i
\(698\) −31504.6 + 14488.9i −1.70840 + 0.785690i
\(699\) 1459.25i 0.0789612i
\(700\) −2734.13 2343.84i −0.147629 0.126555i
\(701\) 30930.9i 1.66654i 0.552867 + 0.833269i \(0.313534\pi\)
−0.552867 + 0.833269i \(0.686466\pi\)
\(702\) −2368.55 + 2683.81i −0.127344 + 0.144294i
\(703\) −27056.3 −1.45156
\(704\) −25142.4 15597.8i −1.34601 0.835036i
\(705\) −13653.6 −0.729399
\(706\) −9486.10 20626.6i −0.505686 1.09956i
\(707\) −5935.51 −0.315739
\(708\) −4302.53 3688.35i −0.228389 0.195786i
\(709\) 15172.9 0.803711 0.401855 0.915703i \(-0.368365\pi\)
0.401855 + 0.915703i \(0.368365\pi\)
\(710\) 791.075 + 1720.11i 0.0418148 + 0.0909221i
\(711\) −7267.48 −0.383336
\(712\) 22890.3 + 6523.62i 1.20484 + 0.343375i
\(713\) 10001.3i 0.525318i
\(714\) 4656.90 2141.70i 0.244090 0.112256i
\(715\) 9249.93 + 20900.2i 0.483815 + 1.09318i
\(716\) 25643.6 + 21983.0i 1.33847 + 1.14741i
\(717\) 2072.71 0.107959
\(718\) 7047.89 + 15324.9i 0.366330 + 0.796547i
\(719\) −7513.99 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(720\) −742.735 4803.18i −0.0384446 0.248616i
\(721\) 4482.07i 0.231513i
\(722\) −35806.7 + 16467.4i −1.84569 + 0.848828i
\(723\) 3015.25 0.155101
\(724\) −18649.5 15987.3i −0.957324 0.820667i
\(725\) 5165.44i 0.264607i
\(726\) 7120.97 + 15483.8i 0.364027 + 0.791541i
\(727\) 9581.83 0.488818 0.244409 0.969672i \(-0.421406\pi\)
0.244409 + 0.969672i \(0.421406\pi\)
\(728\) 1229.77 + 8788.48i 0.0626078 + 0.447421i
\(729\) −729.000 −0.0370370
\(730\) −405.342 881.375i −0.0205512 0.0446865i
\(731\) 11613.0i 0.587582i
\(732\) 6851.19 7992.05i 0.345939 0.403545i
\(733\) 1242.65 0.0626170 0.0313085 0.999510i \(-0.490033\pi\)
0.0313085 + 0.999510i \(0.490033\pi\)
\(734\) 24521.0 11277.1i 1.23309 0.567093i
\(735\) 6910.48i 0.346798i
\(736\) 16825.7 + 25432.6i 0.842668 + 1.27372i
\(737\) −36959.1 −1.84723
\(738\) 2248.83 + 4889.85i 0.112169 + 0.243900i
\(739\) −7607.91 −0.378703 −0.189351 0.981909i \(-0.560639\pi\)
−0.189351 + 0.981909i \(0.560639\pi\)
\(740\) −8243.42 + 9616.11i −0.409506 + 0.477696i
\(741\) 18541.9 8206.19i 0.919236 0.406831i
\(742\) 12554.5 5773.79i 0.621147 0.285664i
\(743\) 23962.7i 1.18318i −0.806238 0.591591i \(-0.798500\pi\)
0.806238 0.591591i \(-0.201500\pi\)
\(744\) −1104.57 + 3875.76i −0.0544296 + 0.190984i
\(745\) 5855.74 0.287970
\(746\) 8414.48 + 18296.4i 0.412970 + 0.897962i
\(747\) 12510.2 0.612749
\(748\) −21723.2 + 25340.5i −1.06187 + 1.23869i
\(749\) −15708.5 −0.766325
\(750\) 5348.98 + 11630.8i 0.260423 + 0.566264i
\(751\) −14661.3 −0.712383 −0.356192 0.934413i \(-0.615925\pi\)
−0.356192 + 0.934413i \(0.615925\pi\)
\(752\) 34114.5 5275.26i 1.65429 0.255810i
\(753\) 7506.94 0.363304
\(754\) −8422.43 + 9543.49i −0.406800 + 0.460946i
\(755\) 12360.2i 0.595807i
\(756\) −1176.26 + 1372.12i −0.0565873 + 0.0660102i
\(757\) 6391.51i 0.306874i 0.988158 + 0.153437i \(0.0490342\pi\)
−0.988158 + 0.153437i \(0.950966\pi\)
\(758\) 4491.97 2065.84i 0.215245 0.0989906i
\(759\) 29205.3i 1.39668i
\(760\) −7545.94 + 26477.4i −0.360158 + 1.26373i
\(761\) 3654.75i 0.174093i 0.996204 + 0.0870464i \(0.0277428\pi\)
−0.996204 + 0.0870464i \(0.972257\pi\)
\(762\) −3967.87 8627.74i −0.188636 0.410171i
\(763\) 9075.22i 0.430597i
\(764\) −3248.87 + 3789.87i −0.153848 + 0.179467i
\(765\) −5482.76 −0.259123
\(766\) 6576.81 + 14300.6i 0.310222 + 0.674546i
\(767\) −4479.27 10120.9i −0.210870 0.476461i
\(768\) 3711.54 + 11714.1i 0.174386 + 0.550384i
\(769\) 13844.0i 0.649188i −0.945853 0.324594i \(-0.894772\pi\)
0.945853 0.324594i \(-0.105228\pi\)
\(770\) 4821.66 + 10484.2i 0.225663 + 0.490682i
\(771\) 5416.91i 0.253029i
\(772\) −1199.50 1028.27i −0.0559208 0.0479382i
\(773\) 9330.55 0.434148 0.217074 0.976155