Properties

Label 312.4.m.a.181.1
Level $312$
Weight $4$
Character 312.181
Analytic conductor $18.409$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(181,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.181");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.1
Character \(\chi\) \(=\) 312.181
Dual form 312.4.m.a.181.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.82580 - 0.121986i) q^{2} +3.00000i q^{3} +(7.97024 + 0.689413i) q^{4} +14.7613 q^{5} +(0.365957 - 8.47739i) q^{6} +28.6139i q^{7} +(-22.4382 - 2.92040i) q^{8} -9.00000 q^{9} +(-41.7123 - 1.80066i) q^{10} -55.0376 q^{11} +(-2.06824 + 23.9107i) q^{12} +(-21.7849 - 41.5020i) q^{13} +(3.49048 - 80.8570i) q^{14} +44.2838i q^{15} +(63.0494 + 10.9896i) q^{16} -111.642 q^{17} +(25.4322 + 1.09787i) q^{18} -80.7496 q^{19} +(117.651 + 10.1766i) q^{20} -85.8416 q^{21} +(155.525 + 6.71381i) q^{22} +137.660 q^{23} +(8.76119 - 67.3145i) q^{24} +92.8946 q^{25} +(56.4971 + 119.934i) q^{26} -27.0000i q^{27} +(-19.7268 + 228.059i) q^{28} -147.608i q^{29} +(5.40199 - 125.137i) q^{30} +231.530i q^{31} +(-176.824 - 38.7454i) q^{32} -165.113i q^{33} +(315.477 + 13.6187i) q^{34} +422.377i q^{35} +(-71.7322 - 6.20472i) q^{36} -86.8675 q^{37} +(228.182 + 9.85030i) q^{38} +(124.506 - 65.3548i) q^{39} +(-331.215 - 43.1087i) q^{40} -122.051i q^{41} +(242.571 + 10.4715i) q^{42} -136.295i q^{43} +(-438.663 - 37.9437i) q^{44} -132.851 q^{45} +(-388.998 - 16.7925i) q^{46} -554.463i q^{47} +(-32.9687 + 189.148i) q^{48} -475.754 q^{49} +(-262.501 - 11.3318i) q^{50} -334.926i q^{51} +(-145.019 - 345.800i) q^{52} -124.279i q^{53} +(-3.29361 + 76.2965i) q^{54} -812.425 q^{55} +(83.5639 - 642.043i) q^{56} -242.249i q^{57} +(-18.0061 + 417.110i) q^{58} +348.526 q^{59} +(-30.5298 + 352.952i) q^{60} +674.715i q^{61} +(28.2433 - 654.256i) q^{62} -257.525i q^{63} +(494.943 + 131.057i) q^{64} +(-321.573 - 612.622i) q^{65} +(-20.1414 + 466.575i) q^{66} -156.911 q^{67} +(-889.812 - 76.9674i) q^{68} +412.979i q^{69} +(51.5239 - 1193.55i) q^{70} +1140.34i q^{71} +(201.943 + 26.2836i) q^{72} +775.178i q^{73} +(245.470 + 10.5966i) q^{74} +278.684i q^{75} +(-643.594 - 55.6699i) q^{76} -1574.84i q^{77} +(-359.801 + 169.491i) q^{78} -1100.02 q^{79} +(930.688 + 162.220i) q^{80} +81.0000 q^{81} +(-14.8885 + 344.892i) q^{82} -446.367 q^{83} +(-684.178 - 59.1804i) q^{84} -1647.97 q^{85} +(-16.6261 + 385.143i) q^{86} +442.824 q^{87} +(1234.94 + 160.732i) q^{88} -843.694i q^{89} +(375.411 + 16.2060i) q^{90} +(1187.53 - 623.351i) q^{91} +(1097.18 + 94.9044i) q^{92} -694.589 q^{93} +(-67.6366 + 1566.80i) q^{94} -1191.97 q^{95} +(116.236 - 530.473i) q^{96} +321.958i q^{97} +(1344.38 + 58.0352i) q^{98} +495.339 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 36 q^{10} + 12 q^{12} - 208 q^{14} - 148 q^{16} - 104 q^{17} + 620 q^{22} + 2188 q^{25} + 444 q^{26} - 204 q^{30} - 40 q^{38} - 1924 q^{40} + 192 q^{42} + 624 q^{48} - 3396 q^{49} - 1292 q^{52}+ \cdots + 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.82580 0.121986i −0.999070 0.0431285i
\(3\) 3.00000i 0.577350i
\(4\) 7.97024 + 0.689413i 0.996280 + 0.0861767i
\(5\) 14.7613 1.32029 0.660143 0.751140i \(-0.270496\pi\)
0.660143 + 0.751140i \(0.270496\pi\)
\(6\) 0.365957 8.47739i 0.0249002 0.576813i
\(7\) 28.6139i 1.54500i 0.635012 + 0.772502i \(0.280995\pi\)
−0.635012 + 0.772502i \(0.719005\pi\)
\(8\) −22.4382 2.92040i −0.991636 0.129065i
\(9\) −9.00000 −0.333333
\(10\) −41.7123 1.80066i −1.31906 0.0569419i
\(11\) −55.0376 −1.50859 −0.754294 0.656536i \(-0.772021\pi\)
−0.754294 + 0.656536i \(0.772021\pi\)
\(12\) −2.06824 + 23.9107i −0.0497541 + 0.575202i
\(13\) −21.7849 41.5020i −0.464773 0.885430i
\(14\) 3.49048 80.8570i 0.0666337 1.54357i
\(15\) 44.2838i 0.762268i
\(16\) 63.0494 + 10.9896i 0.985147 + 0.171712i
\(17\) −111.642 −1.59277 −0.796386 0.604788i \(-0.793258\pi\)
−0.796386 + 0.604788i \(0.793258\pi\)
\(18\) 25.4322 + 1.09787i 0.333023 + 0.0143762i
\(19\) −80.7496 −0.975012 −0.487506 0.873120i \(-0.662093\pi\)
−0.487506 + 0.873120i \(0.662093\pi\)
\(20\) 117.651 + 10.1766i 1.31538 + 0.113778i
\(21\) −85.8416 −0.892009
\(22\) 155.525 + 6.71381i 1.50718 + 0.0650631i
\(23\) 137.660 1.24800 0.624000 0.781424i \(-0.285506\pi\)
0.624000 + 0.781424i \(0.285506\pi\)
\(24\) 8.76119 67.3145i 0.0745154 0.572521i
\(25\) 92.8946 0.743157
\(26\) 56.4971 + 119.934i 0.426153 + 0.904651i
\(27\) 27.0000i 0.192450i
\(28\) −19.7268 + 228.059i −0.133143 + 1.53926i
\(29\) 147.608i 0.945177i −0.881283 0.472588i \(-0.843320\pi\)
0.881283 0.472588i \(-0.156680\pi\)
\(30\) 5.40199 125.137i 0.0328754 0.761559i
\(31\) 231.530i 1.34142i 0.741720 + 0.670709i \(0.234010\pi\)
−0.741720 + 0.670709i \(0.765990\pi\)
\(32\) −176.824 38.7454i −0.976825 0.214040i
\(33\) 165.113i 0.870984i
\(34\) 315.477 + 13.6187i 1.59129 + 0.0686938i
\(35\) 422.377i 2.03985i
\(36\) −71.7322 6.20472i −0.332093 0.0287256i
\(37\) −86.8675 −0.385971 −0.192985 0.981202i \(-0.561817\pi\)
−0.192985 + 0.981202i \(0.561817\pi\)
\(38\) 228.182 + 9.85030i 0.974105 + 0.0420508i
\(39\) 124.506 65.3548i 0.511203 0.268337i
\(40\) −331.215 43.1087i −1.30924 0.170402i
\(41\) 122.051i 0.464908i −0.972607 0.232454i \(-0.925324\pi\)
0.972607 0.232454i \(-0.0746755\pi\)
\(42\) 242.571 + 10.4715i 0.891179 + 0.0384710i
\(43\) 136.295i 0.483369i −0.970355 0.241684i \(-0.922300\pi\)
0.970355 0.241684i \(-0.0776999\pi\)
\(44\) −438.663 37.9437i −1.50298 0.130005i
\(45\) −132.851 −0.440096
\(46\) −388.998 16.7925i −1.24684 0.0538243i
\(47\) 554.463i 1.72078i −0.509634 0.860391i \(-0.670219\pi\)
0.509634 0.860391i \(-0.329781\pi\)
\(48\) −32.9687 + 189.148i −0.0991381 + 0.568775i
\(49\) −475.754 −1.38704
\(50\) −262.501 11.3318i −0.742465 0.0320512i
\(51\) 334.926i 0.919588i
\(52\) −145.019 345.800i −0.386741 0.922188i
\(53\) 124.279i 0.322096i −0.986947 0.161048i \(-0.948513\pi\)
0.986947 0.161048i \(-0.0514874\pi\)
\(54\) −3.29361 + 76.2965i −0.00830008 + 0.192271i
\(55\) −812.425 −1.99177
\(56\) 83.5639 642.043i 0.199405 1.53208i
\(57\) 242.249i 0.562924i
\(58\) −18.0061 + 417.110i −0.0407640 + 0.944297i
\(59\) 348.526 0.769054 0.384527 0.923114i \(-0.374365\pi\)
0.384527 + 0.923114i \(0.374365\pi\)
\(60\) −30.5298 + 352.952i −0.0656897 + 0.759432i
\(61\) 674.715i 1.41620i 0.706111 + 0.708101i \(0.250448\pi\)
−0.706111 + 0.708101i \(0.749552\pi\)
\(62\) 28.2433 654.256i 0.0578533 1.34017i
\(63\) 257.525i 0.515001i
\(64\) 494.943 + 131.057i 0.966685 + 0.255970i
\(65\) −321.573 612.622i −0.613634 1.16902i
\(66\) −20.1414 + 466.575i −0.0375642 + 0.870174i
\(67\) −156.911 −0.286115 −0.143057 0.989714i \(-0.545693\pi\)
−0.143057 + 0.989714i \(0.545693\pi\)
\(68\) −889.812 76.9674i −1.58685 0.137260i
\(69\) 412.979i 0.720533i
\(70\) 51.5239 1193.55i 0.0879755 2.03795i
\(71\) 1140.34i 1.90611i 0.302798 + 0.953055i \(0.402079\pi\)
−0.302798 + 0.953055i \(0.597921\pi\)
\(72\) 201.943 + 26.2836i 0.330545 + 0.0430215i
\(73\) 775.178i 1.24285i 0.783476 + 0.621423i \(0.213445\pi\)
−0.783476 + 0.621423i \(0.786555\pi\)
\(74\) 245.470 + 10.5966i 0.385612 + 0.0166463i
\(75\) 278.684i 0.429062i
\(76\) −643.594 55.6699i −0.971385 0.0840233i
\(77\) 1574.84i 2.33078i
\(78\) −359.801 + 169.491i −0.522300 + 0.246040i
\(79\) −1100.02 −1.56661 −0.783307 0.621635i \(-0.786469\pi\)
−0.783307 + 0.621635i \(0.786469\pi\)
\(80\) 930.688 + 162.220i 1.30068 + 0.226709i
\(81\) 81.0000 0.111111
\(82\) −14.8885 + 344.892i −0.0200508 + 0.464475i
\(83\) −446.367 −0.590302 −0.295151 0.955451i \(-0.595370\pi\)
−0.295151 + 0.955451i \(0.595370\pi\)
\(84\) −684.178 59.1804i −0.888690 0.0768703i
\(85\) −1647.97 −2.10292
\(86\) −16.6261 + 385.143i −0.0208470 + 0.482919i
\(87\) 442.824 0.545698
\(88\) 1234.94 + 160.732i 1.49597 + 0.194705i
\(89\) 843.694i 1.00485i −0.864622 0.502424i \(-0.832442\pi\)
0.864622 0.502424i \(-0.167558\pi\)
\(90\) 375.411 + 16.2060i 0.439686 + 0.0189806i
\(91\) 1187.53 623.351i 1.36799 0.718076i
\(92\) 1097.18 + 94.9044i 1.24336 + 0.107549i
\(93\) −694.589 −0.774468
\(94\) −67.6366 + 1566.80i −0.0742147 + 1.71918i
\(95\) −1191.97 −1.28730
\(96\) 116.236 530.473i 0.123576 0.563970i
\(97\) 321.958i 0.337009i 0.985701 + 0.168505i \(0.0538938\pi\)
−0.985701 + 0.168505i \(0.946106\pi\)
\(98\) 1344.38 + 58.0352i 1.38575 + 0.0598208i
\(99\) 495.339 0.502863
\(100\) 740.392 + 64.0428i 0.740392 + 0.0640428i
\(101\) 691.497i 0.681253i 0.940199 + 0.340626i \(0.110639\pi\)
−0.940199 + 0.340626i \(0.889361\pi\)
\(102\) −40.8561 + 946.431i −0.0396604 + 0.918732i
\(103\) −201.424 −0.192689 −0.0963443 0.995348i \(-0.530715\pi\)
−0.0963443 + 0.995348i \(0.530715\pi\)
\(104\) 367.611 + 994.850i 0.346608 + 0.938010i
\(105\) −1267.13 −1.17771
\(106\) −15.1603 + 351.188i −0.0138915 + 0.321796i
\(107\) 281.181i 0.254044i 0.991900 + 0.127022i \(0.0405420\pi\)
−0.991900 + 0.127022i \(0.959458\pi\)
\(108\) 18.6142 215.196i 0.0165847 0.191734i
\(109\) 1051.22 0.923752 0.461876 0.886945i \(-0.347177\pi\)
0.461876 + 0.886945i \(0.347177\pi\)
\(110\) 2295.75 + 99.1042i 1.98992 + 0.0859020i
\(111\) 260.602i 0.222840i
\(112\) −314.454 + 1804.09i −0.265296 + 1.52206i
\(113\) −478.806 −0.398604 −0.199302 0.979938i \(-0.563867\pi\)
−0.199302 + 0.979938i \(0.563867\pi\)
\(114\) −29.5509 + 684.546i −0.0242780 + 0.562400i
\(115\) 2032.03 1.64772
\(116\) 101.763 1176.47i 0.0814522 0.941660i
\(117\) 196.064 + 373.518i 0.154924 + 0.295143i
\(118\) −984.863 42.5152i −0.768339 0.0331681i
\(119\) 3194.51i 2.46084i
\(120\) 129.326 993.646i 0.0983817 0.755892i
\(121\) 1698.14 1.27584
\(122\) 82.3055 1906.61i 0.0610786 1.41488i
\(123\) 366.154 0.268415
\(124\) −159.620 + 1845.35i −0.115599 + 1.33643i
\(125\) −473.916 −0.339107
\(126\) −31.4144 + 727.713i −0.0222112 + 0.514522i
\(127\) −365.896 −0.255654 −0.127827 0.991796i \(-0.540800\pi\)
−0.127827 + 0.991796i \(0.540800\pi\)
\(128\) −1382.62 430.715i −0.954746 0.297424i
\(129\) 408.886 0.279073
\(130\) 833.968 + 1770.37i 0.562645 + 1.19440i
\(131\) 126.112i 0.0841104i 0.999115 + 0.0420552i \(0.0133905\pi\)
−0.999115 + 0.0420552i \(0.986609\pi\)
\(132\) 113.831 1315.99i 0.0750585 0.867744i
\(133\) 2310.56i 1.50640i
\(134\) 443.397 + 19.1409i 0.285849 + 0.0123397i
\(135\) 398.554i 0.254089i
\(136\) 2505.04 + 326.039i 1.57945 + 0.205570i
\(137\) 6.22945i 0.00388480i −0.999998 0.00194240i \(-0.999382\pi\)
0.999998 0.00194240i \(-0.000618285\pi\)
\(138\) 50.3775 1166.99i 0.0310755 0.719863i
\(139\) 2639.98i 1.61094i 0.592638 + 0.805469i \(0.298087\pi\)
−0.592638 + 0.805469i \(0.701913\pi\)
\(140\) −291.192 + 3366.44i −0.175787 + 2.03226i
\(141\) 1663.39 0.993494
\(142\) 139.106 3222.38i 0.0822076 1.90434i
\(143\) 1198.99 + 2284.17i 0.701151 + 1.33575i
\(144\) −567.445 98.9062i −0.328382 0.0572374i
\(145\) 2178.88i 1.24790i
\(146\) 94.5606 2190.49i 0.0536020 1.24169i
\(147\) 1427.26i 0.800807i
\(148\) −692.354 59.8876i −0.384535 0.0332617i
\(149\) −2423.27 −1.33236 −0.666181 0.745790i \(-0.732072\pi\)
−0.666181 + 0.745790i \(0.732072\pi\)
\(150\) 33.9954 787.503i 0.0185048 0.428663i
\(151\) 1708.00i 0.920497i −0.887790 0.460249i \(-0.847760\pi\)
0.887790 0.460249i \(-0.152240\pi\)
\(152\) 1811.87 + 235.821i 0.966858 + 0.125840i
\(153\) 1004.78 0.530924
\(154\) −192.108 + 4450.18i −0.100523 + 2.32861i
\(155\) 3417.67i 1.77106i
\(156\) 1037.40 435.057i 0.532426 0.223285i
\(157\) 442.408i 0.224892i 0.993658 + 0.112446i \(0.0358685\pi\)
−0.993658 + 0.112446i \(0.964131\pi\)
\(158\) 3108.45 + 134.187i 1.56516 + 0.0675656i
\(159\) 372.838 0.185962
\(160\) −2610.15 571.931i −1.28969 0.282595i
\(161\) 3938.97i 1.92817i
\(162\) −228.889 9.88084i −0.111008 0.00479205i
\(163\) −2348.15 −1.12835 −0.564176 0.825654i \(-0.690806\pi\)
−0.564176 + 0.825654i \(0.690806\pi\)
\(164\) 84.1439 972.779i 0.0400642 0.463179i
\(165\) 2437.27i 1.14995i
\(166\) 1261.34 + 54.4503i 0.589753 + 0.0254588i
\(167\) 1882.37i 0.872228i −0.899891 0.436114i \(-0.856354\pi\)
0.899891 0.436114i \(-0.143646\pi\)
\(168\) 1926.13 + 250.692i 0.884548 + 0.115127i
\(169\) −1247.83 + 1808.24i −0.567972 + 0.823048i
\(170\) 4656.84 + 201.029i 2.10096 + 0.0906956i
\(171\) 726.747 0.325004
\(172\) 93.9639 1086.31i 0.0416551 0.481571i
\(173\) 2162.16i 0.950207i 0.879930 + 0.475103i \(0.157589\pi\)
−0.879930 + 0.475103i \(0.842411\pi\)
\(174\) −1251.33 54.0182i −0.545190 0.0235351i
\(175\) 2658.07i 1.14818i
\(176\) −3470.09 604.841i −1.48618 0.259043i
\(177\) 1045.58i 0.444014i
\(178\) −102.919 + 2384.11i −0.0433375 + 1.00391i
\(179\) 3698.91i 1.54452i 0.635304 + 0.772262i \(0.280875\pi\)
−0.635304 + 0.772262i \(0.719125\pi\)
\(180\) −1058.86 91.5895i −0.438458 0.0379260i
\(181\) 1667.31i 0.684698i −0.939573 0.342349i \(-0.888778\pi\)
0.939573 0.342349i \(-0.111222\pi\)
\(182\) −3431.77 + 1616.60i −1.39769 + 0.658409i
\(183\) −2024.14 −0.817645
\(184\) −3088.83 402.021i −1.23756 0.161073i
\(185\) −1282.27 −0.509592
\(186\) 1962.77 + 84.7300i 0.773748 + 0.0334016i
\(187\) 6144.51 2.40284
\(188\) 382.254 4419.20i 0.148291 1.71438i
\(189\) 772.575 0.297336
\(190\) 3368.25 + 145.403i 1.28610 + 0.0555191i
\(191\) 1529.96 0.579604 0.289802 0.957087i \(-0.406411\pi\)
0.289802 + 0.957087i \(0.406411\pi\)
\(192\) −393.170 + 1484.83i −0.147784 + 0.558116i
\(193\) 2760.18i 1.02944i −0.857358 0.514721i \(-0.827895\pi\)
0.857358 0.514721i \(-0.172105\pi\)
\(194\) 39.2743 909.788i 0.0145347 0.336696i
\(195\) 1837.87 964.718i 0.674935 0.354282i
\(196\) −3791.87 327.991i −1.38188 0.119530i
\(197\) −2397.70 −0.867154 −0.433577 0.901117i \(-0.642749\pi\)
−0.433577 + 0.901117i \(0.642749\pi\)
\(198\) −1399.73 60.4243i −0.502395 0.0216877i
\(199\) 1900.64 0.677050 0.338525 0.940957i \(-0.390072\pi\)
0.338525 + 0.940957i \(0.390072\pi\)
\(200\) −2084.38 271.289i −0.736941 0.0959152i
\(201\) 470.732i 0.165188i
\(202\) 84.3528 1954.03i 0.0293814 0.680619i
\(203\) 4223.64 1.46030
\(204\) 230.902 2669.44i 0.0792470 0.916167i
\(205\) 1801.63i 0.613812i
\(206\) 569.184 + 24.5709i 0.192509 + 0.00831036i
\(207\) −1238.94 −0.416000
\(208\) −917.437 2856.08i −0.305831 0.952086i
\(209\) 4444.27 1.47089
\(210\) 3580.65 + 154.572i 1.17661 + 0.0507927i
\(211\) 2966.19i 0.967777i 0.875130 + 0.483888i \(0.160776\pi\)
−0.875130 + 0.483888i \(0.839224\pi\)
\(212\) 85.6799 990.536i 0.0277572 0.320898i
\(213\) −3421.03 −1.10049
\(214\) 34.3000 794.559i 0.0109565 0.253808i
\(215\) 2011.89i 0.638185i
\(216\) −78.8507 + 605.830i −0.0248385 + 0.190840i
\(217\) −6624.96 −2.07250
\(218\) −2970.54 128.234i −0.922892 0.0398400i
\(219\) −2325.53 −0.717557
\(220\) −6475.22 560.096i −1.98436 0.171644i
\(221\) 2432.11 + 4633.36i 0.740278 + 1.41029i
\(222\) −31.7898 + 736.409i −0.00961076 + 0.222633i
\(223\) 4484.95i 1.34679i 0.739282 + 0.673395i \(0.235165\pi\)
−0.739282 + 0.673395i \(0.764835\pi\)
\(224\) 1108.66 5059.63i 0.330693 1.50920i
\(225\) −836.051 −0.247719
\(226\) 1353.01 + 58.4075i 0.398233 + 0.0171912i
\(227\) −752.153 −0.219921 −0.109961 0.993936i \(-0.535073\pi\)
−0.109961 + 0.993936i \(0.535073\pi\)
\(228\) 167.010 1930.78i 0.0485109 0.560830i
\(229\) −566.263 −0.163405 −0.0817024 0.996657i \(-0.526036\pi\)
−0.0817024 + 0.996657i \(0.526036\pi\)
\(230\) −5742.10 247.878i −1.64619 0.0710636i
\(231\) 4724.52 1.34567
\(232\) −431.074 + 3312.05i −0.121989 + 0.937271i
\(233\) −1265.57 −0.355837 −0.177919 0.984045i \(-0.556936\pi\)
−0.177919 + 0.984045i \(0.556936\pi\)
\(234\) −508.474 1079.40i −0.142051 0.301550i
\(235\) 8184.57i 2.27193i
\(236\) 2777.83 + 240.278i 0.766193 + 0.0662745i
\(237\) 3300.07i 0.904485i
\(238\) −389.684 + 9027.02i −0.106132 + 2.45855i
\(239\) 1229.17i 0.332672i 0.986069 + 0.166336i \(0.0531936\pi\)
−0.986069 + 0.166336i \(0.946806\pi\)
\(240\) −486.660 + 2792.07i −0.130891 + 0.750946i
\(241\) 1452.65i 0.388272i 0.980975 + 0.194136i \(0.0621903\pi\)
−0.980975 + 0.194136i \(0.937810\pi\)
\(242\) −4798.60 207.149i −1.27465 0.0550250i
\(243\) 243.000i 0.0641500i
\(244\) −465.157 + 5377.64i −0.122044 + 1.41093i
\(245\) −7022.72 −1.83129
\(246\) −1034.68 44.6656i −0.268165 0.0115763i
\(247\) 1759.12 + 3351.27i 0.453160 + 0.863305i
\(248\) 676.159 5195.10i 0.173130 1.33020i
\(249\) 1339.10i 0.340811i
\(250\) 1339.19 + 57.8110i 0.338791 + 0.0146251i
\(251\) 3106.22i 0.781128i 0.920576 + 0.390564i \(0.127720\pi\)
−0.920576 + 0.390564i \(0.872280\pi\)
\(252\) 177.541 2052.53i 0.0443811 0.513085i
\(253\) −7576.46 −1.88272
\(254\) 1033.95 + 44.6341i 0.255416 + 0.0110260i
\(255\) 4943.92i 1.21412i
\(256\) 3854.46 + 1385.77i 0.941030 + 0.338324i
\(257\) −2214.32 −0.537452 −0.268726 0.963217i \(-0.586603\pi\)
−0.268726 + 0.963217i \(0.586603\pi\)
\(258\) −1155.43 49.8783i −0.278813 0.0120360i
\(259\) 2485.61i 0.596327i
\(260\) −2140.66 5104.44i −0.510609 1.21755i
\(261\) 1328.47i 0.315059i
\(262\) 15.3839 356.367i 0.00362755 0.0840321i
\(263\) 6539.84 1.53332 0.766662 0.642051i \(-0.221916\pi\)
0.766662 + 0.642051i \(0.221916\pi\)
\(264\) −482.195 + 3704.83i −0.112413 + 0.863699i
\(265\) 1834.52i 0.425259i
\(266\) −281.855 + 6529.17i −0.0649686 + 1.50500i
\(267\) 2531.08 0.580149
\(268\) −1250.62 108.176i −0.285050 0.0246564i
\(269\) 232.200i 0.0526299i −0.999654 0.0263150i \(-0.991623\pi\)
0.999654 0.0263150i \(-0.00837728\pi\)
\(270\) −48.6179 + 1126.23i −0.0109585 + 0.253853i
\(271\) 911.832i 0.204391i 0.994764 + 0.102195i \(0.0325867\pi\)
−0.994764 + 0.102195i \(0.967413\pi\)
\(272\) −7038.96 1226.90i −1.56912 0.273498i
\(273\) 1870.05 + 3562.60i 0.414582 + 0.789811i
\(274\) −0.759903 + 17.6031i −0.000167545 + 0.00388118i
\(275\) −5112.70 −1.12112
\(276\) −284.713 + 3291.54i −0.0620932 + 0.717853i
\(277\) 70.7636i 0.0153494i −0.999971 0.00767469i \(-0.997557\pi\)
0.999971 0.00767469i \(-0.00244295\pi\)
\(278\) 322.040 7460.05i 0.0694773 1.60944i
\(279\) 2083.77i 0.447139i
\(280\) 1233.51 9477.36i 0.263272 2.02279i
\(281\) 5851.66i 1.24228i −0.783700 0.621140i \(-0.786670\pi\)
0.783700 0.621140i \(-0.213330\pi\)
\(282\) −4700.40 202.910i −0.992570 0.0428479i
\(283\) 4078.19i 0.856620i −0.903632 0.428310i \(-0.859109\pi\)
0.903632 0.428310i \(-0.140891\pi\)
\(284\) −786.168 + 9088.80i −0.164262 + 1.89902i
\(285\) 3575.90i 0.743221i
\(286\) −3109.47 6600.87i −0.642890 1.36475i
\(287\) 3492.36 0.718285
\(288\) 1591.42 + 348.709i 0.325608 + 0.0713468i
\(289\) 7550.91 1.53692
\(290\) −265.792 + 6157.07i −0.0538202 + 1.24674i
\(291\) −965.875 −0.194572
\(292\) −534.418 + 6178.35i −0.107104 + 1.23822i
\(293\) −3461.38 −0.690157 −0.345078 0.938574i \(-0.612148\pi\)
−0.345078 + 0.938574i \(0.612148\pi\)
\(294\) −174.106 + 4033.15i −0.0345376 + 0.800061i
\(295\) 5144.68 1.01537
\(296\) 1949.15 + 253.687i 0.382743 + 0.0498151i
\(297\) 1486.02i 0.290328i
\(298\) 6847.66 + 295.604i 1.33112 + 0.0574627i
\(299\) −2998.90 5713.15i −0.580037 1.10502i
\(300\) −192.128 + 2221.18i −0.0369751 + 0.427466i
\(301\) 3899.94 0.746807
\(302\) −208.352 + 4826.46i −0.0396996 + 0.919641i
\(303\) −2074.49 −0.393321
\(304\) −5091.22 887.405i −0.960531 0.167422i
\(305\) 9959.63i 1.86979i
\(306\) −2839.29 122.568i −0.530430 0.0228979i
\(307\) −2864.72 −0.532567 −0.266284 0.963895i \(-0.585796\pi\)
−0.266284 + 0.963895i \(0.585796\pi\)
\(308\) 1085.72 12551.9i 0.200858 2.32210i
\(309\) 604.273i 0.111249i
\(310\) 416.907 9657.63i 0.0763830 1.76941i
\(311\) −10073.9 −1.83679 −0.918394 0.395667i \(-0.870513\pi\)
−0.918394 + 0.395667i \(0.870513\pi\)
\(312\) −2984.55 + 1102.83i −0.541560 + 0.200114i
\(313\) 2224.17 0.401653 0.200826 0.979627i \(-0.435637\pi\)
0.200826 + 0.979627i \(0.435637\pi\)
\(314\) 53.9675 1250.15i 0.00969924 0.224683i
\(315\) 3801.39i 0.679949i
\(316\) −8767.46 758.372i −1.56079 0.135006i
\(317\) 1680.26 0.297707 0.148853 0.988859i \(-0.452442\pi\)
0.148853 + 0.988859i \(0.452442\pi\)
\(318\) −1053.56 45.4809i −0.185789 0.00802026i
\(319\) 8124.00i 1.42588i
\(320\) 7305.97 + 1934.56i 1.27630 + 0.337954i
\(321\) −843.542 −0.146673
\(322\) 480.499 11130.7i 0.0831588 1.92637i
\(323\) 9015.04 1.55297
\(324\) 645.589 + 55.8425i 0.110698 + 0.00957519i
\(325\) −2023.70 3855.31i −0.345399 0.658013i
\(326\) 6635.40 + 286.441i 1.12730 + 0.0486641i
\(327\) 3153.67i 0.533328i
\(328\) −356.439 + 2738.61i −0.0600031 + 0.461020i
\(329\) 15865.3 2.65862
\(330\) −297.313 + 6887.24i −0.0495955 + 1.14888i
\(331\) −2578.08 −0.428109 −0.214055 0.976822i \(-0.568667\pi\)
−0.214055 + 0.976822i \(0.568667\pi\)
\(332\) −3557.65 307.731i −0.588106 0.0508703i
\(333\) 781.807 0.128657
\(334\) −229.622 + 5319.19i −0.0376179 + 0.871417i
\(335\) −2316.20 −0.377754
\(336\) −5412.26 943.363i −0.878760 0.153169i
\(337\) 10545.7 1.70462 0.852312 0.523033i \(-0.175200\pi\)
0.852312 + 0.523033i \(0.175200\pi\)
\(338\) 3746.70 4957.49i 0.602940 0.797786i
\(339\) 1436.42i 0.230134i
\(340\) −13134.7 1136.14i −2.09509 0.181222i
\(341\) 12742.9i 2.02365i
\(342\) −2053.64 88.6527i −0.324702 0.0140169i
\(343\) 3798.60i 0.597975i
\(344\) −398.037 + 3058.22i −0.0623858 + 0.479326i
\(345\) 6096.08i 0.951311i
\(346\) 263.752 6109.81i 0.0409810 0.949323i
\(347\) 8988.12i 1.39051i 0.718762 + 0.695256i \(0.244709\pi\)
−0.718762 + 0.695256i \(0.755291\pi\)
\(348\) 3529.41 + 305.289i 0.543668 + 0.0470264i
\(349\) 7103.89 1.08958 0.544789 0.838573i \(-0.316610\pi\)
0.544789 + 0.838573i \(0.316610\pi\)
\(350\) 324.247 7511.18i 0.0495193 1.14711i
\(351\) −1120.55 + 588.193i −0.170401 + 0.0894456i
\(352\) 9731.99 + 2132.46i 1.47363 + 0.322899i
\(353\) 3516.18i 0.530163i 0.964226 + 0.265081i \(0.0853988\pi\)
−0.964226 + 0.265081i \(0.914601\pi\)
\(354\) 127.546 2954.59i 0.0191496 0.443600i
\(355\) 16832.9i 2.51661i
\(356\) 581.654 6724.45i 0.0865944 1.00111i
\(357\) 9583.52 1.42077
\(358\) 451.215 10452.4i 0.0666130 1.54309i
\(359\) 250.400i 0.0368123i −0.999831 0.0184061i \(-0.994141\pi\)
0.999831 0.0184061i \(-0.00585918\pi\)
\(360\) 2980.94 + 387.978i 0.436415 + 0.0568007i
\(361\) −338.496 −0.0493507
\(362\) −203.388 + 4711.48i −0.0295300 + 0.684060i
\(363\) 5094.43i 0.736606i
\(364\) 9894.67 4149.56i 1.42478 0.597516i
\(365\) 11442.6i 1.64091i
\(366\) 5719.82 + 246.917i 0.816884 + 0.0352638i
\(367\) −5349.22 −0.760837 −0.380418 0.924814i \(-0.624220\pi\)
−0.380418 + 0.924814i \(0.624220\pi\)
\(368\) 8679.36 + 1512.82i 1.22946 + 0.214297i
\(369\) 1098.46i 0.154969i
\(370\) 3623.44 + 156.419i 0.509118 + 0.0219779i
\(371\) 3556.11 0.497640
\(372\) −5536.04 478.859i −0.771587 0.0667411i
\(373\) 4243.43i 0.589052i −0.955643 0.294526i \(-0.904838\pi\)
0.955643 0.294526i \(-0.0951617\pi\)
\(374\) −17363.1 749.542i −2.40060 0.103631i
\(375\) 1421.75i 0.195783i
\(376\) −1619.25 + 12441.1i −0.222092 + 1.70639i
\(377\) −6126.03 + 3215.63i −0.836888 + 0.439293i
\(378\) −2183.14 94.2431i −0.297060 0.0128237i
\(379\) 12409.0 1.68181 0.840904 0.541184i \(-0.182024\pi\)
0.840904 + 0.541184i \(0.182024\pi\)
\(380\) −9500.25 821.757i −1.28251 0.110935i
\(381\) 1097.69i 0.147602i
\(382\) −4323.37 186.634i −0.579065 0.0249974i
\(383\) 1993.05i 0.265900i 0.991123 + 0.132950i \(0.0424450\pi\)
−0.991123 + 0.132950i \(0.957555\pi\)
\(384\) 1292.15 4147.86i 0.171718 0.551223i
\(385\) 23246.6i 3.07729i
\(386\) −336.703 + 7799.71i −0.0443983 + 1.02848i
\(387\) 1226.66i 0.161123i
\(388\) −221.962 + 2566.08i −0.0290423 + 0.335756i
\(389\) 10815.9i 1.40974i 0.709337 + 0.704869i \(0.248994\pi\)
−0.709337 + 0.704869i \(0.751006\pi\)
\(390\) −5311.11 + 2501.90i −0.689586 + 0.324843i
\(391\) −15368.6 −1.98778
\(392\) 10675.0 + 1389.39i 1.37544 + 0.179017i
\(393\) −378.336 −0.0485612
\(394\) 6775.42 + 292.486i 0.866347 + 0.0373990i
\(395\) −16237.7 −2.06838
\(396\) 3947.97 + 341.493i 0.500992 + 0.0433351i
\(397\) −2230.69 −0.282003 −0.141002 0.990009i \(-0.545032\pi\)
−0.141002 + 0.990009i \(0.545032\pi\)
\(398\) −5370.83 231.851i −0.676420 0.0292001i
\(399\) 6931.68 0.869719
\(400\) 5856.95 + 1020.87i 0.732119 + 0.127609i
\(401\) 6529.51i 0.813137i 0.913620 + 0.406569i \(0.133275\pi\)
−0.913620 + 0.406569i \(0.866725\pi\)
\(402\) −57.4226 + 1330.19i −0.00712432 + 0.165035i
\(403\) 9608.95 5043.86i 1.18773 0.623455i
\(404\) −476.727 + 5511.40i −0.0587081 + 0.678718i
\(405\) 1195.66 0.146699
\(406\) −11935.1 515.224i −1.45894 0.0629806i
\(407\) 4780.98 0.582271
\(408\) −978.116 + 7515.12i −0.118686 + 0.911896i
\(409\) 4392.09i 0.530990i −0.964112 0.265495i \(-0.914465\pi\)
0.964112 0.265495i \(-0.0855354\pi\)
\(410\) −219.773 + 5091.04i −0.0264728 + 0.613241i
\(411\) 18.6883 0.00224289
\(412\) −1605.40 138.865i −0.191972 0.0166053i
\(413\) 9972.67i 1.18819i
\(414\) 3500.98 + 151.133i 0.415613 + 0.0179414i
\(415\) −6588.93 −0.779368
\(416\) 2244.09 + 8182.63i 0.264484 + 0.964390i
\(417\) −7919.95 −0.930076
\(418\) −12558.6 542.138i −1.46952 0.0634373i
\(419\) 2466.87i 0.287624i −0.989605 0.143812i \(-0.954064\pi\)
0.989605 0.143812i \(-0.0459360\pi\)
\(420\) −10099.3 873.576i −1.17333 0.101491i
\(421\) 13264.4 1.53555 0.767773 0.640721i \(-0.221365\pi\)
0.767773 + 0.640721i \(0.221365\pi\)
\(422\) 361.833 8381.85i 0.0417387 0.966876i
\(423\) 4990.17i 0.573594i
\(424\) −362.945 + 2788.60i −0.0415712 + 0.319402i
\(425\) −10370.9 −1.18368
\(426\) 9667.13 + 417.317i 1.09947 + 0.0474626i
\(427\) −19306.2 −2.18804
\(428\) −193.850 + 2241.08i −0.0218927 + 0.253099i
\(429\) −6852.52 + 3596.97i −0.771195 + 0.404810i
\(430\) −245.422 + 5685.19i −0.0275240 + 0.637592i
\(431\) 3549.54i 0.396695i 0.980132 + 0.198347i \(0.0635574\pi\)
−0.980132 + 0.198347i \(0.936443\pi\)
\(432\) 296.719 1702.33i 0.0330460 0.189592i
\(433\) 6541.59 0.726025 0.363012 0.931784i \(-0.381748\pi\)
0.363012 + 0.931784i \(0.381748\pi\)
\(434\) 18720.8 + 808.151i 2.07057 + 0.0893836i
\(435\) 6536.64 0.720478
\(436\) 8378.50 + 724.727i 0.920315 + 0.0796058i
\(437\) −11116.0 −1.21682
\(438\) 6571.48 + 283.682i 0.716889 + 0.0309471i
\(439\) 12339.3 1.34151 0.670754 0.741680i \(-0.265971\pi\)
0.670754 + 0.741680i \(0.265971\pi\)
\(440\) 18229.3 + 2372.60i 1.97511 + 0.257067i
\(441\) 4281.79 0.462346
\(442\) −6307.44 13389.6i −0.678765 1.44090i
\(443\) 15712.9i 1.68520i −0.538542 0.842599i \(-0.681025\pi\)
0.538542 0.842599i \(-0.318975\pi\)
\(444\) 179.663 2077.06i 0.0192036 0.222011i
\(445\) 12454.0i 1.32669i
\(446\) 547.100 12673.5i 0.0580850 1.34554i
\(447\) 7269.81i 0.769240i
\(448\) −3750.04 + 14162.2i −0.395475 + 1.49353i
\(449\) 17297.9i 1.81813i −0.416660 0.909063i \(-0.636799\pi\)
0.416660 0.909063i \(-0.363201\pi\)
\(450\) 2362.51 + 101.986i 0.247488 + 0.0106837i
\(451\) 6717.42i 0.701355i
\(452\) −3816.20 330.095i −0.397121 0.0343504i
\(453\) 5124.00 0.531449
\(454\) 2125.43 + 91.7520i 0.219717 + 0.00948488i
\(455\) 17529.5 9201.44i 1.80614 0.948067i
\(456\) −707.463 + 5435.62i −0.0726535 + 0.558216i
\(457\) 2827.39i 0.289408i −0.989475 0.144704i \(-0.953777\pi\)
0.989475 0.144704i \(-0.0462230\pi\)
\(458\) 1600.14 + 69.0760i 0.163253 + 0.00704740i
\(459\) 3014.33i 0.306529i
\(460\) 16195.7 + 1400.91i 1.64159 + 0.141995i
\(461\) 17075.0 1.72508 0.862540 0.505989i \(-0.168872\pi\)
0.862540 + 0.505989i \(0.168872\pi\)
\(462\) −13350.5 576.324i −1.34442 0.0580369i
\(463\) 5646.99i 0.566820i −0.958999 0.283410i \(-0.908534\pi\)
0.958999 0.283410i \(-0.0914658\pi\)
\(464\) 1622.15 9306.60i 0.162298 0.931138i
\(465\) −10253.0 −1.02252
\(466\) 3576.23 + 154.381i 0.355506 + 0.0153467i
\(467\) 1150.82i 0.114034i −0.998373 0.0570168i \(-0.981841\pi\)
0.998373 0.0570168i \(-0.0181589\pi\)
\(468\) 1305.17 + 3112.20i 0.128914 + 0.307396i
\(469\) 4489.82i 0.442049i
\(470\) −998.401 + 23127.9i −0.0979847 + 2.26981i
\(471\) −1327.22 −0.129841
\(472\) −7820.28 1017.83i −0.762622 0.0992576i
\(473\) 7501.38i 0.729205i
\(474\) −402.562 + 9325.34i −0.0390090 + 0.903643i
\(475\) −7501.21 −0.724587
\(476\) 2202.34 25461.0i 0.212067 2.45169i
\(477\) 1118.51i 0.107365i
\(478\) 149.942 3473.39i 0.0143476 0.332362i
\(479\) 4098.99i 0.390997i 0.980704 + 0.195498i \(0.0626325\pi\)
−0.980704 + 0.195498i \(0.937368\pi\)
\(480\) 1715.79 7830.44i 0.163156 0.744602i
\(481\) 1892.40 + 3605.17i 0.179389 + 0.341750i
\(482\) 177.203 4104.90i 0.0167456 0.387911i
\(483\) −11816.9 −1.11323
\(484\) 13534.6 + 1170.72i 1.27109 + 0.109948i
\(485\) 4752.51i 0.444949i
\(486\) 29.6425 686.668i 0.00276669 0.0640903i
\(487\) 4666.70i 0.434226i 0.976146 + 0.217113i \(0.0696641\pi\)
−0.976146 + 0.217113i \(0.930336\pi\)
\(488\) 1970.43 15139.4i 0.182781 1.40436i
\(489\) 7044.46i 0.651455i
\(490\) 19844.8 + 856.672i 1.82958 + 0.0789806i
\(491\) 6201.94i 0.570040i −0.958522 0.285020i \(-0.908000\pi\)
0.958522 0.285020i \(-0.0920003\pi\)
\(492\) 2918.34 + 252.432i 0.267416 + 0.0231311i
\(493\) 16479.2i 1.50545i
\(494\) −4562.12 9684.60i −0.415505 0.882046i
\(495\) 7311.82 0.663923
\(496\) −2544.41 + 14597.8i −0.230338 + 1.32149i
\(497\) −32629.6 −2.94495
\(498\) −163.351 + 3784.02i −0.0146987 + 0.340494i
\(499\) −6586.27 −0.590866 −0.295433 0.955363i \(-0.595464\pi\)
−0.295433 + 0.955363i \(0.595464\pi\)
\(500\) −3777.22 326.724i −0.337845 0.0292231i
\(501\) 5647.11 0.503581
\(502\) 378.915 8777.55i 0.0336888 0.780401i
\(503\) −21802.5 −1.93265 −0.966327 0.257316i \(-0.917162\pi\)
−0.966327 + 0.257316i \(0.917162\pi\)
\(504\) −752.075 + 5778.39i −0.0664684 + 0.510694i
\(505\) 10207.4i 0.899449i
\(506\) 21409.5 + 924.220i 1.88097 + 0.0811988i
\(507\) −5424.71 3743.50i −0.475187 0.327919i
\(508\) −2916.28 252.254i −0.254703 0.0220314i
\(509\) 15007.7 1.30689 0.653444 0.756975i \(-0.273323\pi\)
0.653444 + 0.756975i \(0.273323\pi\)
\(510\) −603.088 + 13970.5i −0.0523631 + 1.21299i
\(511\) −22180.8 −1.92020
\(512\) −10722.9 4386.10i −0.925563 0.378594i
\(513\) 2180.24i 0.187641i
\(514\) 6257.21 + 270.115i 0.536952 + 0.0231795i
\(515\) −2973.27 −0.254404
\(516\) 3258.92 + 281.892i 0.278035 + 0.0240496i
\(517\) 30516.4i 2.59595i
\(518\) −303.210 + 7023.84i −0.0257187 + 0.595772i
\(519\) −6486.47 −0.548602
\(520\) 5426.40 + 14685.2i 0.457622 + 1.23844i
\(521\) −6194.23 −0.520872 −0.260436 0.965491i \(-0.583866\pi\)
−0.260436 + 0.965491i \(0.583866\pi\)
\(522\) 162.055 3753.99i 0.0135880 0.314766i
\(523\) 15166.5i 1.26804i −0.773316 0.634021i \(-0.781403\pi\)
0.773316 0.634021i \(-0.218597\pi\)
\(524\) −86.9433 + 1005.14i −0.00724835 + 0.0837975i
\(525\) −7974.22 −0.662902
\(526\) −18480.3 797.768i −1.53190 0.0661299i
\(527\) 25848.4i 2.13657i
\(528\) 1814.52 10410.3i 0.149559 0.858047i
\(529\) 6783.16 0.557505
\(530\) −223.785 + 5183.98i −0.0183408 + 0.424863i
\(531\) −3136.73 −0.256351
\(532\) 1592.93 18415.7i 0.129816 1.50079i
\(533\) −5065.38 + 2658.88i −0.411643 + 0.216077i
\(534\) −7152.32 308.756i −0.579609 0.0250209i
\(535\) 4150.58i 0.335412i
\(536\) 3520.79 + 458.241i 0.283722 + 0.0369273i
\(537\) −11096.7 −0.891731
\(538\) −28.3250 + 656.148i −0.00226985 + 0.0525810i
\(539\) 26184.4 2.09247
\(540\) 274.768 3176.57i 0.0218966 0.253144i
\(541\) −4510.52 −0.358452 −0.179226 0.983808i \(-0.557359\pi\)
−0.179226 + 0.983808i \(0.557359\pi\)
\(542\) 111.230 2576.65i 0.00881505 0.204200i
\(543\) 5001.93 0.395310
\(544\) 19741.0 + 4325.61i 1.55586 + 0.340917i
\(545\) 15517.4 1.21962
\(546\) −4849.80 10295.3i −0.380132 0.806956i
\(547\) 19668.3i 1.53740i 0.639611 + 0.768698i \(0.279095\pi\)
−0.639611 + 0.768698i \(0.720905\pi\)
\(548\) 4.29466 49.6502i 0.000334779 0.00387035i
\(549\) 6072.43i 0.472067i
\(550\) 14447.4 + 623.676i 1.12007 + 0.0483521i
\(551\) 11919.3i 0.921559i
\(552\) 1206.06 9266.49i 0.0929953 0.714507i
\(553\) 31476.0i 2.42042i
\(554\) −8.63216 + 199.964i −0.000661995 + 0.0153351i
\(555\) 3846.82i 0.294213i
\(556\) −1820.04 + 21041.3i −0.138825 + 1.60495i
\(557\) −169.552 −0.0128980 −0.00644898 0.999979i \(-0.502053\pi\)
−0.00644898 + 0.999979i \(0.502053\pi\)
\(558\) −254.190 + 5888.30i −0.0192844 + 0.446723i
\(559\) −5656.53 + 2969.19i −0.427989 + 0.224657i
\(560\) −4641.74 + 26630.6i −0.350267 + 2.00955i
\(561\) 18433.5i 1.38728i
\(562\) −713.819 + 16535.6i −0.0535776 + 1.24112i
\(563\) 1508.87i 0.112951i −0.998404 0.0564753i \(-0.982014\pi\)
0.998404 0.0564753i \(-0.0179862\pi\)
\(564\) 13257.6 + 1146.76i 0.989798 + 0.0856160i
\(565\) −7067.77 −0.526272
\(566\) −497.481 + 11524.1i −0.0369447 + 0.855823i
\(567\) 2317.72i 0.171667i
\(568\) 3330.25 25587.2i 0.246011 1.89017i
\(569\) −11553.8 −0.851247 −0.425624 0.904900i \(-0.639945\pi\)
−0.425624 + 0.904900i \(0.639945\pi\)
\(570\) −436.208 + 10104.8i −0.0320540 + 0.742529i
\(571\) 3952.16i 0.289655i −0.989457 0.144827i \(-0.953737\pi\)
0.989457 0.144827i \(-0.0462626\pi\)
\(572\) 7981.50 + 19032.0i 0.583433 + 1.39120i
\(573\) 4589.89i 0.334634i
\(574\) −9868.71 426.019i −0.717617 0.0309785i
\(575\) 12787.8 0.927460
\(576\) −4454.48 1179.51i −0.322228 0.0853234i
\(577\) 23411.7i 1.68915i −0.535437 0.844575i \(-0.679853\pi\)
0.535437 0.844575i \(-0.320147\pi\)
\(578\) −21337.3 921.103i −1.53549 0.0662852i
\(579\) 8280.55 0.594349
\(580\) 1502.15 17366.2i 0.107540 1.24326i
\(581\) 12772.3i 0.912019i
\(582\) 2729.36 + 117.823i 0.194391 + 0.00839161i
\(583\) 6840.04i 0.485910i
\(584\) 2263.83 17393.6i 0.160407 1.23245i
\(585\) 2894.15 + 5513.60i 0.204545 + 0.389674i
\(586\) 9781.15 + 422.239i 0.689515 + 0.0297654i
\(587\) −12824.9 −0.901771 −0.450886 0.892582i \(-0.648892\pi\)
−0.450886 + 0.892582i \(0.648892\pi\)
\(588\) 983.973 11375.6i 0.0690108 0.797827i
\(589\) 18695.9i 1.30790i
\(590\) −14537.8 627.577i −1.01443 0.0437914i
\(591\) 7193.11i 0.500651i
\(592\) −5476.94 954.637i −0.380238 0.0662759i
\(593\) 22496.5i 1.55788i 0.627100 + 0.778939i \(0.284242\pi\)
−0.627100 + 0.778939i \(0.715758\pi\)
\(594\) 181.273 4199.18i 0.0125214 0.290058i
\(595\) 47154.9i 3.24901i
\(596\) −19314.0 1670.63i −1.32741 0.114819i
\(597\) 5701.93i 0.390895i
\(598\) 7777.37 + 16510.0i 0.531840 + 1.12900i
\(599\) −14283.0 −0.974268 −0.487134 0.873327i \(-0.661958\pi\)
−0.487134 + 0.873327i \(0.661958\pi\)
\(600\) 813.867 6253.15i 0.0553767 0.425473i
\(601\) 14705.3 0.998075 0.499038 0.866580i \(-0.333687\pi\)
0.499038 + 0.866580i \(0.333687\pi\)
\(602\) −11020.4 475.737i −0.746112 0.0322086i
\(603\) 1412.20 0.0953716
\(604\) 1177.52 13613.2i 0.0793254 0.917073i
\(605\) 25066.7 1.68447
\(606\) 5862.09 + 253.058i 0.392955 + 0.0169633i
\(607\) 16346.3 1.09304 0.546519 0.837447i \(-0.315953\pi\)
0.546519 + 0.837447i \(0.315953\pi\)
\(608\) 14278.5 + 3128.68i 0.952416 + 0.208692i
\(609\) 12670.9i 0.843106i
\(610\) 1214.93 28143.9i 0.0806413 1.86805i
\(611\) −23011.3 + 12078.9i −1.52363 + 0.799773i
\(612\) 8008.31 + 692.707i 0.528949 + 0.0457533i
\(613\) 24742.1 1.63022 0.815111 0.579305i \(-0.196676\pi\)
0.815111 + 0.579305i \(0.196676\pi\)
\(614\) 8095.11 + 349.455i 0.532072 + 0.0229688i
\(615\) 5404.90 0.354384
\(616\) −4599.16 + 35336.5i −0.300820 + 2.31128i
\(617\) 10891.4i 0.710650i 0.934743 + 0.355325i \(0.115630\pi\)
−0.934743 + 0.355325i \(0.884370\pi\)
\(618\) −73.7126 + 1707.55i −0.00479799 + 0.111145i
\(619\) −291.372 −0.0189196 −0.00945981 0.999955i \(-0.503011\pi\)
−0.00945981 + 0.999955i \(0.503011\pi\)
\(620\) −2356.19 + 27239.6i −0.152624 + 1.76447i
\(621\) 3716.81i 0.240178i
\(622\) 28466.9 + 1228.88i 1.83508 + 0.0792179i
\(623\) 24141.4 1.55249
\(624\) 8568.25 2752.31i 0.549687 0.176572i
\(625\) −18607.4 −1.19087
\(626\) −6285.04 271.317i −0.401279 0.0173227i
\(627\) 13332.8i 0.849220i
\(628\) −305.002 + 3526.10i −0.0193804 + 0.224055i
\(629\) 9698.05 0.614764
\(630\) −463.715 + 10742.0i −0.0293252 + 0.679317i
\(631\) 3616.73i 0.228177i −0.993471 0.114088i \(-0.963605\pi\)
0.993471 0.114088i \(-0.0363947\pi\)
\(632\) 24682.5 + 3212.51i 1.55351 + 0.202194i
\(633\) −8898.57 −0.558746
\(634\) −4748.08 204.968i −0.297430 0.0128396i
\(635\) −5401.09 −0.337537
\(636\) 2971.61 + 257.040i 0.185270 + 0.0160256i
\(637\) 10364.3 + 19744.7i 0.644658 + 1.22812i
\(638\) 991.012 22956.8i 0.0614961 1.42456i
\(639\) 10263.1i 0.635370i
\(640\) −20409.2 6357.90i −1.26054 0.392684i
\(641\) 14015.0 0.863586 0.431793 0.901973i \(-0.357881\pi\)
0.431793 + 0.901973i \(0.357881\pi\)
\(642\) 2383.68 + 102.900i 0.146536 + 0.00632577i
\(643\) −15384.8 −0.943573 −0.471787 0.881713i \(-0.656391\pi\)
−0.471787 + 0.881713i \(0.656391\pi\)
\(644\) −2715.58 + 31394.6i −0.166163 + 1.92099i
\(645\) 6035.67 0.368456
\(646\) −25474.7 1099.71i −1.55153 0.0669773i
\(647\) −22195.7 −1.34869 −0.674346 0.738415i \(-0.735575\pi\)
−0.674346 + 0.738415i \(0.735575\pi\)
\(648\) −1817.49 236.552i −0.110182 0.0143405i
\(649\) −19182.0 −1.16019
\(650\) 5248.27 + 11141.2i 0.316699 + 0.672297i
\(651\) 19874.9i 1.19656i
\(652\) −18715.3 1618.85i −1.12416 0.0972377i
\(653\) 1942.96i 0.116438i −0.998304 0.0582190i \(-0.981458\pi\)
0.998304 0.0582190i \(-0.0185422\pi\)
\(654\) 384.703 8911.62i 0.0230016 0.532832i
\(655\) 1861.57i 0.111050i
\(656\) 1341.29 7695.27i 0.0798304 0.458003i
\(657\) 6976.60i 0.414282i
\(658\) −44832.2 1935.35i −2.65614 0.114662i
\(659\) 27887.3i 1.64846i 0.566253 + 0.824231i \(0.308392\pi\)
−0.566253 + 0.824231i \(0.691608\pi\)
\(660\) 1680.29 19425.7i 0.0990987 1.14567i
\(661\) −9000.63 −0.529628 −0.264814 0.964300i \(-0.585311\pi\)
−0.264814 + 0.964300i \(0.585311\pi\)
\(662\) 7285.13 + 314.489i 0.427711 + 0.0184637i
\(663\) −13900.1 + 7296.33i −0.814230 + 0.427400i
\(664\) 10015.6 + 1303.57i 0.585365 + 0.0761871i
\(665\) 34106.8i 1.98888i
\(666\) −2209.23 95.3693i −0.128537 0.00554878i
\(667\) 20319.7i 1.17958i
\(668\) 1297.73 15002.9i 0.0751658 0.868984i
\(669\) −13454.8 −0.777570
\(670\) 6545.10 + 282.543i 0.377402 + 0.0162919i
\(671\) 37134.7i 2.13647i
\(672\) 15178.9 + 3325.97i 0.871336 + 0.190926i
\(673\) 22407.7 1.28344 0.641718 0.766940i \(-0.278222\pi\)
0.641718 + 0.766940i \(0.278222\pi\)
\(674\) −29799.9 1286.42i −1.70304 0.0735178i
\(675\) 2508.15i 0.143021i
\(676\) −11192.2 + 13551.8i −0.636787 + 0.771040i
\(677\) 21060.3i 1.19559i −0.801651 0.597793i \(-0.796045\pi\)
0.801651 0.597793i \(-0.203955\pi\)
\(678\) −175.222 + 4059.02i −0.00992533 + 0.229920i
\(679\) −9212.47 −0.520681
\(680\) 36977.5 + 4812.74i 2.08533 + 0.271412i
\(681\) 2256.46i 0.126972i
\(682\) −1554.45 + 36008.7i −0.0872769 + 2.02177i
\(683\) −17468.5 −0.978642 −0.489321 0.872104i \(-0.662755\pi\)
−0.489321 + 0.872104i \(0.662755\pi\)
\(684\) 5792.35 + 501.029i 0.323795 + 0.0280078i
\(685\) 91.9544i 0.00512905i
\(686\) −463.375 + 10734.1i −0.0257897 + 0.597418i
\(687\) 1698.79i 0.0943419i
\(688\) 1497.83 8593.35i 0.0830003 0.476189i
\(689\) −5157.84 + 2707.42i −0.285193 + 0.149702i
\(690\) 743.635 17226.3i 0.0410286 0.950425i
\(691\) −24317.9 −1.33878 −0.669389 0.742912i \(-0.733444\pi\)
−0.669389 + 0.742912i \(0.733444\pi\)
\(692\) −1490.62 + 17232.9i −0.0818857 + 0.946672i
\(693\) 14173.6i 0.776925i
\(694\) 1096.42 25398.6i 0.0599707 1.38922i
\(695\) 38969.5i 2.12690i
\(696\) −9936.16 1293.22i −0.541134 0.0704302i
\(697\) 13626.0i 0.740493i
\(698\) −20074.1 866.574i −1.08856 0.0469918i
\(699\) 3796.70i 0.205443i
\(700\) −1832.51 + 21185.5i −0.0989464 + 1.14391i
\(701\) 13793.0i 0.743159i −0.928401 0.371579i \(-0.878816\pi\)
0.928401 0.371579i \(-0.121184\pi\)
\(702\) 3238.21 1525.42i 0.174100 0.0820133i
\(703\) 7014.52 0.376326
\(704\) −27240.5 7213.05i −1.45833 0.386154i
\(705\) 24553.7 1.31170
\(706\) 428.924 9936.01i 0.0228651 0.529669i
\(707\) −19786.4 −1.05254
\(708\) −720.835 + 8333.50i −0.0382636 + 0.442362i
\(709\) −11081.2 −0.586970 −0.293485 0.955964i \(-0.594815\pi\)
−0.293485 + 0.955964i \(0.594815\pi\)
\(710\) 2053.37 47566.3i 0.108538 2.51427i
\(711\) 9900.22 0.522205
\(712\) −2463.92 + 18931.0i −0.129690 + 0.996443i
\(713\) 31872.3i 1.67409i
\(714\) −27081.1 1169.05i −1.41944 0.0612755i
\(715\) 17698.6 + 33717.3i 0.925721 + 1.76357i
\(716\) −2550.08 + 29481.2i −0.133102 + 1.53878i
\(717\) −3687.52 −0.192068
\(718\) −30.5452 + 707.579i −0.00158766 + 0.0367780i
\(719\) 17777.0 0.922070 0.461035 0.887382i \(-0.347478\pi\)
0.461035 + 0.887382i \(0.347478\pi\)
\(720\) −8376.20 1459.98i −0.433559 0.0755698i
\(721\) 5763.53i 0.297705i
\(722\) 956.521 + 41.2917i 0.0493047 + 0.00212842i
\(723\) −4357.96 −0.224169
\(724\) 1149.47 13288.9i 0.0590050 0.682150i
\(725\) 13712.0i 0.702414i
\(726\) 621.447 14395.8i 0.0317687 0.735921i
\(727\) −26444.6 −1.34907 −0.674535 0.738242i \(-0.735656\pi\)
−0.674535 + 0.738242i \(0.735656\pi\)
\(728\) −28466.5 + 10518.8i −1.44923 + 0.535511i
\(729\) −729.000 −0.0370370
\(730\) 1395.83 32334.4i 0.0707700 1.63938i
\(731\) 15216.3i 0.769896i
\(732\) −16132.9 1395.47i −0.814603 0.0704619i
\(733\) −13099.8 −0.660097 −0.330049 0.943964i \(-0.607065\pi\)
−0.330049 + 0.943964i \(0.607065\pi\)
\(734\) 15115.8 + 652.529i 0.760129 + 0.0328137i
\(735\) 21068.2i 1.05729i
\(736\) −24341.5 5333.68i −1.21908 0.267122i
\(737\) 8635.99 0.431630
\(738\) 133.997 3104.03i 0.00668359 0.154825i
\(739\) −4286.73 −0.213383 −0.106691 0.994292i \(-0.534026\pi\)
−0.106691 + 0.994292i \(0.534026\pi\)
\(740\) −10220.0 884.016i −0.507696 0.0439150i
\(741\) −10053.8 + 5277.37i −0.498429 + 0.261632i
\(742\) −10048.9 433.795i −0.497177 0.0214624i
\(743\) 5226.63i 0.258071i −0.991640 0.129035i \(-0.958812\pi\)
0.991640 0.129035i \(-0.0411881\pi\)
\(744\) 15585.3 + 2028.48i 0.767991 + 0.0999564i
\(745\) −35770.5 −1.75910
\(746\) −517.638 + 11991.1i −0.0254049 + 0.588504i
\(747\) 4017.30 0.196767
\(748\) 48973.2 + 4236.10i 2.39390 + 0.207069i
\(749\) −8045.67 −0.392500
\(750\) −173.433 + 4017.57i −0.00844383 + 0.195601i
\(751\) −9695.17 −0.471081 −0.235540 0.971865i \(-0.575686\pi\)
−0.235540 + 0.971865i \(0.575686\pi\)
\(752\) 6093.32 34958.6i 0.295479 1.69522i
\(753\) −9318.67 −0.450984
\(754\) 17703.2 8339.42i 0.855055 0.402790i
\(755\) 25212.2i 1.21532i
\(756\) 6157.60 + 532.623i 0.296230 + 0.0256234i
\(757\) 6559.08i 0.314919i 0.987525 + 0.157460i \(0.0503304\pi\)
−0.987525 + 0.157460i \(0.949670\pi\)
\(758\) −35065.2 1513.72i −1.68024 0.0725338i
\(759\) 22729.4i 1.08699i
\(760\) 26745.5 + 3481.01i 1.27653 + 0.166144i
\(761\) 14168.8i 0.674924i −0.941339 0.337462i \(-0.890431\pi\)
0.941339 0.337462i \(-0.109569\pi\)
\(762\) −133.902 + 3101.85i −0.00636584 + 0.147465i
\(763\) 30079.6i 1.42720i
\(764\) 12194.2 + 1054.78i 0.577448 + 0.0499483i
\(765\) 14831.8 0.700972
\(766\) 243.123 5631.94i 0.0114679 0.265653i
\(767\) −7592.61 14464.5i −0.357436 0.680943i
\(768\) −4157.32 + 11563.4i −0.195331 + 0.543304i
\(769\) 12392.6i 0.581130i 0.956855 + 0.290565i \(0.0938433\pi\)
−0.956855 + 0.290565i \(0.906157\pi\)
\(770\) −2835.76 + 65690.2i −0.132719 + 3.07443i
\(771\) 6642.95i 0.310298i
\(772\) 1902.91 21999.3i 0.0887139 1.02561i
\(773\) 3097.37 0.144120 0.0720598 0.997400i \(-0.477043\pi\)
0.0720598 + 0.997400i \(0.477043\pi\)
\(774\) 149.635 3466.29i 0.00694899