Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [312,4,Mod(181,312)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(312, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("312.181");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 312.m (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.4085959218\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181.1 | −2.82580 | − | 0.121986i | 3.00000i | 7.97024 | + | 0.689413i | 14.7613 | 0.365957 | − | 8.47739i | 28.6139i | −22.4382 | − | 2.92040i | −9.00000 | −41.7123 | − | 1.80066i | ||||||||
181.2 | −2.82580 | + | 0.121986i | − | 3.00000i | 7.97024 | − | 0.689413i | 14.7613 | 0.365957 | + | 8.47739i | − | 28.6139i | −22.4382 | + | 2.92040i | −9.00000 | −41.7123 | + | 1.80066i | ||||||
181.3 | −2.81504 | − | 0.274823i | 3.00000i | 7.84894 | + | 1.54728i | −8.71484 | 0.824470 | − | 8.44513i | − | 16.6675i | −21.6699 | − | 6.51273i | −9.00000 | 24.5327 | + | 2.39504i | |||||||
181.4 | −2.81504 | + | 0.274823i | − | 3.00000i | 7.84894 | − | 1.54728i | −8.71484 | 0.824470 | + | 8.44513i | 16.6675i | −21.6699 | + | 6.51273i | −9.00000 | 24.5327 | − | 2.39504i | |||||||
181.5 | −2.80130 | − | 0.390824i | − | 3.00000i | 7.69451 | + | 2.18963i | 14.7907 | −1.17247 | + | 8.40389i | − | 0.217747i | −20.6988 | − | 9.14099i | −9.00000 | −41.4331 | − | 5.78056i | ||||||
181.6 | −2.80130 | + | 0.390824i | 3.00000i | 7.69451 | − | 2.18963i | 14.7907 | −1.17247 | − | 8.40389i | 0.217747i | −20.6988 | + | 9.14099i | −9.00000 | −41.4331 | + | 5.78056i | ||||||||
181.7 | −2.73458 | − | 0.722559i | − | 3.00000i | 6.95582 | + | 3.95178i | −2.18910 | −2.16768 | + | 8.20373i | − | 4.02754i | −16.1658 | − | 15.8324i | −9.00000 | 5.98626 | + | 1.58175i | ||||||
181.8 | −2.73458 | + | 0.722559i | 3.00000i | 6.95582 | − | 3.95178i | −2.18910 | −2.16768 | − | 8.20373i | 4.02754i | −16.1658 | + | 15.8324i | −9.00000 | 5.98626 | − | 1.58175i | ||||||||
181.9 | −2.56970 | − | 1.18180i | 3.00000i | 5.20671 | + | 6.07373i | −8.43796 | 3.54539 | − | 7.70910i | − | 8.36709i | −6.20176 | − | 21.7609i | −9.00000 | 21.6830 | + | 9.97196i | |||||||
181.10 | −2.56970 | + | 1.18180i | − | 3.00000i | 5.20671 | − | 6.07373i | −8.43796 | 3.54539 | + | 7.70910i | 8.36709i | −6.20176 | + | 21.7609i | −9.00000 | 21.6830 | − | 9.97196i | |||||||
181.11 | −2.48687 | − | 1.34740i | 3.00000i | 4.36905 | + | 6.70160i | 8.37088 | 4.04219 | − | 7.46061i | − | 16.5971i | −1.83557 | − | 22.5528i | −9.00000 | −20.8173 | − | 11.2789i | |||||||
181.12 | −2.48687 | + | 1.34740i | − | 3.00000i | 4.36905 | − | 6.70160i | 8.37088 | 4.04219 | + | 7.46061i | 16.5971i | −1.83557 | + | 22.5528i | −9.00000 | −20.8173 | + | 11.2789i | |||||||
181.13 | −2.47275 | − | 1.37314i | − | 3.00000i | 4.22898 | + | 6.79086i | −19.0411 | −4.11942 | + | 7.41825i | 2.83206i | −1.13242 | − | 22.5991i | −9.00000 | 47.0838 | + | 26.1460i | |||||||
181.14 | −2.47275 | + | 1.37314i | 3.00000i | 4.22898 | − | 6.79086i | −19.0411 | −4.11942 | − | 7.41825i | − | 2.83206i | −1.13242 | + | 22.5991i | −9.00000 | 47.0838 | − | 26.1460i | |||||||
181.15 | −2.32798 | − | 1.60640i | − | 3.00000i | 2.83895 | + | 7.47933i | 6.73184 | −4.81920 | + | 6.98393i | 30.2729i | 5.40578 | − | 21.9722i | −9.00000 | −15.6716 | − | 10.8140i | |||||||
181.16 | −2.32798 | + | 1.60640i | 3.00000i | 2.83895 | − | 7.47933i | 6.73184 | −4.81920 | − | 6.98393i | − | 30.2729i | 5.40578 | + | 21.9722i | −9.00000 | −15.6716 | + | 10.8140i | |||||||
181.17 | −2.30493 | − | 1.63930i | − | 3.00000i | 2.62541 | + | 7.55693i | −3.15976 | −4.91789 | + | 6.91479i | − | 31.8225i | 6.33669 | − | 21.7220i | −9.00000 | 7.28302 | + | 5.17979i | ||||||
181.18 | −2.30493 | + | 1.63930i | 3.00000i | 2.62541 | − | 7.55693i | −3.15976 | −4.91789 | − | 6.91479i | 31.8225i | 6.33669 | + | 21.7220i | −9.00000 | 7.28302 | − | 5.17979i | ||||||||
181.19 | −2.23230 | − | 1.73690i | 3.00000i | 1.96633 | + | 7.75458i | −12.2791 | 5.21071 | − | 6.69690i | 32.4044i | 9.07951 | − | 20.7259i | −9.00000 | 27.4107 | + | 21.3277i | ||||||||
181.20 | −2.23230 | + | 1.73690i | − | 3.00000i | 1.96633 | − | 7.75458i | −12.2791 | 5.21071 | + | 6.69690i | − | 32.4044i | 9.07951 | + | 20.7259i | −9.00000 | 27.4107 | − | 21.3277i | ||||||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
104.e | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 312.4.m.a | ✓ | 84 |
4.b | odd | 2 | 1 | 1248.4.m.a | 84 | ||
8.b | even | 2 | 1 | inner | 312.4.m.a | ✓ | 84 |
8.d | odd | 2 | 1 | 1248.4.m.a | 84 | ||
13.b | even | 2 | 1 | inner | 312.4.m.a | ✓ | 84 |
52.b | odd | 2 | 1 | 1248.4.m.a | 84 | ||
104.e | even | 2 | 1 | inner | 312.4.m.a | ✓ | 84 |
104.h | odd | 2 | 1 | 1248.4.m.a | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
312.4.m.a | ✓ | 84 | 1.a | even | 1 | 1 | trivial |
312.4.m.a | ✓ | 84 | 8.b | even | 2 | 1 | inner |
312.4.m.a | ✓ | 84 | 13.b | even | 2 | 1 | inner |
312.4.m.a | ✓ | 84 | 104.e | even | 2 | 1 | inner |
1248.4.m.a | 84 | 4.b | odd | 2 | 1 | ||
1248.4.m.a | 84 | 8.d | odd | 2 | 1 | ||
1248.4.m.a | 84 | 52.b | odd | 2 | 1 | ||
1248.4.m.a | 84 | 104.h | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(312, [\chi])\).