Defining parameters
Level: | \( N \) | \(=\) | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 312.m (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 172 | 84 | 88 |
Cusp forms | 164 | 84 | 80 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
312.4.m.a | $84$ | $18.409$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)