Properties

Label 312.4.j
Level $312$
Weight $4$
Character orbit 312.j
Rep. character $\chi_{312}(131,\cdot)$
Character field $\Q$
Dimension $144$
Sturm bound $224$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Sturm bound: \(224\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 172 144 28
Cusp forms 164 144 20
Eisenstein series 8 0 8

Trace form

\( 144 q - 12 q^{4} - 24 q^{10} + 110 q^{12} + 336 q^{16} - 168 q^{18} + 48 q^{19} - 60 q^{22} - 236 q^{24} + 3600 q^{25} - 768 q^{28} + 846 q^{30} + 232 q^{33} + 1416 q^{34} + 570 q^{36} + 888 q^{40} - 2002 q^{42}+ \cdots - 1488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)