Properties

Label 312.4.d
Level $312$
Weight $4$
Character orbit 312.d
Rep. character $\chi_{312}(287,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 176 0 176
Cusp forms 160 0 160
Eisenstein series 16 0 16

Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)