Defining parameters
Level: | \( N \) | \(=\) | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 312.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 176 | 22 | 154 |
Cusp forms | 160 | 22 | 138 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
312.4.c.a | $10$ | $18.409$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(30\) | \(0\) | \(0\) | \(q+3q^{3}+\beta _{1}q^{5}+\beta _{3}q^{7}+9q^{9}+(-\beta _{6}+\cdots)q^{11}+\cdots\) |
312.4.c.b | $12$ | $18.409$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(-36\) | \(0\) | \(0\) | \(q-3q^{3}+\beta _{5}q^{5}+\beta _{7}q^{7}+9q^{9}-\beta _{8}q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)