Properties

Label 312.4.c
Level $312$
Weight $4$
Character orbit 312.c
Rep. character $\chi_{312}(25,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $2$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 176 22 154
Cusp forms 160 22 138
Eisenstein series 16 0 16

Trace form

\( 22 q - 6 q^{3} + 198 q^{9} + 54 q^{13} + 20 q^{17} - 152 q^{23} - 794 q^{25} - 54 q^{27} + 436 q^{29} + 520 q^{35} - 198 q^{39} + 744 q^{43} - 1982 q^{49} + 492 q^{51} + 396 q^{53} + 576 q^{55} + 508 q^{61}+ \cdots + 1016 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
312.4.c.a 312.c 13.b $10$ $18.409$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 312.4.c.a \(0\) \(30\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3q^{3}+\beta _{1}q^{5}+\beta _{3}q^{7}+9q^{9}+(-\beta _{6}+\cdots)q^{11}+\cdots\)
312.4.c.b 312.c 13.b $12$ $18.409$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 312.4.c.b \(0\) \(-36\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3q^{3}+\beta _{5}q^{5}+\beta _{7}q^{7}+9q^{9}-\beta _{8}q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)