Properties

Label 312.4.bn
Level $312$
Weight $4$
Character orbit 312.bn
Rep. character $\chi_{312}(35,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $328$
Sturm bound $224$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.bn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 312 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(224\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 344 344 0
Cusp forms 328 328 0
Eisenstein series 16 16 0

Trace form

\( 328 q - 2 q^{3} - 2 q^{4} - 32 q^{6} - 2 q^{9} + 18 q^{10} - 28 q^{12} - 38 q^{16} + 352 q^{18} - 4 q^{19} - 16 q^{22} + 210 q^{24} + 7384 q^{25} + 256 q^{27} - 240 q^{28} - 96 q^{30} - 110 q^{33} + 140 q^{34}+ \cdots + 7700 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.