Properties

Label 312.4.bb
Level $312$
Weight $4$
Character orbit 312.bb
Rep. character $\chi_{312}(61,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $168$
Sturm bound $224$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(224\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(312, [\chi])\).

Total New Old
Modular forms 344 168 176
Cusp forms 328 168 160
Eisenstein series 16 0 16

Trace form

\( 168 q + 756 q^{9} - 36 q^{10} - 24 q^{12} + 208 q^{14} + 92 q^{16} + 52 q^{17} - 340 q^{20} - 104 q^{22} - 180 q^{24} - 4288 q^{25} + 664 q^{26} - 208 q^{28} - 204 q^{30} - 280 q^{32} - 824 q^{34} - 480 q^{38}+ \cdots - 8656 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)