Properties

Label 312.4.a.h.1.2
Level $312$
Weight $4$
Character 312.1
Self dual yes
Analytic conductor $18.409$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.68690\) of defining polynomial
Character \(\chi\) \(=\) 312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +3.18652 q^{5} +23.9341 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} +3.18652 q^{5} +23.9341 q^{7} +9.00000 q^{9} -6.74761 q^{11} +13.0000 q^{13} +9.55955 q^{15} +104.244 q^{17} -137.915 q^{19} +71.8024 q^{21} +110.244 q^{23} -114.846 q^{25} +27.0000 q^{27} -57.6048 q^{29} +319.893 q^{31} -20.2428 q^{33} +76.2666 q^{35} -2.88089 q^{37} +39.0000 q^{39} +319.145 q^{41} +344.705 q^{43} +28.6787 q^{45} -439.549 q^{47} +229.843 q^{49} +312.733 q^{51} -97.2632 q^{53} -21.5014 q^{55} -413.745 q^{57} +448.114 q^{59} -264.592 q^{61} +215.407 q^{63} +41.4247 q^{65} -712.701 q^{67} +330.733 q^{69} +1134.68 q^{71} -666.573 q^{73} -344.538 q^{75} -161.498 q^{77} +828.682 q^{79} +81.0000 q^{81} +734.136 q^{83} +332.177 q^{85} -172.814 q^{87} +153.255 q^{89} +311.144 q^{91} +959.679 q^{93} -439.469 q^{95} -569.044 q^{97} -60.7285 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 4 q^{5} + 6 q^{7} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 9 q^{3} - 4 q^{5} + 6 q^{7} + 27 q^{9} + 32 q^{11} + 39 q^{13} - 12 q^{15} + 158 q^{17} + 70 q^{19} + 18 q^{21} + 176 q^{23} + 209 q^{25} + 81 q^{27} + 222 q^{29} + 54 q^{31} + 96 q^{33} + 496 q^{35} - 90 q^{37} + 117 q^{39} + 104 q^{41} + 140 q^{43} - 36 q^{45} + 328 q^{47} - 65 q^{49} + 474 q^{51} - 358 q^{53} + 32 q^{55} + 210 q^{57} + 1060 q^{59} - 186 q^{61} + 54 q^{63} - 52 q^{65} + 354 q^{67} + 528 q^{69} + 1692 q^{71} - 974 q^{73} + 627 q^{75} - 384 q^{77} + 776 q^{79} + 243 q^{81} + 2340 q^{83} - 2824 q^{85} + 666 q^{87} - 684 q^{89} + 78 q^{91} + 162 q^{93} - 742 q^{97} + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 3.18652 0.285011 0.142505 0.989794i \(-0.454484\pi\)
0.142505 + 0.989794i \(0.454484\pi\)
\(6\) 0 0
\(7\) 23.9341 1.29232 0.646161 0.763201i \(-0.276374\pi\)
0.646161 + 0.763201i \(0.276374\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −6.74761 −0.184953 −0.0924765 0.995715i \(-0.529478\pi\)
−0.0924765 + 0.995715i \(0.529478\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 9.55955 0.164551
\(16\) 0 0
\(17\) 104.244 1.48723 0.743617 0.668606i \(-0.233109\pi\)
0.743617 + 0.668606i \(0.233109\pi\)
\(18\) 0 0
\(19\) −137.915 −1.66526 −0.832628 0.553832i \(-0.813165\pi\)
−0.832628 + 0.553832i \(0.813165\pi\)
\(20\) 0 0
\(21\) 71.8024 0.746122
\(22\) 0 0
\(23\) 110.244 0.999458 0.499729 0.866182i \(-0.333433\pi\)
0.499729 + 0.866182i \(0.333433\pi\)
\(24\) 0 0
\(25\) −114.846 −0.918769
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −57.6048 −0.368860 −0.184430 0.982846i \(-0.559044\pi\)
−0.184430 + 0.982846i \(0.559044\pi\)
\(30\) 0 0
\(31\) 319.893 1.85337 0.926685 0.375839i \(-0.122646\pi\)
0.926685 + 0.375839i \(0.122646\pi\)
\(32\) 0 0
\(33\) −20.2428 −0.106783
\(34\) 0 0
\(35\) 76.2666 0.368326
\(36\) 0 0
\(37\) −2.88089 −0.0128004 −0.00640021 0.999980i \(-0.502037\pi\)
−0.00640021 + 0.999980i \(0.502037\pi\)
\(38\) 0 0
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) 319.145 1.21566 0.607831 0.794067i \(-0.292040\pi\)
0.607831 + 0.794067i \(0.292040\pi\)
\(42\) 0 0
\(43\) 344.705 1.22249 0.611244 0.791442i \(-0.290669\pi\)
0.611244 + 0.791442i \(0.290669\pi\)
\(44\) 0 0
\(45\) 28.6787 0.0950036
\(46\) 0 0
\(47\) −439.549 −1.36415 −0.682073 0.731284i \(-0.738921\pi\)
−0.682073 + 0.731284i \(0.738921\pi\)
\(48\) 0 0
\(49\) 229.843 0.670095
\(50\) 0 0
\(51\) 312.733 0.858655
\(52\) 0 0
\(53\) −97.2632 −0.252078 −0.126039 0.992025i \(-0.540226\pi\)
−0.126039 + 0.992025i \(0.540226\pi\)
\(54\) 0 0
\(55\) −21.5014 −0.0527136
\(56\) 0 0
\(57\) −413.745 −0.961437
\(58\) 0 0
\(59\) 448.114 0.988805 0.494403 0.869233i \(-0.335387\pi\)
0.494403 + 0.869233i \(0.335387\pi\)
\(60\) 0 0
\(61\) −264.592 −0.555370 −0.277685 0.960672i \(-0.589567\pi\)
−0.277685 + 0.960672i \(0.589567\pi\)
\(62\) 0 0
\(63\) 215.407 0.430774
\(64\) 0 0
\(65\) 41.4247 0.0790478
\(66\) 0 0
\(67\) −712.701 −1.29956 −0.649778 0.760124i \(-0.725138\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(68\) 0 0
\(69\) 330.733 0.577038
\(70\) 0 0
\(71\) 1134.68 1.89665 0.948323 0.317308i \(-0.102779\pi\)
0.948323 + 0.317308i \(0.102779\pi\)
\(72\) 0 0
\(73\) −666.573 −1.06872 −0.534359 0.845257i \(-0.679447\pi\)
−0.534359 + 0.845257i \(0.679447\pi\)
\(74\) 0 0
\(75\) −344.538 −0.530451
\(76\) 0 0
\(77\) −161.498 −0.239019
\(78\) 0 0
\(79\) 828.682 1.18018 0.590089 0.807338i \(-0.299093\pi\)
0.590089 + 0.807338i \(0.299093\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 734.136 0.970867 0.485433 0.874274i \(-0.338662\pi\)
0.485433 + 0.874274i \(0.338662\pi\)
\(84\) 0 0
\(85\) 332.177 0.423878
\(86\) 0 0
\(87\) −172.814 −0.212961
\(88\) 0 0
\(89\) 153.255 0.182528 0.0912639 0.995827i \(-0.470909\pi\)
0.0912639 + 0.995827i \(0.470909\pi\)
\(90\) 0 0
\(91\) 311.144 0.358426
\(92\) 0 0
\(93\) 959.679 1.07004
\(94\) 0 0
\(95\) −439.469 −0.474616
\(96\) 0 0
\(97\) −569.044 −0.595646 −0.297823 0.954621i \(-0.596261\pi\)
−0.297823 + 0.954621i \(0.596261\pi\)
\(98\) 0 0
\(99\) −60.7285 −0.0616510
\(100\) 0 0
\(101\) −1504.47 −1.48218 −0.741090 0.671406i \(-0.765691\pi\)
−0.741090 + 0.671406i \(0.765691\pi\)
\(102\) 0 0
\(103\) −1564.26 −1.49642 −0.748211 0.663461i \(-0.769087\pi\)
−0.748211 + 0.663461i \(0.769087\pi\)
\(104\) 0 0
\(105\) 228.800 0.212653
\(106\) 0 0
\(107\) 1486.11 1.34268 0.671342 0.741148i \(-0.265718\pi\)
0.671342 + 0.741148i \(0.265718\pi\)
\(108\) 0 0
\(109\) −1482.89 −1.30307 −0.651537 0.758617i \(-0.725875\pi\)
−0.651537 + 0.758617i \(0.725875\pi\)
\(110\) 0 0
\(111\) −8.64267 −0.00739033
\(112\) 0 0
\(113\) −534.504 −0.444973 −0.222486 0.974936i \(-0.571417\pi\)
−0.222486 + 0.974936i \(0.571417\pi\)
\(114\) 0 0
\(115\) 351.296 0.284856
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 2495.00 1.92198
\(120\) 0 0
\(121\) −1285.47 −0.965792
\(122\) 0 0
\(123\) 957.436 0.701862
\(124\) 0 0
\(125\) −764.274 −0.546870
\(126\) 0 0
\(127\) −1810.76 −1.26519 −0.632594 0.774484i \(-0.718010\pi\)
−0.632594 + 0.774484i \(0.718010\pi\)
\(128\) 0 0
\(129\) 1034.11 0.705804
\(130\) 0 0
\(131\) −1210.44 −0.807303 −0.403652 0.914913i \(-0.632259\pi\)
−0.403652 + 0.914913i \(0.632259\pi\)
\(132\) 0 0
\(133\) −3300.88 −2.15205
\(134\) 0 0
\(135\) 86.0360 0.0548504
\(136\) 0 0
\(137\) −1894.68 −1.18156 −0.590780 0.806833i \(-0.701180\pi\)
−0.590780 + 0.806833i \(0.701180\pi\)
\(138\) 0 0
\(139\) −799.458 −0.487835 −0.243918 0.969796i \(-0.578433\pi\)
−0.243918 + 0.969796i \(0.578433\pi\)
\(140\) 0 0
\(141\) −1318.65 −0.787590
\(142\) 0 0
\(143\) −87.7190 −0.0512967
\(144\) 0 0
\(145\) −183.559 −0.105129
\(146\) 0 0
\(147\) 689.528 0.386880
\(148\) 0 0
\(149\) −1936.45 −1.06470 −0.532350 0.846524i \(-0.678691\pi\)
−0.532350 + 0.846524i \(0.678691\pi\)
\(150\) 0 0
\(151\) −2200.40 −1.18587 −0.592933 0.805252i \(-0.702030\pi\)
−0.592933 + 0.805252i \(0.702030\pi\)
\(152\) 0 0
\(153\) 938.199 0.495745
\(154\) 0 0
\(155\) 1019.34 0.528230
\(156\) 0 0
\(157\) 2438.48 1.23957 0.619783 0.784773i \(-0.287220\pi\)
0.619783 + 0.784773i \(0.287220\pi\)
\(158\) 0 0
\(159\) −291.790 −0.145537
\(160\) 0 0
\(161\) 2638.60 1.29162
\(162\) 0 0
\(163\) −946.712 −0.454921 −0.227461 0.973787i \(-0.573042\pi\)
−0.227461 + 0.973787i \(0.573042\pi\)
\(164\) 0 0
\(165\) −64.5042 −0.0304342
\(166\) 0 0
\(167\) −2027.84 −0.939633 −0.469816 0.882764i \(-0.655680\pi\)
−0.469816 + 0.882764i \(0.655680\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −1241.24 −0.555086
\(172\) 0 0
\(173\) 1050.48 0.461655 0.230828 0.972995i \(-0.425857\pi\)
0.230828 + 0.972995i \(0.425857\pi\)
\(174\) 0 0
\(175\) −2748.74 −1.18734
\(176\) 0 0
\(177\) 1344.34 0.570887
\(178\) 0 0
\(179\) 2332.61 0.974009 0.487005 0.873399i \(-0.338089\pi\)
0.487005 + 0.873399i \(0.338089\pi\)
\(180\) 0 0
\(181\) 1058.06 0.434502 0.217251 0.976116i \(-0.430291\pi\)
0.217251 + 0.976116i \(0.430291\pi\)
\(182\) 0 0
\(183\) −793.777 −0.320643
\(184\) 0 0
\(185\) −9.18001 −0.00364826
\(186\) 0 0
\(187\) −703.401 −0.275068
\(188\) 0 0
\(189\) 646.222 0.248707
\(190\) 0 0
\(191\) −102.458 −0.0388146 −0.0194073 0.999812i \(-0.506178\pi\)
−0.0194073 + 0.999812i \(0.506178\pi\)
\(192\) 0 0
\(193\) 102.396 0.0381899 0.0190949 0.999818i \(-0.493922\pi\)
0.0190949 + 0.999818i \(0.493922\pi\)
\(194\) 0 0
\(195\) 124.274 0.0456383
\(196\) 0 0
\(197\) −4990.28 −1.80478 −0.902392 0.430916i \(-0.858191\pi\)
−0.902392 + 0.430916i \(0.858191\pi\)
\(198\) 0 0
\(199\) −2934.60 −1.04537 −0.522684 0.852526i \(-0.675069\pi\)
−0.522684 + 0.852526i \(0.675069\pi\)
\(200\) 0 0
\(201\) −2138.10 −0.750299
\(202\) 0 0
\(203\) −1378.72 −0.476686
\(204\) 0 0
\(205\) 1016.96 0.346477
\(206\) 0 0
\(207\) 992.199 0.333153
\(208\) 0 0
\(209\) 930.598 0.307994
\(210\) 0 0
\(211\) 4955.08 1.61669 0.808345 0.588709i \(-0.200364\pi\)
0.808345 + 0.588709i \(0.200364\pi\)
\(212\) 0 0
\(213\) 3404.04 1.09503
\(214\) 0 0
\(215\) 1098.41 0.348422
\(216\) 0 0
\(217\) 7656.36 2.39515
\(218\) 0 0
\(219\) −1999.72 −0.617025
\(220\) 0 0
\(221\) 1355.18 0.412484
\(222\) 0 0
\(223\) 1258.69 0.377975 0.188987 0.981980i \(-0.439479\pi\)
0.188987 + 0.981980i \(0.439479\pi\)
\(224\) 0 0
\(225\) −1033.61 −0.306256
\(226\) 0 0
\(227\) −102.354 −0.0299273 −0.0149636 0.999888i \(-0.504763\pi\)
−0.0149636 + 0.999888i \(0.504763\pi\)
\(228\) 0 0
\(229\) −2489.73 −0.718455 −0.359228 0.933250i \(-0.616960\pi\)
−0.359228 + 0.933250i \(0.616960\pi\)
\(230\) 0 0
\(231\) −484.495 −0.137998
\(232\) 0 0
\(233\) 4274.64 1.20189 0.600946 0.799289i \(-0.294791\pi\)
0.600946 + 0.799289i \(0.294791\pi\)
\(234\) 0 0
\(235\) −1400.63 −0.388796
\(236\) 0 0
\(237\) 2486.05 0.681376
\(238\) 0 0
\(239\) 2348.81 0.635697 0.317848 0.948142i \(-0.397040\pi\)
0.317848 + 0.948142i \(0.397040\pi\)
\(240\) 0 0
\(241\) −3130.05 −0.836615 −0.418308 0.908305i \(-0.637377\pi\)
−0.418308 + 0.908305i \(0.637377\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 732.398 0.190984
\(246\) 0 0
\(247\) −1792.90 −0.461859
\(248\) 0 0
\(249\) 2202.41 0.560530
\(250\) 0 0
\(251\) −1571.61 −0.395216 −0.197608 0.980281i \(-0.563317\pi\)
−0.197608 + 0.980281i \(0.563317\pi\)
\(252\) 0 0
\(253\) −743.887 −0.184853
\(254\) 0 0
\(255\) 996.530 0.244726
\(256\) 0 0
\(257\) 2968.71 0.720555 0.360278 0.932845i \(-0.382682\pi\)
0.360278 + 0.932845i \(0.382682\pi\)
\(258\) 0 0
\(259\) −68.9516 −0.0165423
\(260\) 0 0
\(261\) −518.443 −0.122953
\(262\) 0 0
\(263\) 2982.14 0.699188 0.349594 0.936901i \(-0.386320\pi\)
0.349594 + 0.936901i \(0.386320\pi\)
\(264\) 0 0
\(265\) −309.931 −0.0718449
\(266\) 0 0
\(267\) 459.765 0.105383
\(268\) 0 0
\(269\) −1706.67 −0.386832 −0.193416 0.981117i \(-0.561957\pi\)
−0.193416 + 0.981117i \(0.561957\pi\)
\(270\) 0 0
\(271\) 3988.26 0.893984 0.446992 0.894538i \(-0.352495\pi\)
0.446992 + 0.894538i \(0.352495\pi\)
\(272\) 0 0
\(273\) 933.431 0.206937
\(274\) 0 0
\(275\) 774.937 0.169929
\(276\) 0 0
\(277\) −5098.99 −1.10602 −0.553012 0.833173i \(-0.686522\pi\)
−0.553012 + 0.833173i \(0.686522\pi\)
\(278\) 0 0
\(279\) 2879.04 0.617790
\(280\) 0 0
\(281\) 8080.89 1.71554 0.857768 0.514038i \(-0.171851\pi\)
0.857768 + 0.514038i \(0.171851\pi\)
\(282\) 0 0
\(283\) −228.187 −0.0479305 −0.0239652 0.999713i \(-0.507629\pi\)
−0.0239652 + 0.999713i \(0.507629\pi\)
\(284\) 0 0
\(285\) −1318.41 −0.274020
\(286\) 0 0
\(287\) 7638.47 1.57103
\(288\) 0 0
\(289\) 5953.89 1.21186
\(290\) 0 0
\(291\) −1707.13 −0.343896
\(292\) 0 0
\(293\) −1857.24 −0.370310 −0.185155 0.982709i \(-0.559279\pi\)
−0.185155 + 0.982709i \(0.559279\pi\)
\(294\) 0 0
\(295\) 1427.92 0.281820
\(296\) 0 0
\(297\) −182.186 −0.0355942
\(298\) 0 0
\(299\) 1433.18 0.277200
\(300\) 0 0
\(301\) 8250.21 1.57985
\(302\) 0 0
\(303\) −4513.41 −0.855737
\(304\) 0 0
\(305\) −843.128 −0.158286
\(306\) 0 0
\(307\) −8204.32 −1.52523 −0.762614 0.646854i \(-0.776084\pi\)
−0.762614 + 0.646854i \(0.776084\pi\)
\(308\) 0 0
\(309\) −4692.79 −0.863960
\(310\) 0 0
\(311\) 3194.10 0.582382 0.291191 0.956665i \(-0.405949\pi\)
0.291191 + 0.956665i \(0.405949\pi\)
\(312\) 0 0
\(313\) 7309.24 1.31995 0.659973 0.751290i \(-0.270568\pi\)
0.659973 + 0.751290i \(0.270568\pi\)
\(314\) 0 0
\(315\) 686.399 0.122775
\(316\) 0 0
\(317\) −8262.59 −1.46395 −0.731976 0.681330i \(-0.761402\pi\)
−0.731976 + 0.681330i \(0.761402\pi\)
\(318\) 0 0
\(319\) 388.695 0.0682218
\(320\) 0 0
\(321\) 4458.32 0.775199
\(322\) 0 0
\(323\) −14376.9 −2.47663
\(324\) 0 0
\(325\) −1493.00 −0.254821
\(326\) 0 0
\(327\) −4448.67 −0.752330
\(328\) 0 0
\(329\) −10520.2 −1.76291
\(330\) 0 0
\(331\) −2736.73 −0.454454 −0.227227 0.973842i \(-0.572966\pi\)
−0.227227 + 0.973842i \(0.572966\pi\)
\(332\) 0 0
\(333\) −25.9280 −0.00426681
\(334\) 0 0
\(335\) −2271.03 −0.370387
\(336\) 0 0
\(337\) 5166.62 0.835144 0.417572 0.908644i \(-0.362881\pi\)
0.417572 + 0.908644i \(0.362881\pi\)
\(338\) 0 0
\(339\) −1603.51 −0.256905
\(340\) 0 0
\(341\) −2158.51 −0.342786
\(342\) 0 0
\(343\) −2708.32 −0.426343
\(344\) 0 0
\(345\) 1053.89 0.164462
\(346\) 0 0
\(347\) 10218.8 1.58091 0.790456 0.612519i \(-0.209844\pi\)
0.790456 + 0.612519i \(0.209844\pi\)
\(348\) 0 0
\(349\) 1341.71 0.205788 0.102894 0.994692i \(-0.467190\pi\)
0.102894 + 0.994692i \(0.467190\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 0 0
\(353\) 5268.23 0.794333 0.397166 0.917747i \(-0.369994\pi\)
0.397166 + 0.917747i \(0.369994\pi\)
\(354\) 0 0
\(355\) 3615.68 0.540564
\(356\) 0 0
\(357\) 7485.00 1.10966
\(358\) 0 0
\(359\) −2034.67 −0.299125 −0.149562 0.988752i \(-0.547786\pi\)
−0.149562 + 0.988752i \(0.547786\pi\)
\(360\) 0 0
\(361\) 12161.6 1.77308
\(362\) 0 0
\(363\) −3856.41 −0.557601
\(364\) 0 0
\(365\) −2124.05 −0.304596
\(366\) 0 0
\(367\) −2765.13 −0.393293 −0.196647 0.980474i \(-0.563005\pi\)
−0.196647 + 0.980474i \(0.563005\pi\)
\(368\) 0 0
\(369\) 2872.31 0.405220
\(370\) 0 0
\(371\) −2327.91 −0.325766
\(372\) 0 0
\(373\) −1160.30 −0.161067 −0.0805337 0.996752i \(-0.525662\pi\)
−0.0805337 + 0.996752i \(0.525662\pi\)
\(374\) 0 0
\(375\) −2292.82 −0.315736
\(376\) 0 0
\(377\) −748.862 −0.102303
\(378\) 0 0
\(379\) 2577.88 0.349385 0.174692 0.984623i \(-0.444107\pi\)
0.174692 + 0.984623i \(0.444107\pi\)
\(380\) 0 0
\(381\) −5432.27 −0.730456
\(382\) 0 0
\(383\) 814.563 0.108674 0.0543371 0.998523i \(-0.482695\pi\)
0.0543371 + 0.998523i \(0.482695\pi\)
\(384\) 0 0
\(385\) −514.617 −0.0681229
\(386\) 0 0
\(387\) 3102.34 0.407496
\(388\) 0 0
\(389\) −1736.18 −0.226293 −0.113147 0.993578i \(-0.536093\pi\)
−0.113147 + 0.993578i \(0.536093\pi\)
\(390\) 0 0
\(391\) 11492.4 1.48643
\(392\) 0 0
\(393\) −3631.32 −0.466097
\(394\) 0 0
\(395\) 2640.61 0.336363
\(396\) 0 0
\(397\) 1.18770 0.000150149 0 7.50746e−5 1.00000i \(-0.499976\pi\)
7.50746e−5 1.00000i \(0.499976\pi\)
\(398\) 0 0
\(399\) −9902.63 −1.24249
\(400\) 0 0
\(401\) −6552.48 −0.815998 −0.407999 0.912982i \(-0.633773\pi\)
−0.407999 + 0.912982i \(0.633773\pi\)
\(402\) 0 0
\(403\) 4158.61 0.514032
\(404\) 0 0
\(405\) 258.108 0.0316679
\(406\) 0 0
\(407\) 19.4391 0.00236748
\(408\) 0 0
\(409\) −2735.87 −0.330759 −0.165379 0.986230i \(-0.552885\pi\)
−0.165379 + 0.986230i \(0.552885\pi\)
\(410\) 0 0
\(411\) −5684.05 −0.682174
\(412\) 0 0
\(413\) 10725.2 1.27785
\(414\) 0 0
\(415\) 2339.34 0.276708
\(416\) 0 0
\(417\) −2398.37 −0.281652
\(418\) 0 0
\(419\) −9666.00 −1.12700 −0.563502 0.826115i \(-0.690546\pi\)
−0.563502 + 0.826115i \(0.690546\pi\)
\(420\) 0 0
\(421\) 9774.14 1.13150 0.565751 0.824576i \(-0.308586\pi\)
0.565751 + 0.824576i \(0.308586\pi\)
\(422\) 0 0
\(423\) −3955.94 −0.454715
\(424\) 0 0
\(425\) −11972.1 −1.36642
\(426\) 0 0
\(427\) −6332.78 −0.717716
\(428\) 0 0
\(429\) −263.157 −0.0296162
\(430\) 0 0
\(431\) 5984.17 0.668787 0.334394 0.942434i \(-0.391469\pi\)
0.334394 + 0.942434i \(0.391469\pi\)
\(432\) 0 0
\(433\) −1179.51 −0.130909 −0.0654544 0.997856i \(-0.520850\pi\)
−0.0654544 + 0.997856i \(0.520850\pi\)
\(434\) 0 0
\(435\) −550.676 −0.0606963
\(436\) 0 0
\(437\) −15204.4 −1.66436
\(438\) 0 0
\(439\) 11989.5 1.30348 0.651741 0.758442i \(-0.274039\pi\)
0.651741 + 0.758442i \(0.274039\pi\)
\(440\) 0 0
\(441\) 2068.58 0.223365
\(442\) 0 0
\(443\) 7682.86 0.823981 0.411991 0.911188i \(-0.364834\pi\)
0.411991 + 0.911188i \(0.364834\pi\)
\(444\) 0 0
\(445\) 488.349 0.0520224
\(446\) 0 0
\(447\) −5809.36 −0.614705
\(448\) 0 0
\(449\) −12713.8 −1.33631 −0.668155 0.744022i \(-0.732916\pi\)
−0.668155 + 0.744022i \(0.732916\pi\)
\(450\) 0 0
\(451\) −2153.47 −0.224840
\(452\) 0 0
\(453\) −6601.19 −0.684659
\(454\) 0 0
\(455\) 991.465 0.102155
\(456\) 0 0
\(457\) −1707.47 −0.174775 −0.0873875 0.996174i \(-0.527852\pi\)
−0.0873875 + 0.996174i \(0.527852\pi\)
\(458\) 0 0
\(459\) 2814.60 0.286218
\(460\) 0 0
\(461\) −12514.3 −1.26432 −0.632159 0.774838i \(-0.717831\pi\)
−0.632159 + 0.774838i \(0.717831\pi\)
\(462\) 0 0
\(463\) −10447.6 −1.04868 −0.524340 0.851509i \(-0.675688\pi\)
−0.524340 + 0.851509i \(0.675688\pi\)
\(464\) 0 0
\(465\) 3058.03 0.304974
\(466\) 0 0
\(467\) −15170.6 −1.50324 −0.751618 0.659599i \(-0.770726\pi\)
−0.751618 + 0.659599i \(0.770726\pi\)
\(468\) 0 0
\(469\) −17057.9 −1.67944
\(470\) 0 0
\(471\) 7315.44 0.715664
\(472\) 0 0
\(473\) −2325.94 −0.226103
\(474\) 0 0
\(475\) 15839.0 1.52999
\(476\) 0 0
\(477\) −875.369 −0.0840259
\(478\) 0 0
\(479\) −5177.65 −0.493889 −0.246945 0.969030i \(-0.579427\pi\)
−0.246945 + 0.969030i \(0.579427\pi\)
\(480\) 0 0
\(481\) −37.4516 −0.00355020
\(482\) 0 0
\(483\) 7915.81 0.745718
\(484\) 0 0
\(485\) −1813.27 −0.169766
\(486\) 0 0
\(487\) −4056.52 −0.377451 −0.188725 0.982030i \(-0.560436\pi\)
−0.188725 + 0.982030i \(0.560436\pi\)
\(488\) 0 0
\(489\) −2840.13 −0.262649
\(490\) 0 0
\(491\) −4328.53 −0.397849 −0.198924 0.980015i \(-0.563745\pi\)
−0.198924 + 0.980015i \(0.563745\pi\)
\(492\) 0 0
\(493\) −6004.98 −0.548581
\(494\) 0 0
\(495\) −193.513 −0.0175712
\(496\) 0 0
\(497\) 27157.6 2.45108
\(498\) 0 0
\(499\) −12764.9 −1.14516 −0.572581 0.819848i \(-0.694058\pi\)
−0.572581 + 0.819848i \(0.694058\pi\)
\(500\) 0 0
\(501\) −6083.51 −0.542497
\(502\) 0 0
\(503\) −16718.4 −1.48198 −0.740991 0.671515i \(-0.765644\pi\)
−0.740991 + 0.671515i \(0.765644\pi\)
\(504\) 0 0
\(505\) −4794.02 −0.422437
\(506\) 0 0
\(507\) 507.000 0.0444116
\(508\) 0 0
\(509\) 6994.30 0.609071 0.304535 0.952501i \(-0.401499\pi\)
0.304535 + 0.952501i \(0.401499\pi\)
\(510\) 0 0
\(511\) −15953.8 −1.38113
\(512\) 0 0
\(513\) −3723.71 −0.320479
\(514\) 0 0
\(515\) −4984.56 −0.426497
\(516\) 0 0
\(517\) 2965.91 0.252303
\(518\) 0 0
\(519\) 3151.43 0.266537
\(520\) 0 0
\(521\) −5281.01 −0.444079 −0.222040 0.975038i \(-0.571271\pi\)
−0.222040 + 0.975038i \(0.571271\pi\)
\(522\) 0 0
\(523\) 3410.20 0.285120 0.142560 0.989786i \(-0.454467\pi\)
0.142560 + 0.989786i \(0.454467\pi\)
\(524\) 0 0
\(525\) −8246.23 −0.685514
\(526\) 0 0
\(527\) 33347.0 2.75639
\(528\) 0 0
\(529\) −13.1752 −0.00108286
\(530\) 0 0
\(531\) 4033.03 0.329602
\(532\) 0 0
\(533\) 4148.89 0.337164
\(534\) 0 0
\(535\) 4735.50 0.382680
\(536\) 0 0
\(537\) 6997.84 0.562344
\(538\) 0 0
\(539\) −1550.89 −0.123936
\(540\) 0 0
\(541\) 1280.98 0.101800 0.0508998 0.998704i \(-0.483791\pi\)
0.0508998 + 0.998704i \(0.483791\pi\)
\(542\) 0 0
\(543\) 3174.18 0.250860
\(544\) 0 0
\(545\) −4725.25 −0.371390
\(546\) 0 0
\(547\) 14379.3 1.12397 0.561986 0.827147i \(-0.310037\pi\)
0.561986 + 0.827147i \(0.310037\pi\)
\(548\) 0 0
\(549\) −2381.33 −0.185123
\(550\) 0 0
\(551\) 7944.57 0.614247
\(552\) 0 0
\(553\) 19833.8 1.52517
\(554\) 0 0
\(555\) −27.5400 −0.00210632
\(556\) 0 0
\(557\) −17781.2 −1.35263 −0.676313 0.736614i \(-0.736423\pi\)
−0.676313 + 0.736614i \(0.736423\pi\)
\(558\) 0 0
\(559\) 4481.16 0.339057
\(560\) 0 0
\(561\) −2110.20 −0.158811
\(562\) 0 0
\(563\) 11953.0 0.894775 0.447387 0.894340i \(-0.352355\pi\)
0.447387 + 0.894340i \(0.352355\pi\)
\(564\) 0 0
\(565\) −1703.21 −0.126822
\(566\) 0 0
\(567\) 1938.66 0.143591
\(568\) 0 0
\(569\) 18111.3 1.33439 0.667193 0.744885i \(-0.267496\pi\)
0.667193 + 0.744885i \(0.267496\pi\)
\(570\) 0 0
\(571\) 10493.0 0.769032 0.384516 0.923118i \(-0.374368\pi\)
0.384516 + 0.923118i \(0.374368\pi\)
\(572\) 0 0
\(573\) −307.374 −0.0224096
\(574\) 0 0
\(575\) −12661.1 −0.918271
\(576\) 0 0
\(577\) 8839.27 0.637754 0.318877 0.947796i \(-0.396694\pi\)
0.318877 + 0.947796i \(0.396694\pi\)
\(578\) 0 0
\(579\) 307.189 0.0220489
\(580\) 0 0
\(581\) 17570.9 1.25467
\(582\) 0 0
\(583\) 656.294 0.0466225
\(584\) 0 0
\(585\) 372.823 0.0263493
\(586\) 0 0
\(587\) 22816.3 1.60431 0.802155 0.597116i \(-0.203687\pi\)
0.802155 + 0.597116i \(0.203687\pi\)
\(588\) 0 0
\(589\) −44118.0 −3.08634
\(590\) 0 0
\(591\) −14970.8 −1.04199
\(592\) 0 0
\(593\) −28015.1 −1.94004 −0.970018 0.243033i \(-0.921858\pi\)
−0.970018 + 0.243033i \(0.921858\pi\)
\(594\) 0 0
\(595\) 7950.36 0.547787
\(596\) 0 0
\(597\) −8803.80 −0.603544
\(598\) 0 0
\(599\) −10404.4 −0.709702 −0.354851 0.934923i \(-0.615468\pi\)
−0.354851 + 0.934923i \(0.615468\pi\)
\(600\) 0 0
\(601\) −6801.55 −0.461632 −0.230816 0.972997i \(-0.574140\pi\)
−0.230816 + 0.972997i \(0.574140\pi\)
\(602\) 0 0
\(603\) −6414.30 −0.433185
\(604\) 0 0
\(605\) −4096.17 −0.275261
\(606\) 0 0
\(607\) −13046.5 −0.872394 −0.436197 0.899851i \(-0.643675\pi\)
−0.436197 + 0.899851i \(0.643675\pi\)
\(608\) 0 0
\(609\) −4136.16 −0.275215
\(610\) 0 0
\(611\) −5714.14 −0.378346
\(612\) 0 0
\(613\) 15725.0 1.03610 0.518049 0.855351i \(-0.326658\pi\)
0.518049 + 0.855351i \(0.326658\pi\)
\(614\) 0 0
\(615\) 3050.89 0.200038
\(616\) 0 0
\(617\) 27568.7 1.79882 0.899411 0.437104i \(-0.143996\pi\)
0.899411 + 0.437104i \(0.143996\pi\)
\(618\) 0 0
\(619\) 9433.05 0.612514 0.306257 0.951949i \(-0.400923\pi\)
0.306257 + 0.951949i \(0.400923\pi\)
\(620\) 0 0
\(621\) 2976.60 0.192346
\(622\) 0 0
\(623\) 3668.02 0.235885
\(624\) 0 0
\(625\) 11920.4 0.762905
\(626\) 0 0
\(627\) 2791.79 0.177821
\(628\) 0 0
\(629\) −300.317 −0.0190372
\(630\) 0 0
\(631\) 29379.6 1.85354 0.926771 0.375627i \(-0.122572\pi\)
0.926771 + 0.375627i \(0.122572\pi\)
\(632\) 0 0
\(633\) 14865.2 0.933396
\(634\) 0 0
\(635\) −5770.01 −0.360592
\(636\) 0 0
\(637\) 2987.96 0.185851
\(638\) 0 0
\(639\) 10212.1 0.632215
\(640\) 0 0
\(641\) −28264.3 −1.74161 −0.870805 0.491629i \(-0.836401\pi\)
−0.870805 + 0.491629i \(0.836401\pi\)
\(642\) 0 0
\(643\) 27550.9 1.68974 0.844869 0.534973i \(-0.179678\pi\)
0.844869 + 0.534973i \(0.179678\pi\)
\(644\) 0 0
\(645\) 3295.22 0.201162
\(646\) 0 0
\(647\) 23186.0 1.40887 0.704433 0.709770i \(-0.251201\pi\)
0.704433 + 0.709770i \(0.251201\pi\)
\(648\) 0 0
\(649\) −3023.70 −0.182882
\(650\) 0 0
\(651\) 22969.1 1.38284
\(652\) 0 0
\(653\) 14294.6 0.856647 0.428323 0.903625i \(-0.359104\pi\)
0.428323 + 0.903625i \(0.359104\pi\)
\(654\) 0 0
\(655\) −3857.09 −0.230090
\(656\) 0 0
\(657\) −5999.16 −0.356240
\(658\) 0 0
\(659\) 2487.32 0.147029 0.0735146 0.997294i \(-0.476578\pi\)
0.0735146 + 0.997294i \(0.476578\pi\)
\(660\) 0 0
\(661\) −2542.95 −0.149636 −0.0748180 0.997197i \(-0.523838\pi\)
−0.0748180 + 0.997197i \(0.523838\pi\)
\(662\) 0 0
\(663\) 4065.53 0.238148
\(664\) 0 0
\(665\) −10518.3 −0.613357
\(666\) 0 0
\(667\) −6350.61 −0.368660
\(668\) 0 0
\(669\) 3776.08 0.218224
\(670\) 0 0
\(671\) 1785.37 0.102717
\(672\) 0 0
\(673\) −15068.1 −0.863049 −0.431524 0.902101i \(-0.642024\pi\)
−0.431524 + 0.902101i \(0.642024\pi\)
\(674\) 0 0
\(675\) −3100.84 −0.176817
\(676\) 0 0
\(677\) 28291.2 1.60608 0.803042 0.595923i \(-0.203214\pi\)
0.803042 + 0.595923i \(0.203214\pi\)
\(678\) 0 0
\(679\) −13619.6 −0.769766
\(680\) 0 0
\(681\) −307.063 −0.0172785
\(682\) 0 0
\(683\) −22052.3 −1.23545 −0.617723 0.786396i \(-0.711945\pi\)
−0.617723 + 0.786396i \(0.711945\pi\)
\(684\) 0 0
\(685\) −6037.44 −0.336757
\(686\) 0 0
\(687\) −7469.20 −0.414800
\(688\) 0 0
\(689\) −1264.42 −0.0699138
\(690\) 0 0
\(691\) 22010.1 1.21173 0.605864 0.795568i \(-0.292827\pi\)
0.605864 + 0.795568i \(0.292827\pi\)
\(692\) 0 0
\(693\) −1453.48 −0.0796729
\(694\) 0 0
\(695\) −2547.49 −0.139038
\(696\) 0 0
\(697\) 33269.1 1.80797
\(698\) 0 0
\(699\) 12823.9 0.693913
\(700\) 0 0
\(701\) 18959.7 1.02154 0.510769 0.859718i \(-0.329361\pi\)
0.510769 + 0.859718i \(0.329361\pi\)
\(702\) 0 0
\(703\) 397.318 0.0213160
\(704\) 0 0
\(705\) −4201.89 −0.224472
\(706\) 0 0
\(707\) −36008.1 −1.91545
\(708\) 0 0
\(709\) −21466.2 −1.13707 −0.568534 0.822660i \(-0.692489\pi\)
−0.568534 + 0.822660i \(0.692489\pi\)
\(710\) 0 0
\(711\) 7458.14 0.393392
\(712\) 0 0
\(713\) 35266.4 1.85237
\(714\) 0 0
\(715\) −279.518 −0.0146201
\(716\) 0 0
\(717\) 7046.42 0.367020
\(718\) 0 0
\(719\) −5589.46 −0.289919 −0.144959 0.989438i \(-0.546305\pi\)
−0.144959 + 0.989438i \(0.546305\pi\)
\(720\) 0 0
\(721\) −37439.3 −1.93386
\(722\) 0 0
\(723\) −9390.15 −0.483020
\(724\) 0 0
\(725\) 6615.69 0.338897
\(726\) 0 0
\(727\) 33648.8 1.71660 0.858298 0.513152i \(-0.171522\pi\)
0.858298 + 0.513152i \(0.171522\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 35933.5 1.81813
\(732\) 0 0
\(733\) 1542.91 0.0777470 0.0388735 0.999244i \(-0.487623\pi\)
0.0388735 + 0.999244i \(0.487623\pi\)
\(734\) 0 0
\(735\) 2197.19 0.110265
\(736\) 0 0
\(737\) 4809.03 0.240357
\(738\) 0 0
\(739\) −30154.3 −1.50101 −0.750503 0.660867i \(-0.770189\pi\)
−0.750503 + 0.660867i \(0.770189\pi\)
\(740\) 0 0
\(741\) −5378.69 −0.266655
\(742\) 0 0
\(743\) 25634.5 1.26573 0.632866 0.774261i \(-0.281878\pi\)
0.632866 + 0.774261i \(0.281878\pi\)
\(744\) 0 0
\(745\) −6170.54 −0.303451
\(746\) 0 0
\(747\) 6607.23 0.323622
\(748\) 0 0
\(749\) 35568.6 1.73518
\(750\) 0 0
\(751\) 4193.68 0.203768 0.101884 0.994796i \(-0.467513\pi\)
0.101884 + 0.994796i \(0.467513\pi\)
\(752\) 0 0
\(753\) −4714.83 −0.228178
\(754\) 0 0
\(755\) −7011.60 −0.337984
\(756\) 0 0
\(757\) 21998.9 1.05623 0.528113 0.849174i \(-0.322900\pi\)
0.528113 + 0.849174i \(0.322900\pi\)
\(758\) 0 0
\(759\) −2231.66 −0.106725
\(760\) 0 0
\(761\) −6212.65 −0.295938 −0.147969 0.988992i \(-0.547274\pi\)
−0.147969 + 0.988992i \(0.547274\pi\)
\(762\) 0 0
\(763\) −35491.7 −1.68399
\(764\) 0 0
\(765\) 2989.59 0.141293
\(766\) 0 0
\(767\) 5825.48 0.274245
\(768\) 0 0
\(769\) 12573.3 0.589603 0.294802 0.955558i \(-0.404746\pi\)
0.294802 + 0.955558i \(0.404746\pi\)
\(770\) 0 0
\(771\) 8906.12 0.416013
\(772\) 0 0
\(773\) −35282.4 −1.64168 −0.820840 0.571159i \(-0.806494\pi\)
−0.820840 + 0.571159i \(0.806494\pi\)
\(774\) 0 0
\(775\) −36738.5 −1.70282
\(776\) 0 0
\(777\) −206.855 −0.00955068
\(778\) 0 0
\(779\) −44014.9 −2.02439
\(780\) 0 0
\(781\) −7656.39 −0.350790
\(782\) 0 0
\(783\) −1555.33 −0.0709872
\(784\) 0 0
\(785\) 7770.26 0.353290
\(786\) 0 0
\(787\) −35759.1 −1.61966 −0.809831 0.586663i \(-0.800441\pi\)
−0.809831 + 0.586663i \(0.800441\pi\)
\(788\) 0 0
\(789\) 8946.41 0.403676
\(790\) 0 0
\(791\) −12792.9 −0.575048
\(792\) 0 0
\(793\) −3439.70 −0.154032
\(794\) 0 0
\(795\) −929.793 −0.0414797
\(796\) 0 0
\(797\) −24603.7 −1.09349 −0.546743 0.837301i \(-0.684133\pi\)
−0.546743 + 0.837301i \(0.684133\pi\)
\(798\) 0 0
\(799\) −45820.5 −2.02880
\(800\) 0 0
\(801\) 1379.29 0.0608426
\(802\) 0 0
\(803\) 4497.78 0.197663
\(804\) 0 0
\(805\) 8407.96 0.368126
\(806\) 0 0
\(807\) −5120.02 −0.223338
\(808\) 0 0
\(809\) 33283.3 1.44645 0.723226 0.690612i \(-0.242659\pi\)
0.723226 + 0.690612i \(0.242659\pi\)
\(810\) 0 0
\(811\) 40351.9 1.74716 0.873581 0.486679i \(-0.161792\pi\)
0.873581 + 0.486679i \(0.161792\pi\)
\(812\) 0 0
\(813\) 11964.8 0.516142
\(814\) 0 0
\(815\) −3016.71 −0.129658
\(816\) 0 0
\(817\) −47540.0 −2.03576
\(818\) 0 0
\(819\) 2800.29 0.119475
\(820\) 0 0
\(821\) −18080.9 −0.768607 −0.384303 0.923207i \(-0.625558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(822\) 0 0
\(823\) −22784.9 −0.965043 −0.482522 0.875884i \(-0.660279\pi\)
−0.482522 + 0.875884i \(0.660279\pi\)
\(824\) 0 0
\(825\) 2324.81 0.0981086
\(826\) 0 0
\(827\) −26389.3 −1.10961 −0.554804 0.831981i \(-0.687207\pi\)
−0.554804 + 0.831981i \(0.687207\pi\)
\(828\) 0 0
\(829\) 23934.1 1.00274 0.501368 0.865234i \(-0.332830\pi\)
0.501368 + 0.865234i \(0.332830\pi\)
\(830\) 0 0
\(831\) −15297.0 −0.638564
\(832\) 0 0
\(833\) 23959.8 0.996589
\(834\) 0 0
\(835\) −6461.74 −0.267806
\(836\) 0 0
\(837\) 8637.11 0.356681
\(838\) 0 0
\(839\) 17716.6 0.729016 0.364508 0.931200i \(-0.381237\pi\)
0.364508 + 0.931200i \(0.381237\pi\)
\(840\) 0 0
\(841\) −21070.7 −0.863942
\(842\) 0 0
\(843\) 24242.7 0.990465
\(844\) 0 0
\(845\) 538.522 0.0219239
\(846\) 0 0
\(847\) −30766.6 −1.24811
\(848\) 0 0
\(849\) −684.562 −0.0276727
\(850\) 0 0
\(851\) −317.602 −0.0127935
\(852\) 0 0
\(853\) 27077.6 1.08689 0.543446 0.839444i \(-0.317119\pi\)
0.543446 + 0.839444i \(0.317119\pi\)
\(854\) 0 0
\(855\) −3955.22 −0.158205
\(856\) 0 0
\(857\) −22069.8 −0.879684 −0.439842 0.898075i \(-0.644966\pi\)
−0.439842 + 0.898075i \(0.644966\pi\)
\(858\) 0 0
\(859\) −24577.5 −0.976221 −0.488110 0.872782i \(-0.662314\pi\)
−0.488110 + 0.872782i \(0.662314\pi\)
\(860\) 0 0
\(861\) 22915.4 0.907032
\(862\) 0 0
\(863\) 24322.4 0.959381 0.479690 0.877438i \(-0.340749\pi\)
0.479690 + 0.877438i \(0.340749\pi\)
\(864\) 0 0
\(865\) 3347.37 0.131577
\(866\) 0 0
\(867\) 17861.7 0.699671
\(868\) 0 0
\(869\) −5591.63 −0.218277
\(870\) 0 0
\(871\) −9265.11 −0.360432
\(872\) 0 0
\(873\) −5121.40 −0.198549
\(874\) 0 0
\(875\) −18292.2 −0.706732
\(876\) 0 0
\(877\) −18624.2 −0.717096 −0.358548 0.933511i \(-0.616728\pi\)
−0.358548 + 0.933511i \(0.616728\pi\)
\(878\) 0 0
\(879\) −5571.71 −0.213799
\(880\) 0 0
\(881\) 46666.0 1.78458 0.892291 0.451460i \(-0.149097\pi\)
0.892291 + 0.451460i \(0.149097\pi\)
\(882\) 0 0
\(883\) 29108.5 1.10937 0.554687 0.832059i \(-0.312838\pi\)
0.554687 + 0.832059i \(0.312838\pi\)
\(884\) 0 0
\(885\) 4283.77 0.162709
\(886\) 0 0
\(887\) −18025.7 −0.682351 −0.341176 0.940000i \(-0.610825\pi\)
−0.341176 + 0.940000i \(0.610825\pi\)
\(888\) 0 0
\(889\) −43338.9 −1.63503
\(890\) 0 0
\(891\) −546.557 −0.0205503
\(892\) 0 0
\(893\) 60620.4 2.27165
\(894\) 0 0
\(895\) 7432.91 0.277603
\(896\) 0 0
\(897\) 4299.53 0.160041
\(898\) 0 0
\(899\) −18427.4 −0.683634
\(900\) 0 0
\(901\) −10139.1 −0.374899
\(902\) 0 0
\(903\) 24750.6 0.912126
\(904\) 0 0
\(905\) 3371.52 0.123838
\(906\) 0 0
\(907\) −6690.51 −0.244933 −0.122467 0.992473i \(-0.539080\pi\)
−0.122467 + 0.992473i \(0.539080\pi\)
\(908\) 0 0
\(909\) −13540.2 −0.494060
\(910\) 0 0
\(911\) −2333.45 −0.0848633 −0.0424317 0.999099i \(-0.513510\pi\)
−0.0424317 + 0.999099i \(0.513510\pi\)
\(912\) 0 0
\(913\) −4953.67 −0.179565
\(914\) 0 0
\(915\) −2529.38 −0.0913867
\(916\) 0 0
\(917\) −28970.9 −1.04330
\(918\) 0 0
\(919\) 5069.08 0.181952 0.0909758 0.995853i \(-0.471001\pi\)
0.0909758 + 0.995853i \(0.471001\pi\)
\(920\) 0 0
\(921\) −24613.0 −0.880591
\(922\) 0 0
\(923\) 14750.8 0.526035
\(924\) 0 0
\(925\) 330.859 0.0117606
\(926\) 0 0
\(927\) −14078.4 −0.498807
\(928\) 0 0
\(929\) 1321.66 0.0466763 0.0233382 0.999728i \(-0.492571\pi\)
0.0233382 + 0.999728i \(0.492571\pi\)
\(930\) 0 0
\(931\) −31698.8 −1.11588
\(932\) 0 0
\(933\) 9582.30 0.336238
\(934\) 0 0
\(935\) −2241.40 −0.0783975
\(936\) 0 0
\(937\) −52868.3 −1.84326 −0.921629 0.388072i \(-0.873141\pi\)
−0.921629 + 0.388072i \(0.873141\pi\)
\(938\) 0 0
\(939\) 21927.7 0.762071
\(940\) 0 0
\(941\) −29982.2 −1.03867 −0.519337 0.854570i \(-0.673821\pi\)
−0.519337 + 0.854570i \(0.673821\pi\)
\(942\) 0 0
\(943\) 35184.0 1.21500
\(944\) 0 0
\(945\) 2059.20 0.0708843
\(946\) 0 0
\(947\) −20676.2 −0.709488 −0.354744 0.934963i \(-0.615432\pi\)
−0.354744 + 0.934963i \(0.615432\pi\)
\(948\) 0 0
\(949\) −8665.45 −0.296409
\(950\) 0 0
\(951\) −24787.8 −0.845214
\(952\) 0 0
\(953\) 34705.5 1.17967 0.589833 0.807526i \(-0.299194\pi\)
0.589833 + 0.807526i \(0.299194\pi\)
\(954\) 0 0
\(955\) −326.484 −0.0110626
\(956\) 0 0
\(957\) 1166.09 0.0393879
\(958\) 0 0
\(959\) −45347.6 −1.52696
\(960\) 0 0
\(961\) 72540.5 2.43498
\(962\) 0 0
\(963\) 13374.9 0.447561
\(964\) 0 0
\(965\) 326.288 0.0108845
\(966\) 0 0
\(967\) 22925.4 0.762390 0.381195 0.924495i \(-0.375513\pi\)
0.381195 + 0.924495i \(0.375513\pi\)
\(968\) 0 0
\(969\) −43130.6 −1.42988
\(970\) 0 0
\(971\) −18359.7 −0.606787 −0.303393 0.952865i \(-0.598120\pi\)
−0.303393 + 0.952865i \(0.598120\pi\)
\(972\) 0 0
\(973\) −19134.3 −0.630440
\(974\) 0 0
\(975\) −4479.00 −0.147121
\(976\) 0 0
\(977\) 14567.7 0.477032 0.238516 0.971139i \(-0.423339\pi\)
0.238516 + 0.971139i \(0.423339\pi\)
\(978\) 0 0
\(979\) −1034.10 −0.0337591
\(980\) 0 0
\(981\) −13346.0 −0.434358
\(982\) 0 0
\(983\) −15297.6 −0.496355 −0.248178 0.968715i \(-0.579832\pi\)
−0.248178 + 0.968715i \(0.579832\pi\)
\(984\) 0 0
\(985\) −15901.6 −0.514383
\(986\) 0 0
\(987\) −31560.7 −1.01782
\(988\) 0 0
\(989\) 38001.8 1.22183
\(990\) 0 0
\(991\) −11376.1 −0.364655 −0.182328 0.983238i \(-0.558363\pi\)
−0.182328 + 0.983238i \(0.558363\pi\)
\(992\) 0 0
\(993\) −8210.20 −0.262379
\(994\) 0 0
\(995\) −9351.16 −0.297941
\(996\) 0 0
\(997\) 46713.5 1.48388 0.741941 0.670465i \(-0.233906\pi\)
0.741941 + 0.670465i \(0.233906\pi\)
\(998\) 0 0
\(999\) −77.7840 −0.00246344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.a.h.1.2 3
3.2 odd 2 936.4.a.l.1.2 3
4.3 odd 2 624.4.a.s.1.2 3
8.3 odd 2 2496.4.a.bq.1.2 3
8.5 even 2 2496.4.a.bm.1.2 3
12.11 even 2 1872.4.a.bl.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.2 3 1.1 even 1 trivial
624.4.a.s.1.2 3 4.3 odd 2
936.4.a.l.1.2 3 3.2 odd 2
1872.4.a.bl.1.2 3 12.11 even 2
2496.4.a.bm.1.2 3 8.5 even 2
2496.4.a.bq.1.2 3 8.3 odd 2