Properties

Label 312.4.a.h.1.1
Level $312$
Weight $4$
Character 312.1
Self dual yes
Analytic conductor $18.409$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.388065\) of defining polynomial
Character \(\chi\) \(=\) 312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -20.1466 q^{5} -19.6988 q^{7} +9.00000 q^{9} +13.5523 q^{11} +13.0000 q^{13} -60.4397 q^{15} +116.377 q^{17} +68.1169 q^{19} -59.0964 q^{21} +122.377 q^{23} +280.884 q^{25} +27.0000 q^{27} +204.193 q^{29} -194.603 q^{31} +40.6568 q^{33} +396.863 q^{35} -142.879 q^{37} +39.0000 q^{39} -175.051 q^{41} -219.490 q^{43} -181.319 q^{45} +236.413 q^{47} +45.0432 q^{49} +349.132 q^{51} -628.790 q^{53} -273.031 q^{55} +204.351 q^{57} +446.014 q^{59} +224.470 q^{61} -177.289 q^{63} -261.905 q^{65} +165.328 q^{67} +367.132 q^{69} +902.979 q^{71} -15.1121 q^{73} +842.651 q^{75} -266.963 q^{77} +670.013 q^{79} +81.0000 q^{81} +1040.50 q^{83} -2344.60 q^{85} +612.579 q^{87} -562.139 q^{89} -256.085 q^{91} -583.809 q^{93} -1372.32 q^{95} +1648.53 q^{97} +121.970 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 4 q^{5} + 6 q^{7} + 27 q^{9} + 32 q^{11} + 39 q^{13} - 12 q^{15} + 158 q^{17} + 70 q^{19} + 18 q^{21} + 176 q^{23} + 209 q^{25} + 81 q^{27} + 222 q^{29} + 54 q^{31} + 96 q^{33} + 496 q^{35}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) −20.1466 −1.80196 −0.900981 0.433858i \(-0.857152\pi\)
−0.900981 + 0.433858i \(0.857152\pi\)
\(6\) 0 0
\(7\) −19.6988 −1.06364 −0.531818 0.846859i \(-0.678491\pi\)
−0.531818 + 0.846859i \(0.678491\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 13.5523 0.371469 0.185735 0.982600i \(-0.440534\pi\)
0.185735 + 0.982600i \(0.440534\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −60.4397 −1.04036
\(16\) 0 0
\(17\) 116.377 1.66033 0.830165 0.557518i \(-0.188246\pi\)
0.830165 + 0.557518i \(0.188246\pi\)
\(18\) 0 0
\(19\) 68.1169 0.822478 0.411239 0.911528i \(-0.365096\pi\)
0.411239 + 0.911528i \(0.365096\pi\)
\(20\) 0 0
\(21\) −59.0964 −0.614090
\(22\) 0 0
\(23\) 122.377 1.10945 0.554726 0.832033i \(-0.312823\pi\)
0.554726 + 0.832033i \(0.312823\pi\)
\(24\) 0 0
\(25\) 280.884 2.24707
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 204.193 1.30751 0.653753 0.756708i \(-0.273194\pi\)
0.653753 + 0.756708i \(0.273194\pi\)
\(30\) 0 0
\(31\) −194.603 −1.12747 −0.563737 0.825954i \(-0.690637\pi\)
−0.563737 + 0.825954i \(0.690637\pi\)
\(32\) 0 0
\(33\) 40.6568 0.214468
\(34\) 0 0
\(35\) 396.863 1.91663
\(36\) 0 0
\(37\) −142.879 −0.634844 −0.317422 0.948284i \(-0.602817\pi\)
−0.317422 + 0.948284i \(0.602817\pi\)
\(38\) 0 0
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) −175.051 −0.666788 −0.333394 0.942788i \(-0.608194\pi\)
−0.333394 + 0.942788i \(0.608194\pi\)
\(42\) 0 0
\(43\) −219.490 −0.778417 −0.389209 0.921150i \(-0.627252\pi\)
−0.389209 + 0.921150i \(0.627252\pi\)
\(44\) 0 0
\(45\) −181.319 −0.600654
\(46\) 0 0
\(47\) 236.413 0.733711 0.366855 0.930278i \(-0.380434\pi\)
0.366855 + 0.930278i \(0.380434\pi\)
\(48\) 0 0
\(49\) 45.0432 0.131321
\(50\) 0 0
\(51\) 349.132 0.958592
\(52\) 0 0
\(53\) −628.790 −1.62964 −0.814820 0.579714i \(-0.803164\pi\)
−0.814820 + 0.579714i \(0.803164\pi\)
\(54\) 0 0
\(55\) −273.031 −0.669373
\(56\) 0 0
\(57\) 204.351 0.474858
\(58\) 0 0
\(59\) 446.014 0.984170 0.492085 0.870547i \(-0.336235\pi\)
0.492085 + 0.870547i \(0.336235\pi\)
\(60\) 0 0
\(61\) 224.470 0.471154 0.235577 0.971856i \(-0.424302\pi\)
0.235577 + 0.971856i \(0.424302\pi\)
\(62\) 0 0
\(63\) −177.289 −0.354545
\(64\) 0 0
\(65\) −261.905 −0.499774
\(66\) 0 0
\(67\) 165.328 0.301463 0.150731 0.988575i \(-0.451837\pi\)
0.150731 + 0.988575i \(0.451837\pi\)
\(68\) 0 0
\(69\) 367.132 0.640543
\(70\) 0 0
\(71\) 902.979 1.50935 0.754675 0.656098i \(-0.227794\pi\)
0.754675 + 0.656098i \(0.227794\pi\)
\(72\) 0 0
\(73\) −15.1121 −0.0242293 −0.0121147 0.999927i \(-0.503856\pi\)
−0.0121147 + 0.999927i \(0.503856\pi\)
\(74\) 0 0
\(75\) 842.651 1.29735
\(76\) 0 0
\(77\) −266.963 −0.395108
\(78\) 0 0
\(79\) 670.013 0.954207 0.477104 0.878847i \(-0.341687\pi\)
0.477104 + 0.878847i \(0.341687\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1040.50 1.37602 0.688010 0.725701i \(-0.258485\pi\)
0.688010 + 0.725701i \(0.258485\pi\)
\(84\) 0 0
\(85\) −2344.60 −2.99185
\(86\) 0 0
\(87\) 612.579 0.754889
\(88\) 0 0
\(89\) −562.139 −0.669512 −0.334756 0.942305i \(-0.608654\pi\)
−0.334756 + 0.942305i \(0.608654\pi\)
\(90\) 0 0
\(91\) −256.085 −0.295000
\(92\) 0 0
\(93\) −583.809 −0.650948
\(94\) 0 0
\(95\) −1372.32 −1.48207
\(96\) 0 0
\(97\) 1648.53 1.72560 0.862798 0.505548i \(-0.168710\pi\)
0.862798 + 0.505548i \(0.168710\pi\)
\(98\) 0 0
\(99\) 121.970 0.123823
\(100\) 0 0
\(101\) 397.182 0.391298 0.195649 0.980674i \(-0.437319\pi\)
0.195649 + 0.980674i \(0.437319\pi\)
\(102\) 0 0
\(103\) 1642.17 1.57095 0.785476 0.618892i \(-0.212418\pi\)
0.785476 + 0.618892i \(0.212418\pi\)
\(104\) 0 0
\(105\) 1190.59 1.10657
\(106\) 0 0
\(107\) −644.674 −0.582458 −0.291229 0.956653i \(-0.594064\pi\)
−0.291229 + 0.956653i \(0.594064\pi\)
\(108\) 0 0
\(109\) −297.565 −0.261482 −0.130741 0.991417i \(-0.541736\pi\)
−0.130741 + 0.991417i \(0.541736\pi\)
\(110\) 0 0
\(111\) −428.638 −0.366527
\(112\) 0 0
\(113\) 1902.40 1.58374 0.791872 0.610687i \(-0.209107\pi\)
0.791872 + 0.610687i \(0.209107\pi\)
\(114\) 0 0
\(115\) −2465.48 −1.99919
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) −2292.49 −1.76599
\(120\) 0 0
\(121\) −1147.34 −0.862011
\(122\) 0 0
\(123\) −525.152 −0.384970
\(124\) 0 0
\(125\) −3140.52 −2.24717
\(126\) 0 0
\(127\) 175.822 0.122848 0.0614240 0.998112i \(-0.480436\pi\)
0.0614240 + 0.998112i \(0.480436\pi\)
\(128\) 0 0
\(129\) −658.471 −0.449420
\(130\) 0 0
\(131\) 2195.26 1.46413 0.732066 0.681234i \(-0.238556\pi\)
0.732066 + 0.681234i \(0.238556\pi\)
\(132\) 0 0
\(133\) −1341.82 −0.874817
\(134\) 0 0
\(135\) −543.957 −0.346788
\(136\) 0 0
\(137\) −927.288 −0.578274 −0.289137 0.957288i \(-0.593368\pi\)
−0.289137 + 0.957288i \(0.593368\pi\)
\(138\) 0 0
\(139\) −2911.57 −1.77666 −0.888331 0.459205i \(-0.848134\pi\)
−0.888331 + 0.459205i \(0.848134\pi\)
\(140\) 0 0
\(141\) 709.239 0.423608
\(142\) 0 0
\(143\) 176.179 0.103027
\(144\) 0 0
\(145\) −4113.78 −2.35608
\(146\) 0 0
\(147\) 135.130 0.0758183
\(148\) 0 0
\(149\) 3078.29 1.69251 0.846254 0.532780i \(-0.178853\pi\)
0.846254 + 0.532780i \(0.178853\pi\)
\(150\) 0 0
\(151\) −866.444 −0.466955 −0.233478 0.972362i \(-0.575011\pi\)
−0.233478 + 0.972362i \(0.575011\pi\)
\(152\) 0 0
\(153\) 1047.39 0.553443
\(154\) 0 0
\(155\) 3920.58 2.03167
\(156\) 0 0
\(157\) −1545.89 −0.785831 −0.392915 0.919575i \(-0.628533\pi\)
−0.392915 + 0.919575i \(0.628533\pi\)
\(158\) 0 0
\(159\) −1886.37 −0.940873
\(160\) 0 0
\(161\) −2410.68 −1.18005
\(162\) 0 0
\(163\) 1635.09 0.785707 0.392854 0.919601i \(-0.371488\pi\)
0.392854 + 0.919601i \(0.371488\pi\)
\(164\) 0 0
\(165\) −819.094 −0.386463
\(166\) 0 0
\(167\) 2260.09 1.04725 0.523626 0.851948i \(-0.324579\pi\)
0.523626 + 0.851948i \(0.324579\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 613.052 0.274159
\(172\) 0 0
\(173\) −3079.96 −1.35355 −0.676777 0.736188i \(-0.736624\pi\)
−0.676777 + 0.736188i \(0.736624\pi\)
\(174\) 0 0
\(175\) −5533.07 −2.39006
\(176\) 0 0
\(177\) 1338.04 0.568211
\(178\) 0 0
\(179\) −1564.49 −0.653272 −0.326636 0.945150i \(-0.605915\pi\)
−0.326636 + 0.945150i \(0.605915\pi\)
\(180\) 0 0
\(181\) 641.793 0.263559 0.131779 0.991279i \(-0.457931\pi\)
0.131779 + 0.991279i \(0.457931\pi\)
\(182\) 0 0
\(183\) 673.409 0.272021
\(184\) 0 0
\(185\) 2878.53 1.14396
\(186\) 0 0
\(187\) 1577.17 0.616761
\(188\) 0 0
\(189\) −531.868 −0.204697
\(190\) 0 0
\(191\) 4000.90 1.51568 0.757841 0.652439i \(-0.226254\pi\)
0.757841 + 0.652439i \(0.226254\pi\)
\(192\) 0 0
\(193\) −4255.28 −1.58706 −0.793528 0.608533i \(-0.791758\pi\)
−0.793528 + 0.608533i \(0.791758\pi\)
\(194\) 0 0
\(195\) −785.716 −0.288545
\(196\) 0 0
\(197\) 3774.59 1.36512 0.682559 0.730831i \(-0.260867\pi\)
0.682559 + 0.730831i \(0.260867\pi\)
\(198\) 0 0
\(199\) 2071.28 0.737835 0.368918 0.929462i \(-0.379728\pi\)
0.368918 + 0.929462i \(0.379728\pi\)
\(200\) 0 0
\(201\) 495.984 0.174050
\(202\) 0 0
\(203\) −4022.36 −1.39071
\(204\) 0 0
\(205\) 3526.67 1.20153
\(206\) 0 0
\(207\) 1101.39 0.369817
\(208\) 0 0
\(209\) 923.138 0.305525
\(210\) 0 0
\(211\) −2753.26 −0.898304 −0.449152 0.893455i \(-0.648274\pi\)
−0.449152 + 0.893455i \(0.648274\pi\)
\(212\) 0 0
\(213\) 2708.94 0.871424
\(214\) 0 0
\(215\) 4421.97 1.40268
\(216\) 0 0
\(217\) 3833.45 1.19922
\(218\) 0 0
\(219\) −45.3364 −0.0139888
\(220\) 0 0
\(221\) 1512.90 0.460493
\(222\) 0 0
\(223\) 3994.02 1.19937 0.599685 0.800236i \(-0.295293\pi\)
0.599685 + 0.800236i \(0.295293\pi\)
\(224\) 0 0
\(225\) 2527.95 0.749023
\(226\) 0 0
\(227\) 1797.20 0.525480 0.262740 0.964867i \(-0.415374\pi\)
0.262740 + 0.964867i \(0.415374\pi\)
\(228\) 0 0
\(229\) −5171.16 −1.49223 −0.746114 0.665819i \(-0.768082\pi\)
−0.746114 + 0.665819i \(0.768082\pi\)
\(230\) 0 0
\(231\) −800.890 −0.228116
\(232\) 0 0
\(233\) −4501.40 −1.26565 −0.632826 0.774294i \(-0.718105\pi\)
−0.632826 + 0.774294i \(0.718105\pi\)
\(234\) 0 0
\(235\) −4762.91 −1.32212
\(236\) 0 0
\(237\) 2010.04 0.550912
\(238\) 0 0
\(239\) −6948.26 −1.88053 −0.940263 0.340450i \(-0.889421\pi\)
−0.940263 + 0.340450i \(0.889421\pi\)
\(240\) 0 0
\(241\) 1484.32 0.396737 0.198368 0.980128i \(-0.436436\pi\)
0.198368 + 0.980128i \(0.436436\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) −907.465 −0.236636
\(246\) 0 0
\(247\) 885.519 0.228114
\(248\) 0 0
\(249\) 3121.50 0.794445
\(250\) 0 0
\(251\) −2840.45 −0.714293 −0.357147 0.934048i \(-0.616250\pi\)
−0.357147 + 0.934048i \(0.616250\pi\)
\(252\) 0 0
\(253\) 1658.49 0.412127
\(254\) 0 0
\(255\) −7033.80 −1.72735
\(256\) 0 0
\(257\) −1500.98 −0.364313 −0.182156 0.983270i \(-0.558308\pi\)
−0.182156 + 0.983270i \(0.558308\pi\)
\(258\) 0 0
\(259\) 2814.55 0.675242
\(260\) 0 0
\(261\) 1837.74 0.435835
\(262\) 0 0
\(263\) −690.021 −0.161781 −0.0808907 0.996723i \(-0.525776\pi\)
−0.0808907 + 0.996723i \(0.525776\pi\)
\(264\) 0 0
\(265\) 12667.9 2.93655
\(266\) 0 0
\(267\) −1686.42 −0.386543
\(268\) 0 0
\(269\) 507.641 0.115061 0.0575305 0.998344i \(-0.481677\pi\)
0.0575305 + 0.998344i \(0.481677\pi\)
\(270\) 0 0
\(271\) −1528.40 −0.342598 −0.171299 0.985219i \(-0.554796\pi\)
−0.171299 + 0.985219i \(0.554796\pi\)
\(272\) 0 0
\(273\) −768.254 −0.170318
\(274\) 0 0
\(275\) 3806.61 0.834717
\(276\) 0 0
\(277\) 3886.11 0.842939 0.421469 0.906843i \(-0.361515\pi\)
0.421469 + 0.906843i \(0.361515\pi\)
\(278\) 0 0
\(279\) −1751.43 −0.375825
\(280\) 0 0
\(281\) 2705.38 0.574339 0.287170 0.957880i \(-0.407286\pi\)
0.287170 + 0.957880i \(0.407286\pi\)
\(282\) 0 0
\(283\) −2944.62 −0.618514 −0.309257 0.950978i \(-0.600080\pi\)
−0.309257 + 0.950978i \(0.600080\pi\)
\(284\) 0 0
\(285\) −4116.96 −0.855676
\(286\) 0 0
\(287\) 3448.29 0.709220
\(288\) 0 0
\(289\) 8630.65 1.75670
\(290\) 0 0
\(291\) 4945.59 0.996274
\(292\) 0 0
\(293\) −3835.89 −0.764830 −0.382415 0.923991i \(-0.624908\pi\)
−0.382415 + 0.923991i \(0.624908\pi\)
\(294\) 0 0
\(295\) −8985.63 −1.77344
\(296\) 0 0
\(297\) 365.911 0.0714893
\(298\) 0 0
\(299\) 1590.90 0.307707
\(300\) 0 0
\(301\) 4323.70 0.827953
\(302\) 0 0
\(303\) 1191.55 0.225916
\(304\) 0 0
\(305\) −4522.29 −0.849002
\(306\) 0 0
\(307\) 4068.20 0.756301 0.378151 0.925744i \(-0.376560\pi\)
0.378151 + 0.925744i \(0.376560\pi\)
\(308\) 0 0
\(309\) 4926.52 0.906990
\(310\) 0 0
\(311\) 7154.18 1.30443 0.652213 0.758036i \(-0.273841\pi\)
0.652213 + 0.758036i \(0.273841\pi\)
\(312\) 0 0
\(313\) 6439.37 1.16286 0.581429 0.813597i \(-0.302494\pi\)
0.581429 + 0.813597i \(0.302494\pi\)
\(314\) 0 0
\(315\) 3571.77 0.638877
\(316\) 0 0
\(317\) −7721.21 −1.36803 −0.684016 0.729467i \(-0.739768\pi\)
−0.684016 + 0.729467i \(0.739768\pi\)
\(318\) 0 0
\(319\) 2767.27 0.485698
\(320\) 0 0
\(321\) −1934.02 −0.336282
\(322\) 0 0
\(323\) 7927.25 1.36559
\(324\) 0 0
\(325\) 3651.49 0.623225
\(326\) 0 0
\(327\) −892.694 −0.150967
\(328\) 0 0
\(329\) −4657.06 −0.780401
\(330\) 0 0
\(331\) −2940.41 −0.488276 −0.244138 0.969740i \(-0.578505\pi\)
−0.244138 + 0.969740i \(0.578505\pi\)
\(332\) 0 0
\(333\) −1285.91 −0.211615
\(334\) 0 0
\(335\) −3330.79 −0.543225
\(336\) 0 0
\(337\) 5321.56 0.860189 0.430094 0.902784i \(-0.358480\pi\)
0.430094 + 0.902784i \(0.358480\pi\)
\(338\) 0 0
\(339\) 5707.21 0.914375
\(340\) 0 0
\(341\) −2637.31 −0.418822
\(342\) 0 0
\(343\) 5869.40 0.923958
\(344\) 0 0
\(345\) −7396.43 −1.15423
\(346\) 0 0
\(347\) −10398.3 −1.60868 −0.804339 0.594170i \(-0.797481\pi\)
−0.804339 + 0.594170i \(0.797481\pi\)
\(348\) 0 0
\(349\) −2289.87 −0.351214 −0.175607 0.984460i \(-0.556189\pi\)
−0.175607 + 0.984460i \(0.556189\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 0 0
\(353\) 11216.7 1.69124 0.845619 0.533787i \(-0.179231\pi\)
0.845619 + 0.533787i \(0.179231\pi\)
\(354\) 0 0
\(355\) −18191.9 −2.71979
\(356\) 0 0
\(357\) −6877.48 −1.01959
\(358\) 0 0
\(359\) 1447.78 0.212844 0.106422 0.994321i \(-0.466061\pi\)
0.106422 + 0.994321i \(0.466061\pi\)
\(360\) 0 0
\(361\) −2219.09 −0.323530
\(362\) 0 0
\(363\) −3442.01 −0.497682
\(364\) 0 0
\(365\) 304.457 0.0436603
\(366\) 0 0
\(367\) 6365.59 0.905398 0.452699 0.891663i \(-0.350461\pi\)
0.452699 + 0.891663i \(0.350461\pi\)
\(368\) 0 0
\(369\) −1575.46 −0.222263
\(370\) 0 0
\(371\) 12386.4 1.73334
\(372\) 0 0
\(373\) −9805.65 −1.36117 −0.680586 0.732668i \(-0.738275\pi\)
−0.680586 + 0.732668i \(0.738275\pi\)
\(374\) 0 0
\(375\) −9421.55 −1.29740
\(376\) 0 0
\(377\) 2654.51 0.362637
\(378\) 0 0
\(379\) 7337.60 0.994478 0.497239 0.867614i \(-0.334347\pi\)
0.497239 + 0.867614i \(0.334347\pi\)
\(380\) 0 0
\(381\) 527.467 0.0709263
\(382\) 0 0
\(383\) −3729.09 −0.497514 −0.248757 0.968566i \(-0.580022\pi\)
−0.248757 + 0.968566i \(0.580022\pi\)
\(384\) 0 0
\(385\) 5378.39 0.711969
\(386\) 0 0
\(387\) −1975.41 −0.259472
\(388\) 0 0
\(389\) −13546.0 −1.76558 −0.882788 0.469771i \(-0.844336\pi\)
−0.882788 + 0.469771i \(0.844336\pi\)
\(390\) 0 0
\(391\) 14241.9 1.84206
\(392\) 0 0
\(393\) 6585.79 0.845316
\(394\) 0 0
\(395\) −13498.5 −1.71945
\(396\) 0 0
\(397\) −11119.4 −1.40570 −0.702852 0.711336i \(-0.748090\pi\)
−0.702852 + 0.711336i \(0.748090\pi\)
\(398\) 0 0
\(399\) −4025.46 −0.505076
\(400\) 0 0
\(401\) −2852.32 −0.355207 −0.177603 0.984102i \(-0.556834\pi\)
−0.177603 + 0.984102i \(0.556834\pi\)
\(402\) 0 0
\(403\) −2529.84 −0.312705
\(404\) 0 0
\(405\) −1631.87 −0.200218
\(406\) 0 0
\(407\) −1936.34 −0.235825
\(408\) 0 0
\(409\) −6656.75 −0.804781 −0.402390 0.915468i \(-0.631821\pi\)
−0.402390 + 0.915468i \(0.631821\pi\)
\(410\) 0 0
\(411\) −2781.86 −0.333867
\(412\) 0 0
\(413\) −8785.94 −1.04680
\(414\) 0 0
\(415\) −20962.5 −2.47954
\(416\) 0 0
\(417\) −8734.70 −1.02576
\(418\) 0 0
\(419\) 10198.0 1.18903 0.594514 0.804085i \(-0.297344\pi\)
0.594514 + 0.804085i \(0.297344\pi\)
\(420\) 0 0
\(421\) −4463.77 −0.516747 −0.258374 0.966045i \(-0.583187\pi\)
−0.258374 + 0.966045i \(0.583187\pi\)
\(422\) 0 0
\(423\) 2127.72 0.244570
\(424\) 0 0
\(425\) 32688.4 3.73088
\(426\) 0 0
\(427\) −4421.79 −0.501137
\(428\) 0 0
\(429\) 528.538 0.0594827
\(430\) 0 0
\(431\) 3656.22 0.408617 0.204309 0.978907i \(-0.434505\pi\)
0.204309 + 0.978907i \(0.434505\pi\)
\(432\) 0 0
\(433\) −2816.59 −0.312602 −0.156301 0.987709i \(-0.549957\pi\)
−0.156301 + 0.987709i \(0.549957\pi\)
\(434\) 0 0
\(435\) −12341.3 −1.36028
\(436\) 0 0
\(437\) 8335.95 0.912500
\(438\) 0 0
\(439\) 11396.3 1.23899 0.619496 0.785000i \(-0.287337\pi\)
0.619496 + 0.785000i \(0.287337\pi\)
\(440\) 0 0
\(441\) 405.389 0.0437737
\(442\) 0 0
\(443\) −4245.96 −0.455376 −0.227688 0.973734i \(-0.573117\pi\)
−0.227688 + 0.973734i \(0.573117\pi\)
\(444\) 0 0
\(445\) 11325.2 1.20644
\(446\) 0 0
\(447\) 9234.88 0.977170
\(448\) 0 0
\(449\) −2021.21 −0.212443 −0.106222 0.994342i \(-0.533875\pi\)
−0.106222 + 0.994342i \(0.533875\pi\)
\(450\) 0 0
\(451\) −2372.33 −0.247691
\(452\) 0 0
\(453\) −2599.33 −0.269597
\(454\) 0 0
\(455\) 5159.22 0.531578
\(456\) 0 0
\(457\) 13740.0 1.40641 0.703206 0.710986i \(-0.251751\pi\)
0.703206 + 0.710986i \(0.251751\pi\)
\(458\) 0 0
\(459\) 3142.18 0.319531
\(460\) 0 0
\(461\) 1519.14 0.153478 0.0767392 0.997051i \(-0.475549\pi\)
0.0767392 + 0.997051i \(0.475549\pi\)
\(462\) 0 0
\(463\) −1108.49 −0.111265 −0.0556325 0.998451i \(-0.517718\pi\)
−0.0556325 + 0.998451i \(0.517718\pi\)
\(464\) 0 0
\(465\) 11761.7 1.17298
\(466\) 0 0
\(467\) −10147.9 −1.00554 −0.502771 0.864420i \(-0.667686\pi\)
−0.502771 + 0.864420i \(0.667686\pi\)
\(468\) 0 0
\(469\) −3256.76 −0.320647
\(470\) 0 0
\(471\) −4637.67 −0.453700
\(472\) 0 0
\(473\) −2974.59 −0.289158
\(474\) 0 0
\(475\) 19132.9 1.84816
\(476\) 0 0
\(477\) −5659.11 −0.543213
\(478\) 0 0
\(479\) −14277.3 −1.36190 −0.680948 0.732332i \(-0.738432\pi\)
−0.680948 + 0.732332i \(0.738432\pi\)
\(480\) 0 0
\(481\) −1857.43 −0.176074
\(482\) 0 0
\(483\) −7232.05 −0.681304
\(484\) 0 0
\(485\) −33212.2 −3.10946
\(486\) 0 0
\(487\) −2138.76 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(488\) 0 0
\(489\) 4905.28 0.453628
\(490\) 0 0
\(491\) 511.287 0.0469940 0.0234970 0.999724i \(-0.492520\pi\)
0.0234970 + 0.999724i \(0.492520\pi\)
\(492\) 0 0
\(493\) 23763.4 2.17089
\(494\) 0 0
\(495\) −2457.28 −0.223124
\(496\) 0 0
\(497\) −17787.6 −1.60540
\(498\) 0 0
\(499\) −484.443 −0.0434602 −0.0217301 0.999764i \(-0.506917\pi\)
−0.0217301 + 0.999764i \(0.506917\pi\)
\(500\) 0 0
\(501\) 6780.27 0.604631
\(502\) 0 0
\(503\) 20675.7 1.83277 0.916386 0.400295i \(-0.131092\pi\)
0.916386 + 0.400295i \(0.131092\pi\)
\(504\) 0 0
\(505\) −8001.85 −0.705104
\(506\) 0 0
\(507\) 507.000 0.0444116
\(508\) 0 0
\(509\) −15364.4 −1.33795 −0.668975 0.743285i \(-0.733266\pi\)
−0.668975 + 0.743285i \(0.733266\pi\)
\(510\) 0 0
\(511\) 297.691 0.0257712
\(512\) 0 0
\(513\) 1839.16 0.158286
\(514\) 0 0
\(515\) −33084.1 −2.83080
\(516\) 0 0
\(517\) 3203.93 0.272551
\(518\) 0 0
\(519\) −9239.87 −0.781475
\(520\) 0 0
\(521\) −13318.8 −1.11997 −0.559986 0.828502i \(-0.689193\pi\)
−0.559986 + 0.828502i \(0.689193\pi\)
\(522\) 0 0
\(523\) 12904.9 1.07895 0.539476 0.842001i \(-0.318622\pi\)
0.539476 + 0.842001i \(0.318622\pi\)
\(524\) 0 0
\(525\) −16599.2 −1.37990
\(526\) 0 0
\(527\) −22647.3 −1.87198
\(528\) 0 0
\(529\) 2809.17 0.230885
\(530\) 0 0
\(531\) 4014.12 0.328057
\(532\) 0 0
\(533\) −2275.66 −0.184934
\(534\) 0 0
\(535\) 12988.0 1.04957
\(536\) 0 0
\(537\) −4693.48 −0.377167
\(538\) 0 0
\(539\) 610.437 0.0487818
\(540\) 0 0
\(541\) −5767.47 −0.458342 −0.229171 0.973386i \(-0.573602\pi\)
−0.229171 + 0.973386i \(0.573602\pi\)
\(542\) 0 0
\(543\) 1925.38 0.152166
\(544\) 0 0
\(545\) 5994.91 0.471181
\(546\) 0 0
\(547\) −1804.58 −0.141057 −0.0705286 0.997510i \(-0.522469\pi\)
−0.0705286 + 0.997510i \(0.522469\pi\)
\(548\) 0 0
\(549\) 2020.23 0.157051
\(550\) 0 0
\(551\) 13909.0 1.07539
\(552\) 0 0
\(553\) −13198.5 −1.01493
\(554\) 0 0
\(555\) 8635.58 0.660468
\(556\) 0 0
\(557\) −3897.95 −0.296519 −0.148260 0.988948i \(-0.547367\pi\)
−0.148260 + 0.988948i \(0.547367\pi\)
\(558\) 0 0
\(559\) −2853.37 −0.215894
\(560\) 0 0
\(561\) 4731.52 0.356087
\(562\) 0 0
\(563\) −18806.2 −1.40779 −0.703894 0.710305i \(-0.748557\pi\)
−0.703894 + 0.710305i \(0.748557\pi\)
\(564\) 0 0
\(565\) −38326.9 −2.85385
\(566\) 0 0
\(567\) −1595.60 −0.118182
\(568\) 0 0
\(569\) 24680.0 1.81835 0.909175 0.416415i \(-0.136714\pi\)
0.909175 + 0.416415i \(0.136714\pi\)
\(570\) 0 0
\(571\) 23437.7 1.71775 0.858877 0.512182i \(-0.171163\pi\)
0.858877 + 0.512182i \(0.171163\pi\)
\(572\) 0 0
\(573\) 12002.7 0.875079
\(574\) 0 0
\(575\) 34373.7 2.49302
\(576\) 0 0
\(577\) 10814.1 0.780240 0.390120 0.920764i \(-0.372434\pi\)
0.390120 + 0.920764i \(0.372434\pi\)
\(578\) 0 0
\(579\) −12765.8 −0.916288
\(580\) 0 0
\(581\) −20496.6 −1.46358
\(582\) 0 0
\(583\) −8521.52 −0.605361
\(584\) 0 0
\(585\) −2357.15 −0.166591
\(586\) 0 0
\(587\) 27148.1 1.90889 0.954447 0.298379i \(-0.0964459\pi\)
0.954447 + 0.298379i \(0.0964459\pi\)
\(588\) 0 0
\(589\) −13255.7 −0.927323
\(590\) 0 0
\(591\) 11323.8 0.788151
\(592\) 0 0
\(593\) 4549.19 0.315030 0.157515 0.987517i \(-0.449652\pi\)
0.157515 + 0.987517i \(0.449652\pi\)
\(594\) 0 0
\(595\) 46185.8 3.18224
\(596\) 0 0
\(597\) 6213.84 0.425989
\(598\) 0 0
\(599\) 2875.51 0.196144 0.0980720 0.995179i \(-0.468732\pi\)
0.0980720 + 0.995179i \(0.468732\pi\)
\(600\) 0 0
\(601\) −22636.2 −1.53636 −0.768179 0.640235i \(-0.778837\pi\)
−0.768179 + 0.640235i \(0.778837\pi\)
\(602\) 0 0
\(603\) 1487.95 0.100488
\(604\) 0 0
\(605\) 23114.9 1.55331
\(606\) 0 0
\(607\) −3458.51 −0.231263 −0.115631 0.993292i \(-0.536889\pi\)
−0.115631 + 0.993292i \(0.536889\pi\)
\(608\) 0 0
\(609\) −12067.1 −0.802927
\(610\) 0 0
\(611\) 3073.37 0.203495
\(612\) 0 0
\(613\) −18029.5 −1.18794 −0.593969 0.804488i \(-0.702440\pi\)
−0.593969 + 0.804488i \(0.702440\pi\)
\(614\) 0 0
\(615\) 10580.0 0.693702
\(616\) 0 0
\(617\) 5410.04 0.352999 0.176499 0.984301i \(-0.443523\pi\)
0.176499 + 0.984301i \(0.443523\pi\)
\(618\) 0 0
\(619\) −2133.47 −0.138532 −0.0692661 0.997598i \(-0.522066\pi\)
−0.0692661 + 0.997598i \(0.522066\pi\)
\(620\) 0 0
\(621\) 3304.18 0.213514
\(622\) 0 0
\(623\) 11073.5 0.712117
\(624\) 0 0
\(625\) 28160.1 1.80225
\(626\) 0 0
\(627\) 2769.41 0.176395
\(628\) 0 0
\(629\) −16627.9 −1.05405
\(630\) 0 0
\(631\) 20370.5 1.28516 0.642580 0.766219i \(-0.277864\pi\)
0.642580 + 0.766219i \(0.277864\pi\)
\(632\) 0 0
\(633\) −8259.78 −0.518636
\(634\) 0 0
\(635\) −3542.21 −0.221367
\(636\) 0 0
\(637\) 585.561 0.0364220
\(638\) 0 0
\(639\) 8126.81 0.503117
\(640\) 0 0
\(641\) −14112.2 −0.869573 −0.434787 0.900534i \(-0.643176\pi\)
−0.434787 + 0.900534i \(0.643176\pi\)
\(642\) 0 0
\(643\) 20309.8 1.24563 0.622815 0.782369i \(-0.285989\pi\)
0.622815 + 0.782369i \(0.285989\pi\)
\(644\) 0 0
\(645\) 13265.9 0.809837
\(646\) 0 0
\(647\) 12214.8 0.742212 0.371106 0.928590i \(-0.378979\pi\)
0.371106 + 0.928590i \(0.378979\pi\)
\(648\) 0 0
\(649\) 6044.49 0.365589
\(650\) 0 0
\(651\) 11500.3 0.692371
\(652\) 0 0
\(653\) 31803.3 1.90591 0.952955 0.303111i \(-0.0980253\pi\)
0.952955 + 0.303111i \(0.0980253\pi\)
\(654\) 0 0
\(655\) −44227.0 −2.63831
\(656\) 0 0
\(657\) −136.009 −0.00807644
\(658\) 0 0
\(659\) −21545.8 −1.27360 −0.636802 0.771027i \(-0.719743\pi\)
−0.636802 + 0.771027i \(0.719743\pi\)
\(660\) 0 0
\(661\) 26775.5 1.57556 0.787781 0.615956i \(-0.211230\pi\)
0.787781 + 0.615956i \(0.211230\pi\)
\(662\) 0 0
\(663\) 4538.71 0.265866
\(664\) 0 0
\(665\) 27033.1 1.57639
\(666\) 0 0
\(667\) 24988.5 1.45062
\(668\) 0 0
\(669\) 11982.1 0.692457
\(670\) 0 0
\(671\) 3042.07 0.175019
\(672\) 0 0
\(673\) 15091.5 0.864388 0.432194 0.901781i \(-0.357740\pi\)
0.432194 + 0.901781i \(0.357740\pi\)
\(674\) 0 0
\(675\) 7583.86 0.432449
\(676\) 0 0
\(677\) 17169.2 0.974689 0.487345 0.873210i \(-0.337966\pi\)
0.487345 + 0.873210i \(0.337966\pi\)
\(678\) 0 0
\(679\) −32474.1 −1.83541
\(680\) 0 0
\(681\) 5391.59 0.303386
\(682\) 0 0
\(683\) 1579.31 0.0884781 0.0442391 0.999021i \(-0.485914\pi\)
0.0442391 + 0.999021i \(0.485914\pi\)
\(684\) 0 0
\(685\) 18681.7 1.04203
\(686\) 0 0
\(687\) −15513.5 −0.861538
\(688\) 0 0
\(689\) −8174.27 −0.451981
\(690\) 0 0
\(691\) −2423.59 −0.133427 −0.0667134 0.997772i \(-0.521251\pi\)
−0.0667134 + 0.997772i \(0.521251\pi\)
\(692\) 0 0
\(693\) −2402.67 −0.131703
\(694\) 0 0
\(695\) 58658.0 3.20148
\(696\) 0 0
\(697\) −20371.9 −1.10709
\(698\) 0 0
\(699\) −13504.2 −0.730724
\(700\) 0 0
\(701\) 7893.64 0.425305 0.212652 0.977128i \(-0.431790\pi\)
0.212652 + 0.977128i \(0.431790\pi\)
\(702\) 0 0
\(703\) −9732.49 −0.522145
\(704\) 0 0
\(705\) −14288.7 −0.763326
\(706\) 0 0
\(707\) −7824.01 −0.416198
\(708\) 0 0
\(709\) −11523.5 −0.610399 −0.305199 0.952288i \(-0.598723\pi\)
−0.305199 + 0.952288i \(0.598723\pi\)
\(710\) 0 0
\(711\) 6030.12 0.318069
\(712\) 0 0
\(713\) −23814.9 −1.25088
\(714\) 0 0
\(715\) −3549.41 −0.185651
\(716\) 0 0
\(717\) −20844.8 −1.08572
\(718\) 0 0
\(719\) −4029.94 −0.209028 −0.104514 0.994523i \(-0.533329\pi\)
−0.104514 + 0.994523i \(0.533329\pi\)
\(720\) 0 0
\(721\) −32348.9 −1.67092
\(722\) 0 0
\(723\) 4452.97 0.229056
\(724\) 0 0
\(725\) 57354.4 2.93806
\(726\) 0 0
\(727\) −36930.6 −1.88402 −0.942009 0.335588i \(-0.891065\pi\)
−0.942009 + 0.335588i \(0.891065\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −25543.7 −1.29243
\(732\) 0 0
\(733\) 14378.9 0.724552 0.362276 0.932071i \(-0.382000\pi\)
0.362276 + 0.932071i \(0.382000\pi\)
\(734\) 0 0
\(735\) −2722.39 −0.136622
\(736\) 0 0
\(737\) 2240.57 0.111984
\(738\) 0 0
\(739\) −30657.0 −1.52603 −0.763015 0.646381i \(-0.776282\pi\)
−0.763015 + 0.646381i \(0.776282\pi\)
\(740\) 0 0
\(741\) 2656.56 0.131702
\(742\) 0 0
\(743\) −31072.6 −1.53424 −0.767122 0.641501i \(-0.778312\pi\)
−0.767122 + 0.641501i \(0.778312\pi\)
\(744\) 0 0
\(745\) −62017.0 −3.04983
\(746\) 0 0
\(747\) 9364.50 0.458673
\(748\) 0 0
\(749\) 12699.3 0.619524
\(750\) 0 0
\(751\) 149.995 0.00728816 0.00364408 0.999993i \(-0.498840\pi\)
0.00364408 + 0.999993i \(0.498840\pi\)
\(752\) 0 0
\(753\) −8521.35 −0.412397
\(754\) 0 0
\(755\) 17455.9 0.841436
\(756\) 0 0
\(757\) 13482.2 0.647318 0.323659 0.946174i \(-0.395087\pi\)
0.323659 + 0.946174i \(0.395087\pi\)
\(758\) 0 0
\(759\) 4975.46 0.237942
\(760\) 0 0
\(761\) 11123.3 0.529857 0.264928 0.964268i \(-0.414652\pi\)
0.264928 + 0.964268i \(0.414652\pi\)
\(762\) 0 0
\(763\) 5861.67 0.278122
\(764\) 0 0
\(765\) −21101.4 −0.997284
\(766\) 0 0
\(767\) 5798.18 0.272960
\(768\) 0 0
\(769\) 2527.85 0.118539 0.0592695 0.998242i \(-0.481123\pi\)
0.0592695 + 0.998242i \(0.481123\pi\)
\(770\) 0 0
\(771\) −4502.93 −0.210336
\(772\) 0 0
\(773\) 9690.00 0.450873 0.225437 0.974258i \(-0.427619\pi\)
0.225437 + 0.974258i \(0.427619\pi\)
\(774\) 0 0
\(775\) −54660.8 −2.53351
\(776\) 0 0
\(777\) 8443.66 0.389851
\(778\) 0 0
\(779\) −11923.9 −0.548419
\(780\) 0 0
\(781\) 12237.4 0.560677
\(782\) 0 0
\(783\) 5513.21 0.251630
\(784\) 0 0
\(785\) 31144.3 1.41604
\(786\) 0 0
\(787\) 34825.8 1.57739 0.788694 0.614786i \(-0.210757\pi\)
0.788694 + 0.614786i \(0.210757\pi\)
\(788\) 0 0
\(789\) −2070.06 −0.0934045
\(790\) 0 0
\(791\) −37475.1 −1.68453
\(792\) 0 0
\(793\) 2918.11 0.130675
\(794\) 0 0
\(795\) 38003.8 1.69542
\(796\) 0 0
\(797\) 11789.0 0.523950 0.261975 0.965075i \(-0.415626\pi\)
0.261975 + 0.965075i \(0.415626\pi\)
\(798\) 0 0
\(799\) 27513.1 1.21820
\(800\) 0 0
\(801\) −5059.25 −0.223171
\(802\) 0 0
\(803\) −204.803 −0.00900044
\(804\) 0 0
\(805\) 48567.0 2.12641
\(806\) 0 0
\(807\) 1522.92 0.0664305
\(808\) 0 0
\(809\) −31672.3 −1.37644 −0.688220 0.725502i \(-0.741608\pi\)
−0.688220 + 0.725502i \(0.741608\pi\)
\(810\) 0 0
\(811\) −978.791 −0.0423798 −0.0211899 0.999775i \(-0.506745\pi\)
−0.0211899 + 0.999775i \(0.506745\pi\)
\(812\) 0 0
\(813\) −4585.21 −0.197799
\(814\) 0 0
\(815\) −32941.5 −1.41582
\(816\) 0 0
\(817\) −14951.0 −0.640231
\(818\) 0 0
\(819\) −2304.76 −0.0983332
\(820\) 0 0
\(821\) 14144.2 0.601261 0.300630 0.953741i \(-0.402803\pi\)
0.300630 + 0.953741i \(0.402803\pi\)
\(822\) 0 0
\(823\) −29145.9 −1.23446 −0.617232 0.786781i \(-0.711746\pi\)
−0.617232 + 0.786781i \(0.711746\pi\)
\(824\) 0 0
\(825\) 11419.8 0.481924
\(826\) 0 0
\(827\) −41540.2 −1.74667 −0.873333 0.487123i \(-0.838046\pi\)
−0.873333 + 0.487123i \(0.838046\pi\)
\(828\) 0 0
\(829\) −23632.8 −0.990111 −0.495056 0.868861i \(-0.664852\pi\)
−0.495056 + 0.868861i \(0.664852\pi\)
\(830\) 0 0
\(831\) 11658.3 0.486671
\(832\) 0 0
\(833\) 5242.00 0.218037
\(834\) 0 0
\(835\) −45533.0 −1.88711
\(836\) 0 0
\(837\) −5254.28 −0.216983
\(838\) 0 0
\(839\) −4136.95 −0.170230 −0.0851152 0.996371i \(-0.527126\pi\)
−0.0851152 + 0.996371i \(0.527126\pi\)
\(840\) 0 0
\(841\) 17305.7 0.709571
\(842\) 0 0
\(843\) 8116.13 0.331595
\(844\) 0 0
\(845\) −3404.77 −0.138612
\(846\) 0 0
\(847\) 22601.2 0.916866
\(848\) 0 0
\(849\) −8833.86 −0.357099
\(850\) 0 0
\(851\) −17485.2 −0.704329
\(852\) 0 0
\(853\) −17049.0 −0.684345 −0.342173 0.939637i \(-0.611163\pi\)
−0.342173 + 0.939637i \(0.611163\pi\)
\(854\) 0 0
\(855\) −12350.9 −0.494025
\(856\) 0 0
\(857\) −692.763 −0.0276130 −0.0138065 0.999905i \(-0.504395\pi\)
−0.0138065 + 0.999905i \(0.504395\pi\)
\(858\) 0 0
\(859\) −18591.1 −0.738441 −0.369220 0.929342i \(-0.620375\pi\)
−0.369220 + 0.929342i \(0.620375\pi\)
\(860\) 0 0
\(861\) 10344.9 0.409468
\(862\) 0 0
\(863\) 13759.6 0.542738 0.271369 0.962475i \(-0.412524\pi\)
0.271369 + 0.962475i \(0.412524\pi\)
\(864\) 0 0
\(865\) 62050.5 2.43905
\(866\) 0 0
\(867\) 25891.9 1.01423
\(868\) 0 0
\(869\) 9080.19 0.354458
\(870\) 0 0
\(871\) 2149.26 0.0836108
\(872\) 0 0
\(873\) 14836.8 0.575199
\(874\) 0 0
\(875\) 61864.5 2.39017
\(876\) 0 0
\(877\) 10418.1 0.401133 0.200566 0.979680i \(-0.435722\pi\)
0.200566 + 0.979680i \(0.435722\pi\)
\(878\) 0 0
\(879\) −11507.7 −0.441575
\(880\) 0 0
\(881\) −10012.1 −0.382880 −0.191440 0.981504i \(-0.561316\pi\)
−0.191440 + 0.981504i \(0.561316\pi\)
\(882\) 0 0
\(883\) −18276.9 −0.696565 −0.348283 0.937390i \(-0.613235\pi\)
−0.348283 + 0.937390i \(0.613235\pi\)
\(884\) 0 0
\(885\) −26956.9 −1.02389
\(886\) 0 0
\(887\) 8044.35 0.304513 0.152256 0.988341i \(-0.451346\pi\)
0.152256 + 0.988341i \(0.451346\pi\)
\(888\) 0 0
\(889\) −3463.49 −0.130666
\(890\) 0 0
\(891\) 1097.73 0.0412743
\(892\) 0 0
\(893\) 16103.7 0.603461
\(894\) 0 0
\(895\) 31519.1 1.17717
\(896\) 0 0
\(897\) 4772.71 0.177655
\(898\) 0 0
\(899\) −39736.5 −1.47418
\(900\) 0 0
\(901\) −73176.8 −2.70574
\(902\) 0 0
\(903\) 12971.1 0.478019
\(904\) 0 0
\(905\) −12929.9 −0.474923
\(906\) 0 0
\(907\) 36799.1 1.34718 0.673592 0.739104i \(-0.264751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(908\) 0 0
\(909\) 3574.64 0.130433
\(910\) 0 0
\(911\) −4530.89 −0.164781 −0.0823904 0.996600i \(-0.526255\pi\)
−0.0823904 + 0.996600i \(0.526255\pi\)
\(912\) 0 0
\(913\) 14101.1 0.511149
\(914\) 0 0
\(915\) −13566.9 −0.490172
\(916\) 0 0
\(917\) −43244.1 −1.55730
\(918\) 0 0
\(919\) −31538.8 −1.13207 −0.566033 0.824382i \(-0.691523\pi\)
−0.566033 + 0.824382i \(0.691523\pi\)
\(920\) 0 0
\(921\) 12204.6 0.436651
\(922\) 0 0
\(923\) 11738.7 0.418619
\(924\) 0 0
\(925\) −40132.5 −1.42654
\(926\) 0 0
\(927\) 14779.6 0.523651
\(928\) 0 0
\(929\) −39177.6 −1.38361 −0.691805 0.722084i \(-0.743184\pi\)
−0.691805 + 0.722084i \(0.743184\pi\)
\(930\) 0 0
\(931\) 3068.20 0.108009
\(932\) 0 0
\(933\) 21462.6 0.753111
\(934\) 0 0
\(935\) −31774.6 −1.11138
\(936\) 0 0
\(937\) −25066.2 −0.873936 −0.436968 0.899477i \(-0.643948\pi\)
−0.436968 + 0.899477i \(0.643948\pi\)
\(938\) 0 0
\(939\) 19318.1 0.671377
\(940\) 0 0
\(941\) −18774.7 −0.650412 −0.325206 0.945643i \(-0.605434\pi\)
−0.325206 + 0.945643i \(0.605434\pi\)
\(942\) 0 0
\(943\) −21422.2 −0.739770
\(944\) 0 0
\(945\) 10715.3 0.368856
\(946\) 0 0
\(947\) −45833.2 −1.57273 −0.786367 0.617760i \(-0.788040\pi\)
−0.786367 + 0.617760i \(0.788040\pi\)
\(948\) 0 0
\(949\) −196.458 −0.00672000
\(950\) 0 0
\(951\) −23163.6 −0.789834
\(952\) 0 0
\(953\) 33232.5 1.12960 0.564798 0.825229i \(-0.308954\pi\)
0.564798 + 0.825229i \(0.308954\pi\)
\(954\) 0 0
\(955\) −80604.4 −2.73120
\(956\) 0 0
\(957\) 8301.82 0.280418
\(958\) 0 0
\(959\) 18266.5 0.615073
\(960\) 0 0
\(961\) 8079.27 0.271198
\(962\) 0 0
\(963\) −5802.07 −0.194153
\(964\) 0 0
\(965\) 85729.3 2.85982
\(966\) 0 0
\(967\) −18054.3 −0.600400 −0.300200 0.953876i \(-0.597053\pi\)
−0.300200 + 0.953876i \(0.597053\pi\)
\(968\) 0 0
\(969\) 23781.8 0.788421
\(970\) 0 0
\(971\) −26222.9 −0.866667 −0.433333 0.901234i \(-0.642663\pi\)
−0.433333 + 0.901234i \(0.642663\pi\)
\(972\) 0 0
\(973\) 57354.4 1.88972
\(974\) 0 0
\(975\) 10954.5 0.359819
\(976\) 0 0
\(977\) −5968.90 −0.195457 −0.0977287 0.995213i \(-0.531158\pi\)
−0.0977287 + 0.995213i \(0.531158\pi\)
\(978\) 0 0
\(979\) −7618.25 −0.248703
\(980\) 0 0
\(981\) −2678.08 −0.0871607
\(982\) 0 0
\(983\) 22537.8 0.731277 0.365639 0.930757i \(-0.380851\pi\)
0.365639 + 0.930757i \(0.380851\pi\)
\(984\) 0 0
\(985\) −76044.9 −2.45989
\(986\) 0 0
\(987\) −13971.2 −0.450565
\(988\) 0 0
\(989\) −26860.6 −0.863617
\(990\) 0 0
\(991\) 11681.6 0.374447 0.187223 0.982317i \(-0.440051\pi\)
0.187223 + 0.982317i \(0.440051\pi\)
\(992\) 0 0
\(993\) −8821.22 −0.281906
\(994\) 0 0
\(995\) −41729.2 −1.32955
\(996\) 0 0
\(997\) −23095.6 −0.733645 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(998\) 0 0
\(999\) −3857.74 −0.122176
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.a.h.1.1 3
3.2 odd 2 936.4.a.l.1.3 3
4.3 odd 2 624.4.a.s.1.1 3
8.3 odd 2 2496.4.a.bq.1.3 3
8.5 even 2 2496.4.a.bm.1.3 3
12.11 even 2 1872.4.a.bl.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.1 3 1.1 even 1 trivial
624.4.a.s.1.1 3 4.3 odd 2
936.4.a.l.1.3 3 3.2 odd 2
1872.4.a.bl.1.3 3 12.11 even 2
2496.4.a.bm.1.3 3 8.5 even 2
2496.4.a.bq.1.3 3 8.3 odd 2