Properties

Label 312.4.a.h
Level $312$
Weight $4$
Character orbit 312.a
Self dual yes
Analytic conductor $18.409$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta_{2} - 1) q^{5} + (\beta_{2} + \beta_1 + 2) q^{7} + 9 q^{9} + ( - \beta_1 + 11) q^{11} + 13 q^{13} + (3 \beta_{2} - 3) q^{15} + ( - 4 \beta_{2} + 4 \beta_1 + 50) q^{17} + ( - \beta_{2} - 9 \beta_1 + 26) q^{19}+ \cdots + ( - 9 \beta_1 + 99) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} - 4 q^{5} + 6 q^{7} + 27 q^{9} + 32 q^{11} + 39 q^{13} - 12 q^{15} + 158 q^{17} + 70 q^{19} + 18 q^{21} + 176 q^{23} + 209 q^{25} + 81 q^{27} + 222 q^{29} + 54 q^{31} + 96 q^{33} + 496 q^{35}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 16x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 22 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.388065
4.68690
−3.29884
0 3.00000 0 −20.1466 0 −19.6988 0 9.00000 0
1.2 0 3.00000 0 3.18652 0 23.9341 0 9.00000 0
1.3 0 3.00000 0 12.9600 0 1.76468 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.4.a.h 3
3.b odd 2 1 936.4.a.l 3
4.b odd 2 1 624.4.a.s 3
8.b even 2 1 2496.4.a.bm 3
8.d odd 2 1 2496.4.a.bq 3
12.b even 2 1 1872.4.a.bl 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.h 3 1.a even 1 1 trivial
624.4.a.s 3 4.b odd 2 1
936.4.a.l 3 3.b odd 2 1
1872.4.a.bl 3 12.b even 2 1
2496.4.a.bm 3 8.b even 2 1
2496.4.a.bq 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 4T_{5}^{2} - 284T_{5} + 832 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(312))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 4 T^{2} + \cdots + 832 \) Copy content Toggle raw display
$7$ \( T^{3} - 6 T^{2} + \cdots + 832 \) Copy content Toggle raw display
$11$ \( T^{3} - 32 T^{2} + \cdots + 2304 \) Copy content Toggle raw display
$13$ \( (T - 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 158 T^{2} + \cdots + 759704 \) Copy content Toggle raw display
$19$ \( T^{3} - 70 T^{2} + \cdots + 1313312 \) Copy content Toggle raw display
$23$ \( T^{3} - 176 T^{2} + \cdots + 763904 \) Copy content Toggle raw display
$29$ \( T^{3} - 222 T^{2} + \cdots + 887032 \) Copy content Toggle raw display
$31$ \( T^{3} - 54 T^{2} + \cdots - 4437952 \) Copy content Toggle raw display
$37$ \( T^{3} + 90 T^{2} + \cdots - 22952 \) Copy content Toggle raw display
$41$ \( T^{3} - 104 T^{2} + \cdots - 2239952 \) Copy content Toggle raw display
$43$ \( T^{3} - 140 T^{2} + \cdots + 1118656 \) Copy content Toggle raw display
$47$ \( T^{3} - 328 T^{2} + \cdots + 55193088 \) Copy content Toggle raw display
$53$ \( T^{3} + 358 T^{2} + \cdots - 22509432 \) Copy content Toggle raw display
$59$ \( T^{3} - 1060 T^{2} + \cdots - 33152064 \) Copy content Toggle raw display
$61$ \( T^{3} + 186 T^{2} + \cdots - 8664104 \) Copy content Toggle raw display
$67$ \( T^{3} - 354 T^{2} + \cdots + 106208096 \) Copy content Toggle raw display
$71$ \( T^{3} - 1692 T^{2} + \cdots + 354160512 \) Copy content Toggle raw display
$73$ \( T^{3} + 974 T^{2} + \cdots + 2944584 \) Copy content Toggle raw display
$79$ \( T^{3} - 776 T^{2} + \cdots + 401260544 \) Copy content Toggle raw display
$83$ \( T^{3} - 2340 T^{2} + \cdots - 431863872 \) Copy content Toggle raw display
$89$ \( T^{3} + 684 T^{2} + \cdots - 23701376 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 1708711256 \) Copy content Toggle raw display
show more
show less