Properties

Label 312.4.a.g.1.2
Level $312$
Weight $4$
Character 312.1
Self dual yes
Analytic conductor $18.409$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.36248.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 54x - 90 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.54849\) of defining polynomial
Character \(\chi\) \(=\) 312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +7.92181 q^{5} +28.1158 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +7.92181 q^{5} +28.1158 q^{7} +9.00000 q^{9} -34.3503 q^{11} +13.0000 q^{13} -23.7654 q^{15} +34.0000 q^{17} +72.9728 q^{19} -84.3473 q^{21} -120.776 q^{23} -62.2450 q^{25} -27.0000 q^{27} +197.919 q^{29} -23.9594 q^{31} +103.051 q^{33} +222.728 q^{35} +396.959 q^{37} -39.0000 q^{39} +438.896 q^{41} +278.198 q^{43} +71.2963 q^{45} -353.848 q^{47} +447.496 q^{49} -102.000 q^{51} +324.728 q^{53} -272.117 q^{55} -218.919 q^{57} +571.658 q^{59} -554.336 q^{61} +253.042 q^{63} +102.983 q^{65} +490.314 q^{67} +362.327 q^{69} -678.338 q^{71} +332.918 q^{73} +186.735 q^{75} -965.786 q^{77} +341.918 q^{79} +81.0000 q^{81} -787.045 q^{83} +269.341 q^{85} -593.756 q^{87} -327.600 q^{89} +365.505 q^{91} +71.8781 q^{93} +578.077 q^{95} +1087.18 q^{97} -309.153 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 16 q^{5} - 22 q^{7} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 9 q^{3} + 16 q^{5} - 22 q^{7} + 27 q^{9} - 20 q^{11} + 39 q^{13} - 48 q^{15} + 102 q^{17} - 38 q^{19} + 66 q^{21} + 32 q^{23} + 161 q^{25} - 81 q^{27} + 350 q^{29} + 50 q^{31} + 60 q^{33} + 232 q^{35} + 542 q^{37} - 117 q^{39} + 500 q^{41} + 420 q^{43} + 144 q^{45} + 324 q^{47} + 1119 q^{49} - 306 q^{51} + 538 q^{53} + 896 q^{55} + 114 q^{57} + 112 q^{59} + 1206 q^{61} - 198 q^{63} + 208 q^{65} + 950 q^{67} - 96 q^{69} - 1008 q^{71} + 1834 q^{73} - 483 q^{75} - 792 q^{77} - 272 q^{79} + 243 q^{81} - 1640 q^{83} + 544 q^{85} - 1050 q^{87} - 1576 q^{89} - 286 q^{91} - 150 q^{93} - 2760 q^{95} + 402 q^{97} - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 7.92181 0.708548 0.354274 0.935142i \(-0.384728\pi\)
0.354274 + 0.935142i \(0.384728\pi\)
\(6\) 0 0
\(7\) 28.1158 1.51811 0.759054 0.651027i \(-0.225662\pi\)
0.759054 + 0.651027i \(0.225662\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −34.3503 −0.941547 −0.470774 0.882254i \(-0.656025\pi\)
−0.470774 + 0.882254i \(0.656025\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −23.7654 −0.409080
\(16\) 0 0
\(17\) 34.0000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 72.9728 0.881111 0.440556 0.897725i \(-0.354781\pi\)
0.440556 + 0.897725i \(0.354781\pi\)
\(20\) 0 0
\(21\) −84.3473 −0.876480
\(22\) 0 0
\(23\) −120.776 −1.09493 −0.547467 0.836827i \(-0.684408\pi\)
−0.547467 + 0.836827i \(0.684408\pi\)
\(24\) 0 0
\(25\) −62.2450 −0.497960
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 197.919 1.26733 0.633665 0.773607i \(-0.281550\pi\)
0.633665 + 0.773607i \(0.281550\pi\)
\(30\) 0 0
\(31\) −23.9594 −0.138814 −0.0694069 0.997588i \(-0.522111\pi\)
−0.0694069 + 0.997588i \(0.522111\pi\)
\(32\) 0 0
\(33\) 103.051 0.543602
\(34\) 0 0
\(35\) 222.728 1.07565
\(36\) 0 0
\(37\) 396.959 1.76378 0.881888 0.471460i \(-0.156273\pi\)
0.881888 + 0.471460i \(0.156273\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 438.896 1.67181 0.835903 0.548877i \(-0.184944\pi\)
0.835903 + 0.548877i \(0.184944\pi\)
\(42\) 0 0
\(43\) 278.198 0.986625 0.493312 0.869852i \(-0.335786\pi\)
0.493312 + 0.869852i \(0.335786\pi\)
\(44\) 0 0
\(45\) 71.2963 0.236183
\(46\) 0 0
\(47\) −353.848 −1.09817 −0.549085 0.835767i \(-0.685024\pi\)
−0.549085 + 0.835767i \(0.685024\pi\)
\(48\) 0 0
\(49\) 447.496 1.30465
\(50\) 0 0
\(51\) −102.000 −0.280056
\(52\) 0 0
\(53\) 324.728 0.841599 0.420800 0.907154i \(-0.361750\pi\)
0.420800 + 0.907154i \(0.361750\pi\)
\(54\) 0 0
\(55\) −272.117 −0.667131
\(56\) 0 0
\(57\) −218.919 −0.508710
\(58\) 0 0
\(59\) 571.658 1.26142 0.630708 0.776020i \(-0.282765\pi\)
0.630708 + 0.776020i \(0.282765\pi\)
\(60\) 0 0
\(61\) −554.336 −1.16353 −0.581766 0.813356i \(-0.697638\pi\)
−0.581766 + 0.813356i \(0.697638\pi\)
\(62\) 0 0
\(63\) 253.042 0.506036
\(64\) 0 0
\(65\) 102.983 0.196516
\(66\) 0 0
\(67\) 490.314 0.894051 0.447026 0.894521i \(-0.352483\pi\)
0.447026 + 0.894521i \(0.352483\pi\)
\(68\) 0 0
\(69\) 362.327 0.632161
\(70\) 0 0
\(71\) −678.338 −1.13386 −0.566929 0.823767i \(-0.691869\pi\)
−0.566929 + 0.823767i \(0.691869\pi\)
\(72\) 0 0
\(73\) 332.918 0.533768 0.266884 0.963729i \(-0.414006\pi\)
0.266884 + 0.963729i \(0.414006\pi\)
\(74\) 0 0
\(75\) 186.735 0.287497
\(76\) 0 0
\(77\) −965.786 −1.42937
\(78\) 0 0
\(79\) 341.918 0.486947 0.243473 0.969908i \(-0.421713\pi\)
0.243473 + 0.969908i \(0.421713\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −787.045 −1.04084 −0.520418 0.853912i \(-0.674224\pi\)
−0.520418 + 0.853912i \(0.674224\pi\)
\(84\) 0 0
\(85\) 269.341 0.343696
\(86\) 0 0
\(87\) −593.756 −0.731694
\(88\) 0 0
\(89\) −327.600 −0.390174 −0.195087 0.980786i \(-0.562499\pi\)
−0.195087 + 0.980786i \(0.562499\pi\)
\(90\) 0 0
\(91\) 365.505 0.421048
\(92\) 0 0
\(93\) 71.8781 0.0801442
\(94\) 0 0
\(95\) 578.077 0.624310
\(96\) 0 0
\(97\) 1087.18 1.13800 0.569001 0.822337i \(-0.307330\pi\)
0.569001 + 0.822337i \(0.307330\pi\)
\(98\) 0 0
\(99\) −309.153 −0.313849
\(100\) 0 0
\(101\) −230.015 −0.226608 −0.113304 0.993560i \(-0.536143\pi\)
−0.113304 + 0.993560i \(0.536143\pi\)
\(102\) 0 0
\(103\) −684.238 −0.654563 −0.327281 0.944927i \(-0.606132\pi\)
−0.327281 + 0.944927i \(0.606132\pi\)
\(104\) 0 0
\(105\) −668.183 −0.621028
\(106\) 0 0
\(107\) −1448.78 −1.30896 −0.654481 0.756078i \(-0.727113\pi\)
−0.654481 + 0.756078i \(0.727113\pi\)
\(108\) 0 0
\(109\) 2174.36 1.91070 0.955348 0.295483i \(-0.0954806\pi\)
0.955348 + 0.295483i \(0.0954806\pi\)
\(110\) 0 0
\(111\) −1190.88 −1.01832
\(112\) 0 0
\(113\) −1481.63 −1.23345 −0.616724 0.787179i \(-0.711541\pi\)
−0.616724 + 0.787179i \(0.711541\pi\)
\(114\) 0 0
\(115\) −956.763 −0.775814
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 955.936 0.736391
\(120\) 0 0
\(121\) −151.054 −0.113489
\(122\) 0 0
\(123\) −1316.69 −0.965218
\(124\) 0 0
\(125\) −1483.32 −1.06138
\(126\) 0 0
\(127\) −902.481 −0.630569 −0.315284 0.948997i \(-0.602100\pi\)
−0.315284 + 0.948997i \(0.602100\pi\)
\(128\) 0 0
\(129\) −834.595 −0.569628
\(130\) 0 0
\(131\) 304.072 0.202801 0.101400 0.994846i \(-0.467668\pi\)
0.101400 + 0.994846i \(0.467668\pi\)
\(132\) 0 0
\(133\) 2051.69 1.33762
\(134\) 0 0
\(135\) −213.889 −0.136360
\(136\) 0 0
\(137\) 1127.71 0.703263 0.351631 0.936139i \(-0.385627\pi\)
0.351631 + 0.936139i \(0.385627\pi\)
\(138\) 0 0
\(139\) −1777.54 −1.08467 −0.542334 0.840163i \(-0.682459\pi\)
−0.542334 + 0.840163i \(0.682459\pi\)
\(140\) 0 0
\(141\) 1061.54 0.634029
\(142\) 0 0
\(143\) −446.554 −0.261138
\(144\) 0 0
\(145\) 1567.87 0.897964
\(146\) 0 0
\(147\) −1342.49 −0.753242
\(148\) 0 0
\(149\) 632.083 0.347532 0.173766 0.984787i \(-0.444406\pi\)
0.173766 + 0.984787i \(0.444406\pi\)
\(150\) 0 0
\(151\) 1799.99 0.970076 0.485038 0.874493i \(-0.338806\pi\)
0.485038 + 0.874493i \(0.338806\pi\)
\(152\) 0 0
\(153\) 306.000 0.161690
\(154\) 0 0
\(155\) −189.802 −0.0983563
\(156\) 0 0
\(157\) −2235.15 −1.13620 −0.568102 0.822958i \(-0.692322\pi\)
−0.568102 + 0.822958i \(0.692322\pi\)
\(158\) 0 0
\(159\) −974.183 −0.485898
\(160\) 0 0
\(161\) −3395.70 −1.66223
\(162\) 0 0
\(163\) 3311.03 1.59104 0.795521 0.605925i \(-0.207197\pi\)
0.795521 + 0.605925i \(0.207197\pi\)
\(164\) 0 0
\(165\) 816.350 0.385168
\(166\) 0 0
\(167\) −761.161 −0.352697 −0.176349 0.984328i \(-0.556429\pi\)
−0.176349 + 0.984328i \(0.556429\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 656.756 0.293704
\(172\) 0 0
\(173\) −2777.78 −1.22076 −0.610379 0.792110i \(-0.708983\pi\)
−0.610379 + 0.792110i \(0.708983\pi\)
\(174\) 0 0
\(175\) −1750.07 −0.755957
\(176\) 0 0
\(177\) −1714.97 −0.728279
\(178\) 0 0
\(179\) −465.740 −0.194475 −0.0972376 0.995261i \(-0.531001\pi\)
−0.0972376 + 0.995261i \(0.531001\pi\)
\(180\) 0 0
\(181\) 1079.31 0.443229 0.221614 0.975134i \(-0.428867\pi\)
0.221614 + 0.975134i \(0.428867\pi\)
\(182\) 0 0
\(183\) 1663.01 0.671766
\(184\) 0 0
\(185\) 3144.63 1.24972
\(186\) 0 0
\(187\) −1167.91 −0.456717
\(188\) 0 0
\(189\) −759.126 −0.292160
\(190\) 0 0
\(191\) 1551.62 0.587809 0.293904 0.955835i \(-0.405045\pi\)
0.293904 + 0.955835i \(0.405045\pi\)
\(192\) 0 0
\(193\) −4296.51 −1.60243 −0.801216 0.598376i \(-0.795813\pi\)
−0.801216 + 0.598376i \(0.795813\pi\)
\(194\) 0 0
\(195\) −308.950 −0.113458
\(196\) 0 0
\(197\) −2549.16 −0.921931 −0.460965 0.887418i \(-0.652497\pi\)
−0.460965 + 0.887418i \(0.652497\pi\)
\(198\) 0 0
\(199\) −2553.13 −0.909481 −0.454741 0.890624i \(-0.650268\pi\)
−0.454741 + 0.890624i \(0.650268\pi\)
\(200\) 0 0
\(201\) −1470.94 −0.516181
\(202\) 0 0
\(203\) 5564.64 1.92395
\(204\) 0 0
\(205\) 3476.85 1.18455
\(206\) 0 0
\(207\) −1086.98 −0.364978
\(208\) 0 0
\(209\) −2506.64 −0.829608
\(210\) 0 0
\(211\) 1499.67 0.489296 0.244648 0.969612i \(-0.421328\pi\)
0.244648 + 0.969612i \(0.421328\pi\)
\(212\) 0 0
\(213\) 2035.01 0.654633
\(214\) 0 0
\(215\) 2203.83 0.699071
\(216\) 0 0
\(217\) −673.636 −0.210735
\(218\) 0 0
\(219\) −998.753 −0.308171
\(220\) 0 0
\(221\) 442.000 0.134535
\(222\) 0 0
\(223\) 730.772 0.219445 0.109722 0.993962i \(-0.465004\pi\)
0.109722 + 0.993962i \(0.465004\pi\)
\(224\) 0 0
\(225\) −560.205 −0.165987
\(226\) 0 0
\(227\) −2286.29 −0.668487 −0.334243 0.942487i \(-0.608481\pi\)
−0.334243 + 0.942487i \(0.608481\pi\)
\(228\) 0 0
\(229\) 5207.95 1.50284 0.751422 0.659822i \(-0.229368\pi\)
0.751422 + 0.659822i \(0.229368\pi\)
\(230\) 0 0
\(231\) 2897.36 0.825248
\(232\) 0 0
\(233\) −2204.69 −0.619888 −0.309944 0.950755i \(-0.600310\pi\)
−0.309944 + 0.950755i \(0.600310\pi\)
\(234\) 0 0
\(235\) −2803.11 −0.778106
\(236\) 0 0
\(237\) −1025.75 −0.281139
\(238\) 0 0
\(239\) −2840.87 −0.768872 −0.384436 0.923152i \(-0.625604\pi\)
−0.384436 + 0.923152i \(0.625604\pi\)
\(240\) 0 0
\(241\) −5032.05 −1.34499 −0.672495 0.740101i \(-0.734777\pi\)
−0.672495 + 0.740101i \(0.734777\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 3544.98 0.924409
\(246\) 0 0
\(247\) 948.647 0.244376
\(248\) 0 0
\(249\) 2361.13 0.600927
\(250\) 0 0
\(251\) −3635.11 −0.914129 −0.457064 0.889434i \(-0.651099\pi\)
−0.457064 + 0.889434i \(0.651099\pi\)
\(252\) 0 0
\(253\) 4148.69 1.03093
\(254\) 0 0
\(255\) −808.024 −0.198433
\(256\) 0 0
\(257\) 2614.57 0.634600 0.317300 0.948325i \(-0.397224\pi\)
0.317300 + 0.948325i \(0.397224\pi\)
\(258\) 0 0
\(259\) 11160.8 2.67760
\(260\) 0 0
\(261\) 1781.27 0.422444
\(262\) 0 0
\(263\) 5565.62 1.30491 0.652454 0.757828i \(-0.273739\pi\)
0.652454 + 0.757828i \(0.273739\pi\)
\(264\) 0 0
\(265\) 2572.43 0.596313
\(266\) 0 0
\(267\) 982.800 0.225267
\(268\) 0 0
\(269\) 3483.33 0.789526 0.394763 0.918783i \(-0.370827\pi\)
0.394763 + 0.918783i \(0.370827\pi\)
\(270\) 0 0
\(271\) −4604.75 −1.03217 −0.516086 0.856537i \(-0.672611\pi\)
−0.516086 + 0.856537i \(0.672611\pi\)
\(272\) 0 0
\(273\) −1096.51 −0.243092
\(274\) 0 0
\(275\) 2138.14 0.468853
\(276\) 0 0
\(277\) 886.536 0.192299 0.0961494 0.995367i \(-0.469347\pi\)
0.0961494 + 0.995367i \(0.469347\pi\)
\(278\) 0 0
\(279\) −215.634 −0.0462713
\(280\) 0 0
\(281\) −6898.11 −1.46444 −0.732219 0.681070i \(-0.761515\pi\)
−0.732219 + 0.681070i \(0.761515\pi\)
\(282\) 0 0
\(283\) 9209.50 1.93445 0.967223 0.253929i \(-0.0817231\pi\)
0.967223 + 0.253929i \(0.0817231\pi\)
\(284\) 0 0
\(285\) −1734.23 −0.360445
\(286\) 0 0
\(287\) 12339.9 2.53798
\(288\) 0 0
\(289\) −3757.00 −0.764706
\(290\) 0 0
\(291\) −3261.53 −0.657026
\(292\) 0 0
\(293\) −3994.94 −0.796542 −0.398271 0.917268i \(-0.630390\pi\)
−0.398271 + 0.917268i \(0.630390\pi\)
\(294\) 0 0
\(295\) 4528.57 0.893774
\(296\) 0 0
\(297\) 927.459 0.181201
\(298\) 0 0
\(299\) −1570.09 −0.303680
\(300\) 0 0
\(301\) 7821.76 1.49780
\(302\) 0 0
\(303\) 690.045 0.130832
\(304\) 0 0
\(305\) −4391.34 −0.824418
\(306\) 0 0
\(307\) 736.716 0.136960 0.0684798 0.997653i \(-0.478185\pi\)
0.0684798 + 0.997653i \(0.478185\pi\)
\(308\) 0 0
\(309\) 2052.71 0.377912
\(310\) 0 0
\(311\) 2985.84 0.544410 0.272205 0.962239i \(-0.412247\pi\)
0.272205 + 0.962239i \(0.412247\pi\)
\(312\) 0 0
\(313\) 46.3671 0.00837324 0.00418662 0.999991i \(-0.498667\pi\)
0.00418662 + 0.999991i \(0.498667\pi\)
\(314\) 0 0
\(315\) 2004.55 0.358551
\(316\) 0 0
\(317\) −1917.45 −0.339731 −0.169866 0.985467i \(-0.554333\pi\)
−0.169866 + 0.985467i \(0.554333\pi\)
\(318\) 0 0
\(319\) −6798.58 −1.19325
\(320\) 0 0
\(321\) 4346.34 0.755730
\(322\) 0 0
\(323\) 2481.08 0.427402
\(324\) 0 0
\(325\) −809.185 −0.138109
\(326\) 0 0
\(327\) −6523.08 −1.10314
\(328\) 0 0
\(329\) −9948.70 −1.66714
\(330\) 0 0
\(331\) −6408.79 −1.06423 −0.532113 0.846673i \(-0.678602\pi\)
−0.532113 + 0.846673i \(0.678602\pi\)
\(332\) 0 0
\(333\) 3572.63 0.587925
\(334\) 0 0
\(335\) 3884.17 0.633478
\(336\) 0 0
\(337\) −9489.38 −1.53389 −0.766943 0.641715i \(-0.778223\pi\)
−0.766943 + 0.641715i \(0.778223\pi\)
\(338\) 0 0
\(339\) 4444.88 0.712132
\(340\) 0 0
\(341\) 823.013 0.130700
\(342\) 0 0
\(343\) 2937.99 0.462497
\(344\) 0 0
\(345\) 2870.29 0.447916
\(346\) 0 0
\(347\) 7257.13 1.12272 0.561359 0.827572i \(-0.310279\pi\)
0.561359 + 0.827572i \(0.310279\pi\)
\(348\) 0 0
\(349\) −12407.2 −1.90298 −0.951491 0.307678i \(-0.900448\pi\)
−0.951491 + 0.307678i \(0.900448\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) 1494.97 0.225409 0.112705 0.993629i \(-0.464049\pi\)
0.112705 + 0.993629i \(0.464049\pi\)
\(354\) 0 0
\(355\) −5373.66 −0.803393
\(356\) 0 0
\(357\) −2867.81 −0.425155
\(358\) 0 0
\(359\) −7884.41 −1.15912 −0.579559 0.814930i \(-0.696775\pi\)
−0.579559 + 0.814930i \(0.696775\pi\)
\(360\) 0 0
\(361\) −1533.96 −0.223643
\(362\) 0 0
\(363\) 453.162 0.0655229
\(364\) 0 0
\(365\) 2637.31 0.378200
\(366\) 0 0
\(367\) 8736.23 1.24258 0.621291 0.783580i \(-0.286609\pi\)
0.621291 + 0.783580i \(0.286609\pi\)
\(368\) 0 0
\(369\) 3950.07 0.557269
\(370\) 0 0
\(371\) 9129.96 1.27764
\(372\) 0 0
\(373\) −7079.36 −0.982722 −0.491361 0.870956i \(-0.663500\pi\)
−0.491361 + 0.870956i \(0.663500\pi\)
\(374\) 0 0
\(375\) 4449.96 0.612786
\(376\) 0 0
\(377\) 2572.94 0.351494
\(378\) 0 0
\(379\) −9890.04 −1.34041 −0.670207 0.742174i \(-0.733795\pi\)
−0.670207 + 0.742174i \(0.733795\pi\)
\(380\) 0 0
\(381\) 2707.44 0.364059
\(382\) 0 0
\(383\) 14499.5 1.93444 0.967222 0.253934i \(-0.0817245\pi\)
0.967222 + 0.253934i \(0.0817245\pi\)
\(384\) 0 0
\(385\) −7650.77 −1.01278
\(386\) 0 0
\(387\) 2503.79 0.328875
\(388\) 0 0
\(389\) 1488.74 0.194041 0.0970207 0.995282i \(-0.469069\pi\)
0.0970207 + 0.995282i \(0.469069\pi\)
\(390\) 0 0
\(391\) −4106.38 −0.531121
\(392\) 0 0
\(393\) −912.216 −0.117087
\(394\) 0 0
\(395\) 2708.61 0.345025
\(396\) 0 0
\(397\) 5868.21 0.741857 0.370928 0.928662i \(-0.379040\pi\)
0.370928 + 0.928662i \(0.379040\pi\)
\(398\) 0 0
\(399\) −6155.06 −0.772277
\(400\) 0 0
\(401\) −4669.34 −0.581485 −0.290742 0.956801i \(-0.593902\pi\)
−0.290742 + 0.956801i \(0.593902\pi\)
\(402\) 0 0
\(403\) −311.472 −0.0385000
\(404\) 0 0
\(405\) 641.666 0.0787275
\(406\) 0 0
\(407\) −13635.7 −1.66068
\(408\) 0 0
\(409\) 7875.82 0.952162 0.476081 0.879401i \(-0.342057\pi\)
0.476081 + 0.879401i \(0.342057\pi\)
\(410\) 0 0
\(411\) −3383.14 −0.406029
\(412\) 0 0
\(413\) 16072.6 1.91497
\(414\) 0 0
\(415\) −6234.82 −0.737482
\(416\) 0 0
\(417\) 5332.62 0.626234
\(418\) 0 0
\(419\) −6372.72 −0.743026 −0.371513 0.928428i \(-0.621161\pi\)
−0.371513 + 0.928428i \(0.621161\pi\)
\(420\) 0 0
\(421\) −12188.4 −1.41099 −0.705494 0.708716i \(-0.749275\pi\)
−0.705494 + 0.708716i \(0.749275\pi\)
\(422\) 0 0
\(423\) −3184.63 −0.366057
\(424\) 0 0
\(425\) −2116.33 −0.241546
\(426\) 0 0
\(427\) −15585.6 −1.76637
\(428\) 0 0
\(429\) 1339.66 0.150768
\(430\) 0 0
\(431\) 13498.9 1.50862 0.754312 0.656516i \(-0.227970\pi\)
0.754312 + 0.656516i \(0.227970\pi\)
\(432\) 0 0
\(433\) −8403.29 −0.932647 −0.466324 0.884614i \(-0.654422\pi\)
−0.466324 + 0.884614i \(0.654422\pi\)
\(434\) 0 0
\(435\) −4703.62 −0.518440
\(436\) 0 0
\(437\) −8813.35 −0.964760
\(438\) 0 0
\(439\) −11361.0 −1.23515 −0.617573 0.786514i \(-0.711884\pi\)
−0.617573 + 0.786514i \(0.711884\pi\)
\(440\) 0 0
\(441\) 4027.46 0.434884
\(442\) 0 0
\(443\) −13294.7 −1.42585 −0.712924 0.701242i \(-0.752629\pi\)
−0.712924 + 0.701242i \(0.752629\pi\)
\(444\) 0 0
\(445\) −2595.18 −0.276457
\(446\) 0 0
\(447\) −1896.25 −0.200648
\(448\) 0 0
\(449\) −883.910 −0.0929049 −0.0464525 0.998921i \(-0.514792\pi\)
−0.0464525 + 0.998921i \(0.514792\pi\)
\(450\) 0 0
\(451\) −15076.2 −1.57408
\(452\) 0 0
\(453\) −5399.98 −0.560073
\(454\) 0 0
\(455\) 2895.46 0.298332
\(456\) 0 0
\(457\) 6942.43 0.710619 0.355310 0.934749i \(-0.384375\pi\)
0.355310 + 0.934749i \(0.384375\pi\)
\(458\) 0 0
\(459\) −918.000 −0.0933520
\(460\) 0 0
\(461\) 2502.43 0.252820 0.126410 0.991978i \(-0.459655\pi\)
0.126410 + 0.991978i \(0.459655\pi\)
\(462\) 0 0
\(463\) −12495.9 −1.25429 −0.627143 0.778904i \(-0.715776\pi\)
−0.627143 + 0.778904i \(0.715776\pi\)
\(464\) 0 0
\(465\) 569.405 0.0567860
\(466\) 0 0
\(467\) −2418.96 −0.239691 −0.119846 0.992793i \(-0.538240\pi\)
−0.119846 + 0.992793i \(0.538240\pi\)
\(468\) 0 0
\(469\) 13785.6 1.35727
\(470\) 0 0
\(471\) 6705.44 0.655988
\(472\) 0 0
\(473\) −9556.21 −0.928954
\(474\) 0 0
\(475\) −4542.19 −0.438758
\(476\) 0 0
\(477\) 2922.55 0.280533
\(478\) 0 0
\(479\) −20679.9 −1.97263 −0.986314 0.164876i \(-0.947278\pi\)
−0.986314 + 0.164876i \(0.947278\pi\)
\(480\) 0 0
\(481\) 5160.47 0.489183
\(482\) 0 0
\(483\) 10187.1 0.959689
\(484\) 0 0
\(485\) 8612.41 0.806329
\(486\) 0 0
\(487\) −426.771 −0.0397101 −0.0198551 0.999803i \(-0.506320\pi\)
−0.0198551 + 0.999803i \(0.506320\pi\)
\(488\) 0 0
\(489\) −9933.09 −0.918589
\(490\) 0 0
\(491\) −2265.88 −0.208264 −0.104132 0.994563i \(-0.533207\pi\)
−0.104132 + 0.994563i \(0.533207\pi\)
\(492\) 0 0
\(493\) 6729.24 0.614746
\(494\) 0 0
\(495\) −2449.05 −0.222377
\(496\) 0 0
\(497\) −19072.0 −1.72132
\(498\) 0 0
\(499\) −2733.56 −0.245233 −0.122616 0.992454i \(-0.539128\pi\)
−0.122616 + 0.992454i \(0.539128\pi\)
\(500\) 0 0
\(501\) 2283.48 0.203630
\(502\) 0 0
\(503\) 14428.0 1.27896 0.639478 0.768810i \(-0.279151\pi\)
0.639478 + 0.768810i \(0.279151\pi\)
\(504\) 0 0
\(505\) −1822.14 −0.160562
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) 7551.28 0.657573 0.328786 0.944404i \(-0.393360\pi\)
0.328786 + 0.944404i \(0.393360\pi\)
\(510\) 0 0
\(511\) 9360.23 0.810317
\(512\) 0 0
\(513\) −1970.27 −0.169570
\(514\) 0 0
\(515\) −5420.40 −0.463789
\(516\) 0 0
\(517\) 12154.8 1.03398
\(518\) 0 0
\(519\) 8333.35 0.704805
\(520\) 0 0
\(521\) 8272.18 0.695606 0.347803 0.937568i \(-0.386928\pi\)
0.347803 + 0.937568i \(0.386928\pi\)
\(522\) 0 0
\(523\) 17148.4 1.43374 0.716871 0.697206i \(-0.245574\pi\)
0.716871 + 0.697206i \(0.245574\pi\)
\(524\) 0 0
\(525\) 5250.20 0.436452
\(526\) 0 0
\(527\) −814.619 −0.0673346
\(528\) 0 0
\(529\) 2419.80 0.198882
\(530\) 0 0
\(531\) 5144.92 0.420472
\(532\) 0 0
\(533\) 5705.65 0.463676
\(534\) 0 0
\(535\) −11477.0 −0.927462
\(536\) 0 0
\(537\) 1397.22 0.112280
\(538\) 0 0
\(539\) −15371.6 −1.22839
\(540\) 0 0
\(541\) −18087.8 −1.43744 −0.718719 0.695301i \(-0.755271\pi\)
−0.718719 + 0.695301i \(0.755271\pi\)
\(542\) 0 0
\(543\) −3237.93 −0.255898
\(544\) 0 0
\(545\) 17224.9 1.35382
\(546\) 0 0
\(547\) 21150.2 1.65323 0.826615 0.562767i \(-0.190263\pi\)
0.826615 + 0.562767i \(0.190263\pi\)
\(548\) 0 0
\(549\) −4989.02 −0.387844
\(550\) 0 0
\(551\) 14442.7 1.11666
\(552\) 0 0
\(553\) 9613.29 0.739238
\(554\) 0 0
\(555\) −9433.90 −0.721526
\(556\) 0 0
\(557\) 22308.5 1.69702 0.848510 0.529180i \(-0.177500\pi\)
0.848510 + 0.529180i \(0.177500\pi\)
\(558\) 0 0
\(559\) 3616.58 0.273641
\(560\) 0 0
\(561\) 3503.74 0.263686
\(562\) 0 0
\(563\) −25664.1 −1.92116 −0.960580 0.278005i \(-0.910327\pi\)
−0.960580 + 0.278005i \(0.910327\pi\)
\(564\) 0 0
\(565\) −11737.2 −0.873957
\(566\) 0 0
\(567\) 2277.38 0.168679
\(568\) 0 0
\(569\) −7436.74 −0.547917 −0.273958 0.961742i \(-0.588333\pi\)
−0.273958 + 0.961742i \(0.588333\pi\)
\(570\) 0 0
\(571\) 1490.38 0.109230 0.0546151 0.998507i \(-0.482607\pi\)
0.0546151 + 0.998507i \(0.482607\pi\)
\(572\) 0 0
\(573\) −4654.87 −0.339372
\(574\) 0 0
\(575\) 7517.69 0.545234
\(576\) 0 0
\(577\) 15069.7 1.08728 0.543640 0.839318i \(-0.317046\pi\)
0.543640 + 0.839318i \(0.317046\pi\)
\(578\) 0 0
\(579\) 12889.5 0.925164
\(580\) 0 0
\(581\) −22128.4 −1.58010
\(582\) 0 0
\(583\) −11154.5 −0.792406
\(584\) 0 0
\(585\) 926.851 0.0655053
\(586\) 0 0
\(587\) 19986.6 1.40534 0.702670 0.711516i \(-0.251991\pi\)
0.702670 + 0.711516i \(0.251991\pi\)
\(588\) 0 0
\(589\) −1748.38 −0.122311
\(590\) 0 0
\(591\) 7647.49 0.532277
\(592\) 0 0
\(593\) 150.196 0.0104010 0.00520051 0.999986i \(-0.498345\pi\)
0.00520051 + 0.999986i \(0.498345\pi\)
\(594\) 0 0
\(595\) 7572.74 0.521768
\(596\) 0 0
\(597\) 7659.40 0.525089
\(598\) 0 0
\(599\) −9108.92 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(600\) 0 0
\(601\) −18079.8 −1.22710 −0.613551 0.789655i \(-0.710260\pi\)
−0.613551 + 0.789655i \(0.710260\pi\)
\(602\) 0 0
\(603\) 4412.83 0.298017
\(604\) 0 0
\(605\) −1196.62 −0.0804124
\(606\) 0 0
\(607\) 16907.8 1.13058 0.565292 0.824891i \(-0.308763\pi\)
0.565292 + 0.824891i \(0.308763\pi\)
\(608\) 0 0
\(609\) −16693.9 −1.11079
\(610\) 0 0
\(611\) −4600.02 −0.304578
\(612\) 0 0
\(613\) 21824.3 1.43797 0.718984 0.695027i \(-0.244607\pi\)
0.718984 + 0.695027i \(0.244607\pi\)
\(614\) 0 0
\(615\) −10430.5 −0.683903
\(616\) 0 0
\(617\) −4521.73 −0.295038 −0.147519 0.989059i \(-0.547129\pi\)
−0.147519 + 0.989059i \(0.547129\pi\)
\(618\) 0 0
\(619\) −22546.8 −1.46403 −0.732014 0.681289i \(-0.761420\pi\)
−0.732014 + 0.681289i \(0.761420\pi\)
\(620\) 0 0
\(621\) 3260.95 0.210720
\(622\) 0 0
\(623\) −9210.72 −0.592327
\(624\) 0 0
\(625\) −3969.94 −0.254076
\(626\) 0 0
\(627\) 7519.93 0.478974
\(628\) 0 0
\(629\) 13496.6 0.855557
\(630\) 0 0
\(631\) −17477.4 −1.10264 −0.551319 0.834295i \(-0.685875\pi\)
−0.551319 + 0.834295i \(0.685875\pi\)
\(632\) 0 0
\(633\) −4499.01 −0.282495
\(634\) 0 0
\(635\) −7149.28 −0.446788
\(636\) 0 0
\(637\) 5817.45 0.361846
\(638\) 0 0
\(639\) −6105.04 −0.377953
\(640\) 0 0
\(641\) 6669.57 0.410971 0.205485 0.978660i \(-0.434123\pi\)
0.205485 + 0.978660i \(0.434123\pi\)
\(642\) 0 0
\(643\) 9255.94 0.567681 0.283840 0.958872i \(-0.408391\pi\)
0.283840 + 0.958872i \(0.408391\pi\)
\(644\) 0 0
\(645\) −6611.50 −0.403609
\(646\) 0 0
\(647\) 3783.74 0.229914 0.114957 0.993370i \(-0.463327\pi\)
0.114957 + 0.993370i \(0.463327\pi\)
\(648\) 0 0
\(649\) −19636.7 −1.18768
\(650\) 0 0
\(651\) 2020.91 0.121668
\(652\) 0 0
\(653\) 25312.0 1.51690 0.758450 0.651731i \(-0.225957\pi\)
0.758450 + 0.651731i \(0.225957\pi\)
\(654\) 0 0
\(655\) 2408.80 0.143694
\(656\) 0 0
\(657\) 2996.26 0.177923
\(658\) 0 0
\(659\) −3897.14 −0.230366 −0.115183 0.993344i \(-0.536745\pi\)
−0.115183 + 0.993344i \(0.536745\pi\)
\(660\) 0 0
\(661\) −9657.09 −0.568256 −0.284128 0.958786i \(-0.591704\pi\)
−0.284128 + 0.958786i \(0.591704\pi\)
\(662\) 0 0
\(663\) −1326.00 −0.0776736
\(664\) 0 0
\(665\) 16253.1 0.947770
\(666\) 0 0
\(667\) −23903.8 −1.38764
\(668\) 0 0
\(669\) −2192.32 −0.126696
\(670\) 0 0
\(671\) 19041.6 1.09552
\(672\) 0 0
\(673\) 14381.4 0.823719 0.411859 0.911247i \(-0.364879\pi\)
0.411859 + 0.911247i \(0.364879\pi\)
\(674\) 0 0
\(675\) 1680.61 0.0958324
\(676\) 0 0
\(677\) 16665.1 0.946075 0.473037 0.881042i \(-0.343158\pi\)
0.473037 + 0.881042i \(0.343158\pi\)
\(678\) 0 0
\(679\) 30566.8 1.72761
\(680\) 0 0
\(681\) 6858.87 0.385951
\(682\) 0 0
\(683\) −3034.96 −0.170029 −0.0850144 0.996380i \(-0.527094\pi\)
−0.0850144 + 0.996380i \(0.527094\pi\)
\(684\) 0 0
\(685\) 8933.52 0.498295
\(686\) 0 0
\(687\) −15623.9 −0.867667
\(688\) 0 0
\(689\) 4221.46 0.233418
\(690\) 0 0
\(691\) 20539.9 1.13079 0.565394 0.824821i \(-0.308724\pi\)
0.565394 + 0.824821i \(0.308724\pi\)
\(692\) 0 0
\(693\) −8692.08 −0.476457
\(694\) 0 0
\(695\) −14081.3 −0.768539
\(696\) 0 0
\(697\) 14922.5 0.810945
\(698\) 0 0
\(699\) 6614.07 0.357893
\(700\) 0 0
\(701\) 34803.0 1.87516 0.937582 0.347765i \(-0.113059\pi\)
0.937582 + 0.347765i \(0.113059\pi\)
\(702\) 0 0
\(703\) 28967.2 1.55408
\(704\) 0 0
\(705\) 8409.34 0.449240
\(706\) 0 0
\(707\) −6467.05 −0.344015
\(708\) 0 0
\(709\) −5040.88 −0.267016 −0.133508 0.991048i \(-0.542624\pi\)
−0.133508 + 0.991048i \(0.542624\pi\)
\(710\) 0 0
\(711\) 3077.26 0.162316
\(712\) 0 0
\(713\) 2893.71 0.151992
\(714\) 0 0
\(715\) −3537.52 −0.185029
\(716\) 0 0
\(717\) 8522.60 0.443909
\(718\) 0 0
\(719\) −2200.35 −0.114129 −0.0570647 0.998370i \(-0.518174\pi\)
−0.0570647 + 0.998370i \(0.518174\pi\)
\(720\) 0 0
\(721\) −19237.9 −0.993697
\(722\) 0 0
\(723\) 15096.1 0.776531
\(724\) 0 0
\(725\) −12319.5 −0.631080
\(726\) 0 0
\(727\) −32277.7 −1.64665 −0.823325 0.567570i \(-0.807884\pi\)
−0.823325 + 0.567570i \(0.807884\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 9458.75 0.478583
\(732\) 0 0
\(733\) −13519.0 −0.681223 −0.340611 0.940204i \(-0.610634\pi\)
−0.340611 + 0.940204i \(0.610634\pi\)
\(734\) 0 0
\(735\) −10634.9 −0.533708
\(736\) 0 0
\(737\) −16842.5 −0.841791
\(738\) 0 0
\(739\) 31235.3 1.55482 0.777409 0.628996i \(-0.216534\pi\)
0.777409 + 0.628996i \(0.216534\pi\)
\(740\) 0 0
\(741\) −2845.94 −0.141091
\(742\) 0 0
\(743\) −18064.8 −0.891968 −0.445984 0.895041i \(-0.647146\pi\)
−0.445984 + 0.895041i \(0.647146\pi\)
\(744\) 0 0
\(745\) 5007.24 0.246243
\(746\) 0 0
\(747\) −7083.40 −0.346945
\(748\) 0 0
\(749\) −40733.6 −1.98715
\(750\) 0 0
\(751\) 22079.7 1.07284 0.536419 0.843952i \(-0.319777\pi\)
0.536419 + 0.843952i \(0.319777\pi\)
\(752\) 0 0
\(753\) 10905.3 0.527772
\(754\) 0 0
\(755\) 14259.2 0.687345
\(756\) 0 0
\(757\) 32266.6 1.54921 0.774604 0.632447i \(-0.217949\pi\)
0.774604 + 0.632447i \(0.217949\pi\)
\(758\) 0 0
\(759\) −12446.1 −0.595209
\(760\) 0 0
\(761\) 22684.1 1.08055 0.540276 0.841488i \(-0.318320\pi\)
0.540276 + 0.841488i \(0.318320\pi\)
\(762\) 0 0
\(763\) 61133.8 2.90064
\(764\) 0 0
\(765\) 2424.07 0.114565
\(766\) 0 0
\(767\) 7431.56 0.349854
\(768\) 0 0
\(769\) 16945.7 0.794641 0.397321 0.917680i \(-0.369940\pi\)
0.397321 + 0.917680i \(0.369940\pi\)
\(770\) 0 0
\(771\) −7843.71 −0.366387
\(772\) 0 0
\(773\) 3828.25 0.178128 0.0890639 0.996026i \(-0.471612\pi\)
0.0890639 + 0.996026i \(0.471612\pi\)
\(774\) 0 0
\(775\) 1491.35 0.0691238
\(776\) 0 0
\(777\) −33482.4 −1.54591
\(778\) 0 0
\(779\) 32027.5 1.47305
\(780\) 0 0
\(781\) 23301.1 1.06758
\(782\) 0 0
\(783\) −5343.81 −0.243898
\(784\) 0 0
\(785\) −17706.4 −0.805055
\(786\) 0 0
\(787\) −8939.55 −0.404905 −0.202453 0.979292i \(-0.564891\pi\)
−0.202453 + 0.979292i \(0.564891\pi\)
\(788\) 0 0
\(789\) −16696.9 −0.753389
\(790\) 0 0
\(791\) −41657.1 −1.87251
\(792\) 0 0
\(793\) −7206.37 −0.322706
\(794\) 0 0
\(795\) −7717.29 −0.344282
\(796\) 0 0
\(797\) −43192.3 −1.91964 −0.959818 0.280624i \(-0.909459\pi\)
−0.959818 + 0.280624i \(0.909459\pi\)
\(798\) 0 0
\(799\) −12030.8 −0.532691
\(800\) 0 0
\(801\) −2948.40 −0.130058
\(802\) 0 0
\(803\) −11435.8 −0.502568
\(804\) 0 0
\(805\) −26900.1 −1.17777
\(806\) 0 0
\(807\) −10450.0 −0.455833
\(808\) 0 0
\(809\) 4789.30 0.208137 0.104068 0.994570i \(-0.466814\pi\)
0.104068 + 0.994570i \(0.466814\pi\)
\(810\) 0 0
\(811\) −1411.14 −0.0610996 −0.0305498 0.999533i \(-0.509726\pi\)
−0.0305498 + 0.999533i \(0.509726\pi\)
\(812\) 0 0
\(813\) 13814.2 0.595925
\(814\) 0 0
\(815\) 26229.3 1.12733
\(816\) 0 0
\(817\) 20300.9 0.869326
\(818\) 0 0
\(819\) 3289.54 0.140349
\(820\) 0 0
\(821\) −31013.0 −1.31835 −0.659173 0.751992i \(-0.729093\pi\)
−0.659173 + 0.751992i \(0.729093\pi\)
\(822\) 0 0
\(823\) −674.392 −0.0285636 −0.0142818 0.999898i \(-0.504546\pi\)
−0.0142818 + 0.999898i \(0.504546\pi\)
\(824\) 0 0
\(825\) −6414.41 −0.270692
\(826\) 0 0
\(827\) 4857.93 0.204264 0.102132 0.994771i \(-0.467434\pi\)
0.102132 + 0.994771i \(0.467434\pi\)
\(828\) 0 0
\(829\) 9122.13 0.382177 0.191089 0.981573i \(-0.438798\pi\)
0.191089 + 0.981573i \(0.438798\pi\)
\(830\) 0 0
\(831\) −2659.61 −0.111024
\(832\) 0 0
\(833\) 15214.9 0.632850
\(834\) 0 0
\(835\) −6029.77 −0.249903
\(836\) 0 0
\(837\) 646.903 0.0267147
\(838\) 0 0
\(839\) −28731.6 −1.18227 −0.591135 0.806573i \(-0.701320\pi\)
−0.591135 + 0.806573i \(0.701320\pi\)
\(840\) 0 0
\(841\) 14782.8 0.606127
\(842\) 0 0
\(843\) 20694.3 0.845493
\(844\) 0 0
\(845\) 1338.79 0.0545037
\(846\) 0 0
\(847\) −4246.99 −0.172289
\(848\) 0 0
\(849\) −27628.5 −1.11685
\(850\) 0 0
\(851\) −47943.1 −1.93122
\(852\) 0 0
\(853\) −27008.2 −1.08411 −0.542054 0.840344i \(-0.682353\pi\)
−0.542054 + 0.840344i \(0.682353\pi\)
\(854\) 0 0
\(855\) 5202.69 0.208103
\(856\) 0 0
\(857\) −24046.5 −0.958474 −0.479237 0.877686i \(-0.659086\pi\)
−0.479237 + 0.877686i \(0.659086\pi\)
\(858\) 0 0
\(859\) 743.111 0.0295164 0.0147582 0.999891i \(-0.495302\pi\)
0.0147582 + 0.999891i \(0.495302\pi\)
\(860\) 0 0
\(861\) −37019.7 −1.46531
\(862\) 0 0
\(863\) 13569.1 0.535223 0.267611 0.963527i \(-0.413766\pi\)
0.267611 + 0.963527i \(0.413766\pi\)
\(864\) 0 0
\(865\) −22005.1 −0.864965
\(866\) 0 0
\(867\) 11271.0 0.441503
\(868\) 0 0
\(869\) −11745.0 −0.458484
\(870\) 0 0
\(871\) 6374.09 0.247965
\(872\) 0 0
\(873\) 9784.60 0.379334
\(874\) 0 0
\(875\) −41704.6 −1.61128
\(876\) 0 0
\(877\) 5475.90 0.210841 0.105421 0.994428i \(-0.466381\pi\)
0.105421 + 0.994428i \(0.466381\pi\)
\(878\) 0 0
\(879\) 11984.8 0.459884
\(880\) 0 0
\(881\) 43934.9 1.68014 0.840070 0.542478i \(-0.182514\pi\)
0.840070 + 0.542478i \(0.182514\pi\)
\(882\) 0 0
\(883\) 29202.2 1.11295 0.556474 0.830865i \(-0.312154\pi\)
0.556474 + 0.830865i \(0.312154\pi\)
\(884\) 0 0
\(885\) −13585.7 −0.516021
\(886\) 0 0
\(887\) 15696.9 0.594196 0.297098 0.954847i \(-0.403981\pi\)
0.297098 + 0.954847i \(0.403981\pi\)
\(888\) 0 0
\(889\) −25373.9 −0.957272
\(890\) 0 0
\(891\) −2782.38 −0.104616
\(892\) 0 0
\(893\) −25821.3 −0.967610
\(894\) 0 0
\(895\) −3689.50 −0.137795
\(896\) 0 0
\(897\) 4710.26 0.175330
\(898\) 0 0
\(899\) −4742.01 −0.175923
\(900\) 0 0
\(901\) 11040.7 0.408236
\(902\) 0 0
\(903\) −23465.3 −0.864757
\(904\) 0 0
\(905\) 8550.08 0.314049
\(906\) 0 0
\(907\) −3960.77 −0.145000 −0.0725001 0.997368i \(-0.523098\pi\)
−0.0725001 + 0.997368i \(0.523098\pi\)
\(908\) 0 0
\(909\) −2070.14 −0.0755359
\(910\) 0 0
\(911\) −1585.33 −0.0576558 −0.0288279 0.999584i \(-0.509177\pi\)
−0.0288279 + 0.999584i \(0.509177\pi\)
\(912\) 0 0
\(913\) 27035.3 0.979996
\(914\) 0 0
\(915\) 13174.0 0.475978
\(916\) 0 0
\(917\) 8549.21 0.307873
\(918\) 0 0
\(919\) 35033.6 1.25751 0.628754 0.777604i \(-0.283565\pi\)
0.628754 + 0.777604i \(0.283565\pi\)
\(920\) 0 0
\(921\) −2210.15 −0.0790736
\(922\) 0 0
\(923\) −8818.40 −0.314476
\(924\) 0 0
\(925\) −24708.7 −0.878289
\(926\) 0 0
\(927\) −6158.14 −0.218188
\(928\) 0 0
\(929\) −10334.1 −0.364964 −0.182482 0.983209i \(-0.558413\pi\)
−0.182482 + 0.983209i \(0.558413\pi\)
\(930\) 0 0
\(931\) 32655.1 1.14954
\(932\) 0 0
\(933\) −8957.51 −0.314315
\(934\) 0 0
\(935\) −9251.97 −0.323606
\(936\) 0 0
\(937\) −28850.8 −1.00589 −0.502943 0.864320i \(-0.667749\pi\)
−0.502943 + 0.864320i \(0.667749\pi\)
\(938\) 0 0
\(939\) −139.101 −0.00483429
\(940\) 0 0
\(941\) 30834.4 1.06820 0.534099 0.845422i \(-0.320651\pi\)
0.534099 + 0.845422i \(0.320651\pi\)
\(942\) 0 0
\(943\) −53008.0 −1.83052
\(944\) 0 0
\(945\) −6013.65 −0.207009
\(946\) 0 0
\(947\) −48971.8 −1.68043 −0.840216 0.542251i \(-0.817572\pi\)
−0.840216 + 0.542251i \(0.817572\pi\)
\(948\) 0 0
\(949\) 4327.93 0.148041
\(950\) 0 0
\(951\) 5752.35 0.196144
\(952\) 0 0
\(953\) −3863.47 −0.131322 −0.0656611 0.997842i \(-0.520916\pi\)
−0.0656611 + 0.997842i \(0.520916\pi\)
\(954\) 0 0
\(955\) 12291.7 0.416491
\(956\) 0 0
\(957\) 20395.7 0.688924
\(958\) 0 0
\(959\) 31706.5 1.06763
\(960\) 0 0
\(961\) −29216.9 −0.980731
\(962\) 0 0
\(963\) −13039.0 −0.436321
\(964\) 0 0
\(965\) −34036.1 −1.13540
\(966\) 0 0
\(967\) −41074.1 −1.36593 −0.682965 0.730451i \(-0.739310\pi\)
−0.682965 + 0.730451i \(0.739310\pi\)
\(968\) 0 0
\(969\) −7443.23 −0.246761
\(970\) 0 0
\(971\) −34985.3 −1.15626 −0.578132 0.815944i \(-0.696218\pi\)
−0.578132 + 0.815944i \(0.696218\pi\)
\(972\) 0 0
\(973\) −49976.9 −1.64664
\(974\) 0 0
\(975\) 2427.55 0.0797374
\(976\) 0 0
\(977\) 33861.8 1.10884 0.554420 0.832237i \(-0.312940\pi\)
0.554420 + 0.832237i \(0.312940\pi\)
\(978\) 0 0
\(979\) 11253.2 0.367368
\(980\) 0 0
\(981\) 19569.2 0.636899
\(982\) 0 0
\(983\) 39395.2 1.27824 0.639121 0.769106i \(-0.279298\pi\)
0.639121 + 0.769106i \(0.279298\pi\)
\(984\) 0 0
\(985\) −20194.0 −0.653232
\(986\) 0 0
\(987\) 29846.1 0.962524
\(988\) 0 0
\(989\) −33599.7 −1.08029
\(990\) 0 0
\(991\) 25286.2 0.810539 0.405269 0.914197i \(-0.367178\pi\)
0.405269 + 0.914197i \(0.367178\pi\)
\(992\) 0 0
\(993\) 19226.4 0.614432
\(994\) 0 0
\(995\) −20225.4 −0.644411
\(996\) 0 0
\(997\) −34643.0 −1.10046 −0.550228 0.835014i \(-0.685459\pi\)
−0.550228 + 0.835014i \(0.685459\pi\)
\(998\) 0 0
\(999\) −10717.9 −0.339439
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.a.g.1.2 3
3.2 odd 2 936.4.a.k.1.2 3
4.3 odd 2 624.4.a.u.1.2 3
8.3 odd 2 2496.4.a.bk.1.2 3
8.5 even 2 2496.4.a.bo.1.2 3
12.11 even 2 1872.4.a.bj.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.g.1.2 3 1.1 even 1 trivial
624.4.a.u.1.2 3 4.3 odd 2
936.4.a.k.1.2 3 3.2 odd 2
1872.4.a.bj.1.2 3 12.11 even 2
2496.4.a.bk.1.2 3 8.3 odd 2
2496.4.a.bo.1.2 3 8.5 even 2