Properties

Label 312.4.a.e
Level $312$
Weight $4$
Character orbit 312.a
Self dual yes
Analytic conductor $18.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta - 2) q^{5} + ( - 3 \beta - 10) q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} + (\beta - 2) q^{5} + ( - 3 \beta - 10) q^{7} + 9 q^{9} + (4 \beta - 30) q^{11} - 13 q^{13} + (3 \beta - 6) q^{15} + (6 \beta - 42) q^{17} + ( - 17 \beta - 30) q^{19} + ( - 9 \beta - 30) q^{21} + ( - 20 \beta - 36) q^{23} + ( - 4 \beta - 93) q^{25} + 27 q^{27} + (44 \beta - 62) q^{29} + (53 \beta - 54) q^{31} + (12 \beta - 90) q^{33} + ( - 4 \beta - 64) q^{35} + ( - 46 \beta + 18) q^{37} - 39 q^{39} + ( - 47 \beta - 26) q^{41} + ( - 18 \beta - 16) q^{43} + (9 \beta - 18) q^{45} + (70 \beta - 214) q^{47} + (60 \beta + 9) q^{49} + (18 \beta - 126) q^{51} + ( - 52 \beta + 190) q^{53} + ( - 38 \beta + 172) q^{55} + ( - 51 \beta - 90) q^{57} + ( - 34 \beta - 710) q^{59} + ( - 8 \beta + 506) q^{61} + ( - 27 \beta - 90) q^{63} + ( - 13 \beta + 26) q^{65} + ( - 7 \beta - 422) q^{67} + ( - 60 \beta - 108) q^{69} + ( - 24 \beta - 434) q^{71} + (154 \beta - 30) q^{73} + ( - 12 \beta - 279) q^{75} + (50 \beta - 36) q^{77} + (20 \beta + 136) q^{79} + 81 q^{81} + ( - 122 \beta - 626) q^{83} + ( - 54 \beta + 252) q^{85} + (132 \beta - 186) q^{87} + (151 \beta + 286) q^{89} + (39 \beta + 130) q^{91} + (159 \beta - 162) q^{93} + (4 \beta - 416) q^{95} + ( - 82 \beta + 354) q^{97} + (36 \beta - 270) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 4 q^{5} - 20 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} - 4 q^{5} - 20 q^{7} + 18 q^{9} - 60 q^{11} - 26 q^{13} - 12 q^{15} - 84 q^{17} - 60 q^{19} - 60 q^{21} - 72 q^{23} - 186 q^{25} + 54 q^{27} - 124 q^{29} - 108 q^{31} - 180 q^{33} - 128 q^{35} + 36 q^{37} - 78 q^{39} - 52 q^{41} - 32 q^{43} - 36 q^{45} - 428 q^{47} + 18 q^{49} - 252 q^{51} + 380 q^{53} + 344 q^{55} - 180 q^{57} - 1420 q^{59} + 1012 q^{61} - 180 q^{63} + 52 q^{65} - 844 q^{67} - 216 q^{69} - 868 q^{71} - 60 q^{73} - 558 q^{75} - 72 q^{77} + 272 q^{79} + 162 q^{81} - 1252 q^{83} + 504 q^{85} - 372 q^{87} + 572 q^{89} + 260 q^{91} - 324 q^{93} - 832 q^{95} + 708 q^{97} - 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.64575
2.64575
0 3.00000 0 −7.29150 0 5.87451 0 9.00000 0
1.2 0 3.00000 0 3.29150 0 −25.8745 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.4.a.e 2
3.b odd 2 1 936.4.a.f 2
4.b odd 2 1 624.4.a.k 2
8.b even 2 1 2496.4.a.y 2
8.d odd 2 1 2496.4.a.bh 2
12.b even 2 1 1872.4.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.e 2 1.a even 1 1 trivial
624.4.a.k 2 4.b odd 2 1
936.4.a.f 2 3.b odd 2 1
1872.4.a.bf 2 12.b even 2 1
2496.4.a.y 2 8.b even 2 1
2496.4.a.bh 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 4T_{5} - 24 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(312))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4T - 24 \) Copy content Toggle raw display
$7$ \( T^{2} + 20T - 152 \) Copy content Toggle raw display
$11$ \( T^{2} + 60T + 452 \) Copy content Toggle raw display
$13$ \( (T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 84T + 756 \) Copy content Toggle raw display
$19$ \( T^{2} + 60T - 7192 \) Copy content Toggle raw display
$23$ \( T^{2} + 72T - 9904 \) Copy content Toggle raw display
$29$ \( T^{2} + 124T - 50364 \) Copy content Toggle raw display
$31$ \( T^{2} + 108T - 75736 \) Copy content Toggle raw display
$37$ \( T^{2} - 36T - 58924 \) Copy content Toggle raw display
$41$ \( T^{2} + 52T - 61176 \) Copy content Toggle raw display
$43$ \( T^{2} + 32T - 8816 \) Copy content Toggle raw display
$47$ \( T^{2} + 428T - 91404 \) Copy content Toggle raw display
$53$ \( T^{2} - 380T - 39612 \) Copy content Toggle raw display
$59$ \( T^{2} + 1420 T + 471732 \) Copy content Toggle raw display
$61$ \( T^{2} - 1012 T + 254244 \) Copy content Toggle raw display
$67$ \( T^{2} + 844T + 176712 \) Copy content Toggle raw display
$71$ \( T^{2} + 868T + 172228 \) Copy content Toggle raw display
$73$ \( T^{2} + 60T - 663148 \) Copy content Toggle raw display
$79$ \( T^{2} - 272T + 7296 \) Copy content Toggle raw display
$83$ \( T^{2} + 1252T - 24876 \) Copy content Toggle raw display
$89$ \( T^{2} - 572T - 556632 \) Copy content Toggle raw display
$97$ \( T^{2} - 708T - 62956 \) Copy content Toggle raw display
show more
show less