Properties

Label 312.4.a.c.1.1
Level $312$
Weight $4$
Character 312.1
Self dual yes
Analytic conductor $18.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{113}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.81507\) of defining polynomial
Character \(\chi\) \(=\) 312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -7.63015 q^{5} +5.63015 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} -7.63015 q^{5} +5.63015 q^{7} +9.00000 q^{9} +34.5206 q^{11} +13.0000 q^{13} +22.8904 q^{15} +2.00000 q^{17} -88.1507 q^{19} -16.8904 q^{21} -64.0000 q^{23} -66.7809 q^{25} -27.0000 q^{27} +23.7809 q^{29} -284.452 q^{31} -103.562 q^{33} -42.9588 q^{35} +115.343 q^{37} -39.0000 q^{39} +1.41102 q^{41} -337.041 q^{43} -68.6713 q^{45} -198.219 q^{47} -311.301 q^{49} -6.00000 q^{51} +59.0412 q^{53} -263.397 q^{55} +264.452 q^{57} -188.301 q^{59} +336.987 q^{61} +50.6713 q^{63} -99.1919 q^{65} -531.411 q^{67} +192.000 q^{69} -510.247 q^{71} -164.219 q^{73} +200.343 q^{75} +194.356 q^{77} -29.3148 q^{79} +81.0000 q^{81} -117.507 q^{83} -15.2603 q^{85} -71.3426 q^{87} +508.671 q^{89} +73.1919 q^{91} +853.357 q^{93} +672.603 q^{95} -1020.88 q^{97} +310.685 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 6 q^{5} - 10 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 6 q^{5} - 10 q^{7} + 18 q^{9} - 16 q^{11} + 26 q^{13} - 18 q^{15} + 4 q^{17} - 70 q^{19} + 30 q^{21} - 128 q^{23} - 6 q^{25} - 54 q^{27} - 80 q^{29} - 250 q^{31} + 48 q^{33} - 256 q^{35} - 152 q^{37} - 78 q^{39} - 146 q^{41} - 504 q^{43} + 54 q^{45} - 524 q^{47} - 410 q^{49} - 12 q^{51} - 52 q^{53} - 952 q^{55} + 210 q^{57} - 164 q^{59} - 304 q^{61} - 90 q^{63} + 78 q^{65} - 914 q^{67} + 384 q^{69} - 456 q^{73} + 18 q^{75} + 984 q^{77} - 824 q^{79} + 162 q^{81} + 828 q^{83} + 12 q^{85} + 240 q^{87} + 826 q^{89} - 130 q^{91} + 750 q^{93} + 920 q^{95} + 552 q^{97} - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −7.63015 −0.682461 −0.341230 0.939980i \(-0.610844\pi\)
−0.341230 + 0.939980i \(0.610844\pi\)
\(6\) 0 0
\(7\) 5.63015 0.303999 0.152000 0.988381i \(-0.451429\pi\)
0.152000 + 0.988381i \(0.451429\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 34.5206 0.946213 0.473107 0.881005i \(-0.343133\pi\)
0.473107 + 0.881005i \(0.343133\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 22.8904 0.394019
\(16\) 0 0
\(17\) 2.00000 0.0285336 0.0142668 0.999898i \(-0.495459\pi\)
0.0142668 + 0.999898i \(0.495459\pi\)
\(18\) 0 0
\(19\) −88.1507 −1.06438 −0.532189 0.846626i \(-0.678630\pi\)
−0.532189 + 0.846626i \(0.678630\pi\)
\(20\) 0 0
\(21\) −16.8904 −0.175514
\(22\) 0 0
\(23\) −64.0000 −0.580214 −0.290107 0.956994i \(-0.593691\pi\)
−0.290107 + 0.956994i \(0.593691\pi\)
\(24\) 0 0
\(25\) −66.7809 −0.534247
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 23.7809 0.152276 0.0761379 0.997097i \(-0.475741\pi\)
0.0761379 + 0.997097i \(0.475741\pi\)
\(30\) 0 0
\(31\) −284.452 −1.64804 −0.824018 0.566564i \(-0.808273\pi\)
−0.824018 + 0.566564i \(0.808273\pi\)
\(32\) 0 0
\(33\) −103.562 −0.546297
\(34\) 0 0
\(35\) −42.9588 −0.207468
\(36\) 0 0
\(37\) 115.343 0.512492 0.256246 0.966612i \(-0.417514\pi\)
0.256246 + 0.966612i \(0.417514\pi\)
\(38\) 0 0
\(39\) −39.0000 −0.160128
\(40\) 0 0
\(41\) 1.41102 0.00537474 0.00268737 0.999996i \(-0.499145\pi\)
0.00268737 + 0.999996i \(0.499145\pi\)
\(42\) 0 0
\(43\) −337.041 −1.19531 −0.597655 0.801754i \(-0.703901\pi\)
−0.597655 + 0.801754i \(0.703901\pi\)
\(44\) 0 0
\(45\) −68.6713 −0.227487
\(46\) 0 0
\(47\) −198.219 −0.615175 −0.307588 0.951520i \(-0.599522\pi\)
−0.307588 + 0.951520i \(0.599522\pi\)
\(48\) 0 0
\(49\) −311.301 −0.907584
\(50\) 0 0
\(51\) −6.00000 −0.0164739
\(52\) 0 0
\(53\) 59.0412 0.153018 0.0765088 0.997069i \(-0.475623\pi\)
0.0765088 + 0.997069i \(0.475623\pi\)
\(54\) 0 0
\(55\) −263.397 −0.645754
\(56\) 0 0
\(57\) 264.452 0.614518
\(58\) 0 0
\(59\) −188.301 −0.415504 −0.207752 0.978181i \(-0.566615\pi\)
−0.207752 + 0.978181i \(0.566615\pi\)
\(60\) 0 0
\(61\) 336.987 0.707323 0.353662 0.935373i \(-0.384936\pi\)
0.353662 + 0.935373i \(0.384936\pi\)
\(62\) 0 0
\(63\) 50.6713 0.101333
\(64\) 0 0
\(65\) −99.1919 −0.189281
\(66\) 0 0
\(67\) −531.411 −0.968988 −0.484494 0.874795i \(-0.660996\pi\)
−0.484494 + 0.874795i \(0.660996\pi\)
\(68\) 0 0
\(69\) 192.000 0.334987
\(70\) 0 0
\(71\) −510.247 −0.852890 −0.426445 0.904514i \(-0.640234\pi\)
−0.426445 + 0.904514i \(0.640234\pi\)
\(72\) 0 0
\(73\) −164.219 −0.263293 −0.131647 0.991297i \(-0.542026\pi\)
−0.131647 + 0.991297i \(0.542026\pi\)
\(74\) 0 0
\(75\) 200.343 0.308448
\(76\) 0 0
\(77\) 194.356 0.287648
\(78\) 0 0
\(79\) −29.3148 −0.0417490 −0.0208745 0.999782i \(-0.506645\pi\)
−0.0208745 + 0.999782i \(0.506645\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −117.507 −0.155399 −0.0776994 0.996977i \(-0.524757\pi\)
−0.0776994 + 0.996977i \(0.524757\pi\)
\(84\) 0 0
\(85\) −15.2603 −0.0194731
\(86\) 0 0
\(87\) −71.3426 −0.0879165
\(88\) 0 0
\(89\) 508.671 0.605832 0.302916 0.953017i \(-0.402040\pi\)
0.302916 + 0.953017i \(0.402040\pi\)
\(90\) 0 0
\(91\) 73.1919 0.0843142
\(92\) 0 0
\(93\) 853.357 0.951494
\(94\) 0 0
\(95\) 672.603 0.726396
\(96\) 0 0
\(97\) −1020.88 −1.06860 −0.534301 0.845294i \(-0.679425\pi\)
−0.534301 + 0.845294i \(0.679425\pi\)
\(98\) 0 0
\(99\) 310.685 0.315404
\(100\) 0 0
\(101\) −1028.44 −1.01320 −0.506602 0.862180i \(-0.669099\pi\)
−0.506602 + 0.862180i \(0.669099\pi\)
\(102\) 0 0
\(103\) −1267.01 −1.21206 −0.606032 0.795440i \(-0.707240\pi\)
−0.606032 + 0.795440i \(0.707240\pi\)
\(104\) 0 0
\(105\) 128.877 0.119782
\(106\) 0 0
\(107\) 1934.74 1.74802 0.874012 0.485905i \(-0.161510\pi\)
0.874012 + 0.485905i \(0.161510\pi\)
\(108\) 0 0
\(109\) 2038.66 1.79145 0.895725 0.444608i \(-0.146657\pi\)
0.895725 + 0.444608i \(0.146657\pi\)
\(110\) 0 0
\(111\) −346.028 −0.295887
\(112\) 0 0
\(113\) −35.9455 −0.0299245 −0.0149623 0.999888i \(-0.504763\pi\)
−0.0149623 + 0.999888i \(0.504763\pi\)
\(114\) 0 0
\(115\) 488.329 0.395973
\(116\) 0 0
\(117\) 117.000 0.0924500
\(118\) 0 0
\(119\) 11.2603 0.00867420
\(120\) 0 0
\(121\) −139.329 −0.104680
\(122\) 0 0
\(123\) −4.23306 −0.00310311
\(124\) 0 0
\(125\) 1463.32 1.04706
\(126\) 0 0
\(127\) −1205.01 −0.841950 −0.420975 0.907072i \(-0.638312\pi\)
−0.420975 + 0.907072i \(0.638312\pi\)
\(128\) 0 0
\(129\) 1011.12 0.690112
\(130\) 0 0
\(131\) 1222.08 0.815067 0.407534 0.913190i \(-0.366389\pi\)
0.407534 + 0.913190i \(0.366389\pi\)
\(132\) 0 0
\(133\) −496.301 −0.323570
\(134\) 0 0
\(135\) 206.014 0.131340
\(136\) 0 0
\(137\) 1466.40 0.914474 0.457237 0.889345i \(-0.348839\pi\)
0.457237 + 0.889345i \(0.348839\pi\)
\(138\) 0 0
\(139\) −1225.40 −0.747748 −0.373874 0.927480i \(-0.621971\pi\)
−0.373874 + 0.927480i \(0.621971\pi\)
\(140\) 0 0
\(141\) 594.657 0.355172
\(142\) 0 0
\(143\) 448.768 0.262432
\(144\) 0 0
\(145\) −181.452 −0.103922
\(146\) 0 0
\(147\) 933.904 0.523994
\(148\) 0 0
\(149\) 1601.88 0.880744 0.440372 0.897815i \(-0.354847\pi\)
0.440372 + 0.897815i \(0.354847\pi\)
\(150\) 0 0
\(151\) 588.234 0.317019 0.158509 0.987357i \(-0.449331\pi\)
0.158509 + 0.987357i \(0.449331\pi\)
\(152\) 0 0
\(153\) 18.0000 0.00951120
\(154\) 0 0
\(155\) 2170.41 1.12472
\(156\) 0 0
\(157\) −925.919 −0.470678 −0.235339 0.971913i \(-0.575620\pi\)
−0.235339 + 0.971913i \(0.575620\pi\)
\(158\) 0 0
\(159\) −177.123 −0.0883447
\(160\) 0 0
\(161\) −360.329 −0.176385
\(162\) 0 0
\(163\) −2947.52 −1.41637 −0.708183 0.706029i \(-0.750485\pi\)
−0.708183 + 0.706029i \(0.750485\pi\)
\(164\) 0 0
\(165\) 790.191 0.372826
\(166\) 0 0
\(167\) −715.372 −0.331480 −0.165740 0.986169i \(-0.553001\pi\)
−0.165740 + 0.986169i \(0.553001\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −793.357 −0.354792
\(172\) 0 0
\(173\) 335.396 0.147397 0.0736985 0.997281i \(-0.476520\pi\)
0.0736985 + 0.997281i \(0.476520\pi\)
\(174\) 0 0
\(175\) −375.986 −0.162411
\(176\) 0 0
\(177\) 564.904 0.239892
\(178\) 0 0
\(179\) −3549.04 −1.48194 −0.740972 0.671536i \(-0.765635\pi\)
−0.740972 + 0.671536i \(0.765635\pi\)
\(180\) 0 0
\(181\) 1169.26 0.480168 0.240084 0.970752i \(-0.422825\pi\)
0.240084 + 0.970752i \(0.422825\pi\)
\(182\) 0 0
\(183\) −1010.96 −0.408373
\(184\) 0 0
\(185\) −880.081 −0.349756
\(186\) 0 0
\(187\) 69.0412 0.0269989
\(188\) 0 0
\(189\) −152.014 −0.0585047
\(190\) 0 0
\(191\) 4233.86 1.60394 0.801968 0.597367i \(-0.203787\pi\)
0.801968 + 0.597367i \(0.203787\pi\)
\(192\) 0 0
\(193\) 750.494 0.279905 0.139953 0.990158i \(-0.455305\pi\)
0.139953 + 0.990158i \(0.455305\pi\)
\(194\) 0 0
\(195\) 297.576 0.109281
\(196\) 0 0
\(197\) −745.986 −0.269793 −0.134897 0.990860i \(-0.543070\pi\)
−0.134897 + 0.990860i \(0.543070\pi\)
\(198\) 0 0
\(199\) 2347.97 0.836400 0.418200 0.908355i \(-0.362661\pi\)
0.418200 + 0.908355i \(0.362661\pi\)
\(200\) 0 0
\(201\) 1594.23 0.559445
\(202\) 0 0
\(203\) 133.890 0.0462917
\(204\) 0 0
\(205\) −10.7663 −0.00366805
\(206\) 0 0
\(207\) −576.000 −0.193405
\(208\) 0 0
\(209\) −3043.01 −1.00713
\(210\) 0 0
\(211\) −684.056 −0.223186 −0.111593 0.993754i \(-0.535595\pi\)
−0.111593 + 0.993754i \(0.535595\pi\)
\(212\) 0 0
\(213\) 1530.74 0.492416
\(214\) 0 0
\(215\) 2571.67 0.815752
\(216\) 0 0
\(217\) −1601.51 −0.501002
\(218\) 0 0
\(219\) 492.657 0.152012
\(220\) 0 0
\(221\) 26.0000 0.00791380
\(222\) 0 0
\(223\) −1583.90 −0.475632 −0.237816 0.971310i \(-0.576432\pi\)
−0.237816 + 0.971310i \(0.576432\pi\)
\(224\) 0 0
\(225\) −601.028 −0.178082
\(226\) 0 0
\(227\) 3675.23 1.07460 0.537299 0.843392i \(-0.319445\pi\)
0.537299 + 0.843392i \(0.319445\pi\)
\(228\) 0 0
\(229\) −2742.33 −0.791347 −0.395673 0.918391i \(-0.629489\pi\)
−0.395673 + 0.918391i \(0.629489\pi\)
\(230\) 0 0
\(231\) −583.068 −0.166074
\(232\) 0 0
\(233\) −2459.83 −0.691627 −0.345813 0.938303i \(-0.612397\pi\)
−0.345813 + 0.938303i \(0.612397\pi\)
\(234\) 0 0
\(235\) 1512.44 0.419833
\(236\) 0 0
\(237\) 87.9443 0.0241038
\(238\) 0 0
\(239\) −334.688 −0.0905822 −0.0452911 0.998974i \(-0.514422\pi\)
−0.0452911 + 0.998974i \(0.514422\pi\)
\(240\) 0 0
\(241\) −2697.81 −0.721083 −0.360542 0.932743i \(-0.617408\pi\)
−0.360542 + 0.932743i \(0.617408\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 2375.28 0.619391
\(246\) 0 0
\(247\) −1145.96 −0.295205
\(248\) 0 0
\(249\) 352.522 0.0897195
\(250\) 0 0
\(251\) 2665.64 0.670335 0.335167 0.942159i \(-0.391207\pi\)
0.335167 + 0.942159i \(0.391207\pi\)
\(252\) 0 0
\(253\) −2209.32 −0.549006
\(254\) 0 0
\(255\) 45.7809 0.0112428
\(256\) 0 0
\(257\) −6877.42 −1.66927 −0.834634 0.550805i \(-0.814321\pi\)
−0.834634 + 0.550805i \(0.814321\pi\)
\(258\) 0 0
\(259\) 649.396 0.155797
\(260\) 0 0
\(261\) 214.028 0.0507586
\(262\) 0 0
\(263\) −55.5086 −0.0130145 −0.00650724 0.999979i \(-0.502071\pi\)
−0.00650724 + 0.999979i \(0.502071\pi\)
\(264\) 0 0
\(265\) −450.493 −0.104428
\(266\) 0 0
\(267\) −1526.01 −0.349777
\(268\) 0 0
\(269\) −3726.85 −0.844722 −0.422361 0.906428i \(-0.638798\pi\)
−0.422361 + 0.906428i \(0.638798\pi\)
\(270\) 0 0
\(271\) 1536.59 0.344432 0.172216 0.985059i \(-0.444907\pi\)
0.172216 + 0.985059i \(0.444907\pi\)
\(272\) 0 0
\(273\) −219.576 −0.0486788
\(274\) 0 0
\(275\) −2305.31 −0.505512
\(276\) 0 0
\(277\) 4917.23 1.06660 0.533300 0.845926i \(-0.320952\pi\)
0.533300 + 0.845926i \(0.320952\pi\)
\(278\) 0 0
\(279\) −2560.07 −0.549345
\(280\) 0 0
\(281\) −5281.66 −1.12127 −0.560636 0.828062i \(-0.689443\pi\)
−0.560636 + 0.828062i \(0.689443\pi\)
\(282\) 0 0
\(283\) −5091.37 −1.06944 −0.534718 0.845030i \(-0.679582\pi\)
−0.534718 + 0.845030i \(0.679582\pi\)
\(284\) 0 0
\(285\) −2017.81 −0.419385
\(286\) 0 0
\(287\) 7.94425 0.00163392
\(288\) 0 0
\(289\) −4909.00 −0.999186
\(290\) 0 0
\(291\) 3062.63 0.616958
\(292\) 0 0
\(293\) −4275.98 −0.852579 −0.426290 0.904587i \(-0.640180\pi\)
−0.426290 + 0.904587i \(0.640180\pi\)
\(294\) 0 0
\(295\) 1436.77 0.283566
\(296\) 0 0
\(297\) −932.056 −0.182099
\(298\) 0 0
\(299\) −832.000 −0.160922
\(300\) 0 0
\(301\) −1897.59 −0.363373
\(302\) 0 0
\(303\) 3085.32 0.584973
\(304\) 0 0
\(305\) −2571.26 −0.482721
\(306\) 0 0
\(307\) 306.312 0.0569450 0.0284725 0.999595i \(-0.490936\pi\)
0.0284725 + 0.999595i \(0.490936\pi\)
\(308\) 0 0
\(309\) 3801.04 0.699786
\(310\) 0 0
\(311\) −3267.24 −0.595717 −0.297859 0.954610i \(-0.596272\pi\)
−0.297859 + 0.954610i \(0.596272\pi\)
\(312\) 0 0
\(313\) −2456.19 −0.443553 −0.221776 0.975098i \(-0.571185\pi\)
−0.221776 + 0.975098i \(0.571185\pi\)
\(314\) 0 0
\(315\) −386.630 −0.0691559
\(316\) 0 0
\(317\) −1034.48 −0.183288 −0.0916441 0.995792i \(-0.529212\pi\)
−0.0916441 + 0.995792i \(0.529212\pi\)
\(318\) 0 0
\(319\) 820.930 0.144085
\(320\) 0 0
\(321\) −5804.22 −1.00922
\(322\) 0 0
\(323\) −176.301 −0.0303705
\(324\) 0 0
\(325\) −868.151 −0.148173
\(326\) 0 0
\(327\) −6115.98 −1.03429
\(328\) 0 0
\(329\) −1116.00 −0.187013
\(330\) 0 0
\(331\) 4221.63 0.701033 0.350516 0.936557i \(-0.386006\pi\)
0.350516 + 0.936557i \(0.386006\pi\)
\(332\) 0 0
\(333\) 1038.08 0.170831
\(334\) 0 0
\(335\) 4054.74 0.661296
\(336\) 0 0
\(337\) 5043.43 0.815232 0.407616 0.913154i \(-0.366360\pi\)
0.407616 + 0.913154i \(0.366360\pi\)
\(338\) 0 0
\(339\) 107.837 0.0172769
\(340\) 0 0
\(341\) −9819.46 −1.55939
\(342\) 0 0
\(343\) −3683.81 −0.579904
\(344\) 0 0
\(345\) −1464.99 −0.228615
\(346\) 0 0
\(347\) 6689.76 1.03494 0.517471 0.855700i \(-0.326873\pi\)
0.517471 + 0.855700i \(0.326873\pi\)
\(348\) 0 0
\(349\) 12252.0 1.87918 0.939591 0.342299i \(-0.111206\pi\)
0.939591 + 0.342299i \(0.111206\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 0 0
\(353\) −11099.6 −1.67358 −0.836790 0.547523i \(-0.815571\pi\)
−0.836790 + 0.547523i \(0.815571\pi\)
\(354\) 0 0
\(355\) 3893.26 0.582064
\(356\) 0 0
\(357\) −33.7809 −0.00500805
\(358\) 0 0
\(359\) 9354.11 1.37518 0.687592 0.726097i \(-0.258668\pi\)
0.687592 + 0.726097i \(0.258668\pi\)
\(360\) 0 0
\(361\) 911.551 0.132899
\(362\) 0 0
\(363\) 417.988 0.0604371
\(364\) 0 0
\(365\) 1253.02 0.179687
\(366\) 0 0
\(367\) 1468.14 0.208818 0.104409 0.994534i \(-0.466705\pi\)
0.104409 + 0.994534i \(0.466705\pi\)
\(368\) 0 0
\(369\) 12.6992 0.00179158
\(370\) 0 0
\(371\) 332.410 0.0465172
\(372\) 0 0
\(373\) 6216.36 0.862925 0.431462 0.902131i \(-0.357998\pi\)
0.431462 + 0.902131i \(0.357998\pi\)
\(374\) 0 0
\(375\) −4389.95 −0.604523
\(376\) 0 0
\(377\) 309.151 0.0422337
\(378\) 0 0
\(379\) −1365.52 −0.185072 −0.0925358 0.995709i \(-0.529497\pi\)
−0.0925358 + 0.995709i \(0.529497\pi\)
\(380\) 0 0
\(381\) 3615.04 0.486100
\(382\) 0 0
\(383\) 8311.16 1.10883 0.554413 0.832242i \(-0.312943\pi\)
0.554413 + 0.832242i \(0.312943\pi\)
\(384\) 0 0
\(385\) −1482.96 −0.196309
\(386\) 0 0
\(387\) −3033.37 −0.398436
\(388\) 0 0
\(389\) 6160.09 0.802902 0.401451 0.915881i \(-0.368506\pi\)
0.401451 + 0.915881i \(0.368506\pi\)
\(390\) 0 0
\(391\) −128.000 −0.0165556
\(392\) 0 0
\(393\) −3666.25 −0.470579
\(394\) 0 0
\(395\) 223.676 0.0284920
\(396\) 0 0
\(397\) 12658.6 1.60029 0.800146 0.599805i \(-0.204755\pi\)
0.800146 + 0.599805i \(0.204755\pi\)
\(398\) 0 0
\(399\) 1488.90 0.186813
\(400\) 0 0
\(401\) 13609.8 1.69487 0.847434 0.530900i \(-0.178146\pi\)
0.847434 + 0.530900i \(0.178146\pi\)
\(402\) 0 0
\(403\) −3697.88 −0.457083
\(404\) 0 0
\(405\) −618.042 −0.0758290
\(406\) 0 0
\(407\) 3981.69 0.484927
\(408\) 0 0
\(409\) 5286.90 0.639170 0.319585 0.947558i \(-0.396457\pi\)
0.319585 + 0.947558i \(0.396457\pi\)
\(410\) 0 0
\(411\) −4399.20 −0.527972
\(412\) 0 0
\(413\) −1060.16 −0.126313
\(414\) 0 0
\(415\) 896.598 0.106054
\(416\) 0 0
\(417\) 3676.20 0.431712
\(418\) 0 0
\(419\) −4058.86 −0.473241 −0.236621 0.971602i \(-0.576040\pi\)
−0.236621 + 0.971602i \(0.576040\pi\)
\(420\) 0 0
\(421\) 11383.0 1.31776 0.658878 0.752249i \(-0.271031\pi\)
0.658878 + 0.752249i \(0.271031\pi\)
\(422\) 0 0
\(423\) −1783.97 −0.205058
\(424\) 0 0
\(425\) −133.562 −0.0152440
\(426\) 0 0
\(427\) 1897.28 0.215026
\(428\) 0 0
\(429\) −1346.30 −0.151515
\(430\) 0 0
\(431\) −4896.19 −0.547195 −0.273598 0.961844i \(-0.588214\pi\)
−0.273598 + 0.961844i \(0.588214\pi\)
\(432\) 0 0
\(433\) 6775.12 0.751944 0.375972 0.926631i \(-0.377309\pi\)
0.375972 + 0.926631i \(0.377309\pi\)
\(434\) 0 0
\(435\) 544.355 0.0599996
\(436\) 0 0
\(437\) 5641.65 0.617566
\(438\) 0 0
\(439\) 4163.40 0.452639 0.226319 0.974053i \(-0.427331\pi\)
0.226319 + 0.974053i \(0.427331\pi\)
\(440\) 0 0
\(441\) −2801.71 −0.302528
\(442\) 0 0
\(443\) −11825.0 −1.26823 −0.634114 0.773240i \(-0.718635\pi\)
−0.634114 + 0.773240i \(0.718635\pi\)
\(444\) 0 0
\(445\) −3881.24 −0.413457
\(446\) 0 0
\(447\) −4805.63 −0.508498
\(448\) 0 0
\(449\) −5455.22 −0.573381 −0.286690 0.958023i \(-0.592555\pi\)
−0.286690 + 0.958023i \(0.592555\pi\)
\(450\) 0 0
\(451\) 48.7093 0.00508565
\(452\) 0 0
\(453\) −1764.70 −0.183031
\(454\) 0 0
\(455\) −558.465 −0.0575412
\(456\) 0 0
\(457\) −4052.72 −0.414832 −0.207416 0.978253i \(-0.566505\pi\)
−0.207416 + 0.978253i \(0.566505\pi\)
\(458\) 0 0
\(459\) −54.0000 −0.00549129
\(460\) 0 0
\(461\) 17679.6 1.78616 0.893079 0.449900i \(-0.148540\pi\)
0.893079 + 0.449900i \(0.148540\pi\)
\(462\) 0 0
\(463\) 19202.9 1.92750 0.963752 0.266799i \(-0.0859661\pi\)
0.963752 + 0.266799i \(0.0859661\pi\)
\(464\) 0 0
\(465\) −6511.23 −0.649358
\(466\) 0 0
\(467\) −489.310 −0.0484851 −0.0242426 0.999706i \(-0.507717\pi\)
−0.0242426 + 0.999706i \(0.507717\pi\)
\(468\) 0 0
\(469\) −2991.92 −0.294572
\(470\) 0 0
\(471\) 2777.76 0.271746
\(472\) 0 0
\(473\) −11634.9 −1.13102
\(474\) 0 0
\(475\) 5886.78 0.568640
\(476\) 0 0
\(477\) 531.370 0.0510058
\(478\) 0 0
\(479\) 8629.64 0.823170 0.411585 0.911371i \(-0.364975\pi\)
0.411585 + 0.911371i \(0.364975\pi\)
\(480\) 0 0
\(481\) 1499.45 0.142140
\(482\) 0 0
\(483\) 1080.99 0.101836
\(484\) 0 0
\(485\) 7789.45 0.729279
\(486\) 0 0
\(487\) −2511.57 −0.233697 −0.116848 0.993150i \(-0.537279\pi\)
−0.116848 + 0.993150i \(0.537279\pi\)
\(488\) 0 0
\(489\) 8842.57 0.817740
\(490\) 0 0
\(491\) −19977.9 −1.83623 −0.918115 0.396314i \(-0.870289\pi\)
−0.918115 + 0.396314i \(0.870289\pi\)
\(492\) 0 0
\(493\) 47.5617 0.00434498
\(494\) 0 0
\(495\) −2370.57 −0.215251
\(496\) 0 0
\(497\) −2872.77 −0.259278
\(498\) 0 0
\(499\) 8946.90 0.802642 0.401321 0.915938i \(-0.368551\pi\)
0.401321 + 0.915938i \(0.368551\pi\)
\(500\) 0 0
\(501\) 2146.12 0.191380
\(502\) 0 0
\(503\) −4061.20 −0.360000 −0.180000 0.983667i \(-0.557610\pi\)
−0.180000 + 0.983667i \(0.557610\pi\)
\(504\) 0 0
\(505\) 7847.14 0.691472
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) 16439.6 1.43157 0.715787 0.698319i \(-0.246068\pi\)
0.715787 + 0.698319i \(0.246068\pi\)
\(510\) 0 0
\(511\) −924.578 −0.0800409
\(512\) 0 0
\(513\) 2380.07 0.204839
\(514\) 0 0
\(515\) 9667.51 0.827187
\(516\) 0 0
\(517\) −6842.64 −0.582087
\(518\) 0 0
\(519\) −1006.19 −0.0850997
\(520\) 0 0
\(521\) −19585.2 −1.64692 −0.823459 0.567376i \(-0.807958\pi\)
−0.823459 + 0.567376i \(0.807958\pi\)
\(522\) 0 0
\(523\) 1682.34 0.140657 0.0703283 0.997524i \(-0.477595\pi\)
0.0703283 + 0.997524i \(0.477595\pi\)
\(524\) 0 0
\(525\) 1127.96 0.0937679
\(526\) 0 0
\(527\) −568.904 −0.0470244
\(528\) 0 0
\(529\) −8071.00 −0.663352
\(530\) 0 0
\(531\) −1694.71 −0.138501
\(532\) 0 0
\(533\) 18.3433 0.00149069
\(534\) 0 0
\(535\) −14762.4 −1.19296
\(536\) 0 0
\(537\) 10647.1 0.855601
\(538\) 0 0
\(539\) −10746.3 −0.858769
\(540\) 0 0
\(541\) 13519.3 1.07438 0.537189 0.843462i \(-0.319486\pi\)
0.537189 + 0.843462i \(0.319486\pi\)
\(542\) 0 0
\(543\) −3507.78 −0.277225
\(544\) 0 0
\(545\) −15555.3 −1.22259
\(546\) 0 0
\(547\) −747.313 −0.0584147 −0.0292073 0.999573i \(-0.509298\pi\)
−0.0292073 + 0.999573i \(0.509298\pi\)
\(548\) 0 0
\(549\) 3032.88 0.235774
\(550\) 0 0
\(551\) −2096.30 −0.162079
\(552\) 0 0
\(553\) −165.046 −0.0126917
\(554\) 0 0
\(555\) 2640.24 0.201932
\(556\) 0 0
\(557\) −779.939 −0.0593305 −0.0296653 0.999560i \(-0.509444\pi\)
−0.0296653 + 0.999560i \(0.509444\pi\)
\(558\) 0 0
\(559\) −4381.54 −0.331519
\(560\) 0 0
\(561\) −207.123 −0.0155878
\(562\) 0 0
\(563\) −4041.76 −0.302558 −0.151279 0.988491i \(-0.548339\pi\)
−0.151279 + 0.988491i \(0.548339\pi\)
\(564\) 0 0
\(565\) 274.270 0.0204223
\(566\) 0 0
\(567\) 456.042 0.0337777
\(568\) 0 0
\(569\) 17848.8 1.31505 0.657524 0.753434i \(-0.271604\pi\)
0.657524 + 0.753434i \(0.271604\pi\)
\(570\) 0 0
\(571\) 10136.5 0.742908 0.371454 0.928451i \(-0.378859\pi\)
0.371454 + 0.928451i \(0.378859\pi\)
\(572\) 0 0
\(573\) −12701.6 −0.926033
\(574\) 0 0
\(575\) 4273.98 0.309978
\(576\) 0 0
\(577\) 5111.16 0.368770 0.184385 0.982854i \(-0.440971\pi\)
0.184385 + 0.982854i \(0.440971\pi\)
\(578\) 0 0
\(579\) −2251.48 −0.161603
\(580\) 0 0
\(581\) −661.583 −0.0472411
\(582\) 0 0
\(583\) 2038.14 0.144787
\(584\) 0 0
\(585\) −892.727 −0.0630935
\(586\) 0 0
\(587\) −20129.9 −1.41542 −0.707708 0.706505i \(-0.750271\pi\)
−0.707708 + 0.706505i \(0.750271\pi\)
\(588\) 0 0
\(589\) 25074.7 1.75413
\(590\) 0 0
\(591\) 2237.96 0.155765
\(592\) 0 0
\(593\) 3531.09 0.244527 0.122264 0.992498i \(-0.460985\pi\)
0.122264 + 0.992498i \(0.460985\pi\)
\(594\) 0 0
\(595\) −85.9177 −0.00591980
\(596\) 0 0
\(597\) −7043.92 −0.482896
\(598\) 0 0
\(599\) −14765.7 −1.00720 −0.503598 0.863938i \(-0.667991\pi\)
−0.503598 + 0.863938i \(0.667991\pi\)
\(600\) 0 0
\(601\) −14004.6 −0.950513 −0.475257 0.879847i \(-0.657645\pi\)
−0.475257 + 0.879847i \(0.657645\pi\)
\(602\) 0 0
\(603\) −4782.70 −0.322996
\(604\) 0 0
\(605\) 1063.10 0.0714401
\(606\) 0 0
\(607\) −24883.8 −1.66393 −0.831963 0.554831i \(-0.812783\pi\)
−0.831963 + 0.554831i \(0.812783\pi\)
\(608\) 0 0
\(609\) −401.669 −0.0267265
\(610\) 0 0
\(611\) −2576.85 −0.170619
\(612\) 0 0
\(613\) −9656.87 −0.636276 −0.318138 0.948044i \(-0.603058\pi\)
−0.318138 + 0.948044i \(0.603058\pi\)
\(614\) 0 0
\(615\) 32.2989 0.00211775
\(616\) 0 0
\(617\) 10779.4 0.703345 0.351672 0.936123i \(-0.385613\pi\)
0.351672 + 0.936123i \(0.385613\pi\)
\(618\) 0 0
\(619\) 11588.6 0.752481 0.376241 0.926522i \(-0.377217\pi\)
0.376241 + 0.926522i \(0.377217\pi\)
\(620\) 0 0
\(621\) 1728.00 0.111662
\(622\) 0 0
\(623\) 2863.89 0.184173
\(624\) 0 0
\(625\) −2817.71 −0.180333
\(626\) 0 0
\(627\) 9129.04 0.581466
\(628\) 0 0
\(629\) 230.685 0.0146232
\(630\) 0 0
\(631\) −69.9543 −0.00441337 −0.00220669 0.999998i \(-0.500702\pi\)
−0.00220669 + 0.999998i \(0.500702\pi\)
\(632\) 0 0
\(633\) 2052.17 0.128857
\(634\) 0 0
\(635\) 9194.43 0.574598
\(636\) 0 0
\(637\) −4046.92 −0.251719
\(638\) 0 0
\(639\) −4592.22 −0.284297
\(640\) 0 0
\(641\) 22360.1 1.37780 0.688900 0.724856i \(-0.258094\pi\)
0.688900 + 0.724856i \(0.258094\pi\)
\(642\) 0 0
\(643\) −18216.6 −1.11725 −0.558626 0.829419i \(-0.688671\pi\)
−0.558626 + 0.829419i \(0.688671\pi\)
\(644\) 0 0
\(645\) −7715.02 −0.470975
\(646\) 0 0
\(647\) −16594.2 −1.00832 −0.504162 0.863609i \(-0.668198\pi\)
−0.504162 + 0.863609i \(0.668198\pi\)
\(648\) 0 0
\(649\) −6500.28 −0.393156
\(650\) 0 0
\(651\) 4804.52 0.289254
\(652\) 0 0
\(653\) −14687.0 −0.880161 −0.440081 0.897958i \(-0.645050\pi\)
−0.440081 + 0.897958i \(0.645050\pi\)
\(654\) 0 0
\(655\) −9324.67 −0.556252
\(656\) 0 0
\(657\) −1477.97 −0.0877644
\(658\) 0 0
\(659\) 12906.0 0.762891 0.381446 0.924391i \(-0.375426\pi\)
0.381446 + 0.924391i \(0.375426\pi\)
\(660\) 0 0
\(661\) −6640.83 −0.390769 −0.195385 0.980727i \(-0.562596\pi\)
−0.195385 + 0.980727i \(0.562596\pi\)
\(662\) 0 0
\(663\) −78.0000 −0.00456903
\(664\) 0 0
\(665\) 3786.85 0.220824
\(666\) 0 0
\(667\) −1521.98 −0.0883525
\(668\) 0 0
\(669\) 4751.71 0.274606
\(670\) 0 0
\(671\) 11633.0 0.669279
\(672\) 0 0
\(673\) −26318.2 −1.50742 −0.753709 0.657209i \(-0.771737\pi\)
−0.753709 + 0.657209i \(0.771737\pi\)
\(674\) 0 0
\(675\) 1803.08 0.102816
\(676\) 0 0
\(677\) 12702.6 0.721121 0.360561 0.932736i \(-0.382585\pi\)
0.360561 + 0.932736i \(0.382585\pi\)
\(678\) 0 0
\(679\) −5747.69 −0.324854
\(680\) 0 0
\(681\) −11025.7 −0.620420
\(682\) 0 0
\(683\) −32848.6 −1.84029 −0.920144 0.391580i \(-0.871929\pi\)
−0.920144 + 0.391580i \(0.871929\pi\)
\(684\) 0 0
\(685\) −11188.8 −0.624093
\(686\) 0 0
\(687\) 8227.00 0.456884
\(688\) 0 0
\(689\) 767.535 0.0424394
\(690\) 0 0
\(691\) −7183.85 −0.395494 −0.197747 0.980253i \(-0.563362\pi\)
−0.197747 + 0.980253i \(0.563362\pi\)
\(692\) 0 0
\(693\) 1749.20 0.0958827
\(694\) 0 0
\(695\) 9349.97 0.510309
\(696\) 0 0
\(697\) 2.82204 0.000153361 0
\(698\) 0 0
\(699\) 7379.50 0.399311
\(700\) 0 0
\(701\) −34532.1 −1.86057 −0.930285 0.366838i \(-0.880440\pi\)
−0.930285 + 0.366838i \(0.880440\pi\)
\(702\) 0 0
\(703\) −10167.5 −0.545485
\(704\) 0 0
\(705\) −4537.32 −0.242391
\(706\) 0 0
\(707\) −5790.26 −0.308013
\(708\) 0 0
\(709\) 6369.28 0.337381 0.168691 0.985669i \(-0.446046\pi\)
0.168691 + 0.985669i \(0.446046\pi\)
\(710\) 0 0
\(711\) −263.833 −0.0139163
\(712\) 0 0
\(713\) 18204.9 0.956214
\(714\) 0 0
\(715\) −3424.16 −0.179100
\(716\) 0 0
\(717\) 1004.06 0.0522977
\(718\) 0 0
\(719\) 18776.2 0.973899 0.486949 0.873430i \(-0.338110\pi\)
0.486949 + 0.873430i \(0.338110\pi\)
\(720\) 0 0
\(721\) −7133.48 −0.368467
\(722\) 0 0
\(723\) 8093.42 0.416318
\(724\) 0 0
\(725\) −1588.11 −0.0813529
\(726\) 0 0
\(727\) −25307.8 −1.29108 −0.645539 0.763728i \(-0.723367\pi\)
−0.645539 + 0.763728i \(0.723367\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −674.082 −0.0341065
\(732\) 0 0
\(733\) 377.025 0.0189983 0.00949914 0.999955i \(-0.496976\pi\)
0.00949914 + 0.999955i \(0.496976\pi\)
\(734\) 0 0
\(735\) −7125.83 −0.357606
\(736\) 0 0
\(737\) −18344.6 −0.916869
\(738\) 0 0
\(739\) 35868.3 1.78544 0.892718 0.450616i \(-0.148796\pi\)
0.892718 + 0.450616i \(0.148796\pi\)
\(740\) 0 0
\(741\) 3437.88 0.170437
\(742\) 0 0
\(743\) −10183.8 −0.502835 −0.251417 0.967879i \(-0.580897\pi\)
−0.251417 + 0.967879i \(0.580897\pi\)
\(744\) 0 0
\(745\) −12222.6 −0.601074
\(746\) 0 0
\(747\) −1057.57 −0.0517996
\(748\) 0 0
\(749\) 10892.9 0.531398
\(750\) 0 0
\(751\) −13074.3 −0.635271 −0.317635 0.948213i \(-0.602889\pi\)
−0.317635 + 0.948213i \(0.602889\pi\)
\(752\) 0 0
\(753\) −7996.93 −0.387018
\(754\) 0 0
\(755\) −4488.31 −0.216353
\(756\) 0 0
\(757\) −26803.7 −1.28692 −0.643458 0.765481i \(-0.722501\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(758\) 0 0
\(759\) 6627.95 0.316969
\(760\) 0 0
\(761\) 30625.8 1.45885 0.729424 0.684062i \(-0.239788\pi\)
0.729424 + 0.684062i \(0.239788\pi\)
\(762\) 0 0
\(763\) 11477.9 0.544600
\(764\) 0 0
\(765\) −137.343 −0.00649102
\(766\) 0 0
\(767\) −2447.92 −0.115240
\(768\) 0 0
\(769\) 16457.3 0.771737 0.385868 0.922554i \(-0.373902\pi\)
0.385868 + 0.922554i \(0.373902\pi\)
\(770\) 0 0
\(771\) 20632.3 0.963753
\(772\) 0 0
\(773\) −22499.4 −1.04689 −0.523446 0.852059i \(-0.675354\pi\)
−0.523446 + 0.852059i \(0.675354\pi\)
\(774\) 0 0
\(775\) 18996.0 0.880458
\(776\) 0 0
\(777\) −1948.19 −0.0899496
\(778\) 0 0
\(779\) −124.383 −0.00572075
\(780\) 0 0
\(781\) −17614.0 −0.807016
\(782\) 0 0
\(783\) −642.084 −0.0293055
\(784\) 0 0
\(785\) 7064.90 0.321219
\(786\) 0 0
\(787\) 26500.7 1.20031 0.600157 0.799882i \(-0.295105\pi\)
0.600157 + 0.799882i \(0.295105\pi\)
\(788\) 0 0
\(789\) 166.526 0.00751391
\(790\) 0 0
\(791\) −202.379 −0.00909704
\(792\) 0 0
\(793\) 4380.83 0.196176
\(794\) 0 0
\(795\) 1351.48 0.0602918
\(796\) 0 0
\(797\) 27751.0 1.23337 0.616683 0.787212i \(-0.288476\pi\)
0.616683 + 0.787212i \(0.288476\pi\)
\(798\) 0 0
\(799\) −396.438 −0.0175532
\(800\) 0 0
\(801\) 4578.04 0.201944
\(802\) 0 0
\(803\) −5668.94 −0.249131
\(804\) 0 0
\(805\) 2749.37 0.120376
\(806\) 0 0
\(807\) 11180.6 0.487700
\(808\) 0 0
\(809\) 25964.3 1.12838 0.564189 0.825646i \(-0.309189\pi\)
0.564189 + 0.825646i \(0.309189\pi\)
\(810\) 0 0
\(811\) −23042.2 −0.997685 −0.498843 0.866693i \(-0.666241\pi\)
−0.498843 + 0.866693i \(0.666241\pi\)
\(812\) 0 0
\(813\) −4609.77 −0.198858
\(814\) 0 0
\(815\) 22490.0 0.966615
\(816\) 0 0
\(817\) 29710.4 1.27226
\(818\) 0 0
\(819\) 658.727 0.0281047
\(820\) 0 0
\(821\) 5645.55 0.239989 0.119994 0.992775i \(-0.461712\pi\)
0.119994 + 0.992775i \(0.461712\pi\)
\(822\) 0 0
\(823\) −38009.9 −1.60989 −0.804946 0.593348i \(-0.797806\pi\)
−0.804946 + 0.593348i \(0.797806\pi\)
\(824\) 0 0
\(825\) 6915.94 0.291857
\(826\) 0 0
\(827\) 7195.40 0.302550 0.151275 0.988492i \(-0.451662\pi\)
0.151275 + 0.988492i \(0.451662\pi\)
\(828\) 0 0
\(829\) −40503.6 −1.69692 −0.848461 0.529259i \(-0.822470\pi\)
−0.848461 + 0.529259i \(0.822470\pi\)
\(830\) 0 0
\(831\) −14751.7 −0.615801
\(832\) 0 0
\(833\) −622.603 −0.0258967
\(834\) 0 0
\(835\) 5458.39 0.226222
\(836\) 0 0
\(837\) 7680.21 0.317165
\(838\) 0 0
\(839\) 5322.63 0.219020 0.109510 0.993986i \(-0.465072\pi\)
0.109510 + 0.993986i \(0.465072\pi\)
\(840\) 0 0
\(841\) −23823.5 −0.976812
\(842\) 0 0
\(843\) 15845.0 0.647367
\(844\) 0 0
\(845\) −1289.49 −0.0524970
\(846\) 0 0
\(847\) −784.444 −0.0318227
\(848\) 0 0
\(849\) 15274.1 0.617439
\(850\) 0 0
\(851\) −7381.93 −0.297355
\(852\) 0 0
\(853\) −44680.0 −1.79345 −0.896726 0.442586i \(-0.854061\pi\)
−0.896726 + 0.442586i \(0.854061\pi\)
\(854\) 0 0
\(855\) 6053.43 0.242132
\(856\) 0 0
\(857\) −9103.80 −0.362870 −0.181435 0.983403i \(-0.558074\pi\)
−0.181435 + 0.983403i \(0.558074\pi\)
\(858\) 0 0
\(859\) −41297.8 −1.64035 −0.820177 0.572110i \(-0.806125\pi\)
−0.820177 + 0.572110i \(0.806125\pi\)
\(860\) 0 0
\(861\) −23.8328 −0.000943343 0
\(862\) 0 0
\(863\) 28878.2 1.13908 0.569540 0.821964i \(-0.307121\pi\)
0.569540 + 0.821964i \(0.307121\pi\)
\(864\) 0 0
\(865\) −2559.12 −0.100593
\(866\) 0 0
\(867\) 14727.0 0.576880
\(868\) 0 0
\(869\) −1011.96 −0.0395034
\(870\) 0 0
\(871\) −6908.34 −0.268749
\(872\) 0 0
\(873\) −9187.90 −0.356201
\(874\) 0 0
\(875\) 8238.68 0.318307
\(876\) 0 0
\(877\) 36361.7 1.40005 0.700027 0.714117i \(-0.253171\pi\)
0.700027 + 0.714117i \(0.253171\pi\)
\(878\) 0 0
\(879\) 12828.0 0.492237
\(880\) 0 0
\(881\) −14003.7 −0.535523 −0.267761 0.963485i \(-0.586284\pi\)
−0.267761 + 0.963485i \(0.586284\pi\)
\(882\) 0 0
\(883\) 45492.4 1.73379 0.866897 0.498488i \(-0.166111\pi\)
0.866897 + 0.498488i \(0.166111\pi\)
\(884\) 0 0
\(885\) −4310.30 −0.163717
\(886\) 0 0
\(887\) −1388.94 −0.0525773 −0.0262886 0.999654i \(-0.508369\pi\)
−0.0262886 + 0.999654i \(0.508369\pi\)
\(888\) 0 0
\(889\) −6784.40 −0.255952
\(890\) 0 0
\(891\) 2796.17 0.105135
\(892\) 0 0
\(893\) 17473.2 0.654778
\(894\) 0 0
\(895\) 27079.7 1.01137
\(896\) 0 0
\(897\) 2496.00 0.0929086
\(898\) 0 0
\(899\) −6764.52 −0.250956
\(900\) 0 0
\(901\) 118.082 0.00436614
\(902\) 0 0
\(903\) 5692.77 0.209794
\(904\) 0 0
\(905\) −8921.63 −0.327696
\(906\) 0 0
\(907\) 28974.2 1.06072 0.530361 0.847772i \(-0.322057\pi\)
0.530361 + 0.847772i \(0.322057\pi\)
\(908\) 0 0
\(909\) −9255.96 −0.337735
\(910\) 0 0
\(911\) 41047.3 1.49282 0.746408 0.665488i \(-0.231777\pi\)
0.746408 + 0.665488i \(0.231777\pi\)
\(912\) 0 0
\(913\) −4056.42 −0.147040
\(914\) 0 0
\(915\) 7713.77 0.278699
\(916\) 0 0
\(917\) 6880.50 0.247780
\(918\) 0 0
\(919\) 25401.8 0.911783 0.455891 0.890035i \(-0.349321\pi\)
0.455891 + 0.890035i \(0.349321\pi\)
\(920\) 0 0
\(921\) −918.935 −0.0328772
\(922\) 0 0
\(923\) −6633.21 −0.236549
\(924\) 0 0
\(925\) −7702.68 −0.273797
\(926\) 0 0
\(927\) −11403.1 −0.404022
\(928\) 0 0
\(929\) 46342.1 1.63664 0.818319 0.574765i \(-0.194907\pi\)
0.818319 + 0.574765i \(0.194907\pi\)
\(930\) 0 0
\(931\) 27441.5 0.966012
\(932\) 0 0
\(933\) 9801.71 0.343937
\(934\) 0 0
\(935\) −526.794 −0.0184257
\(936\) 0 0
\(937\) 8386.36 0.292391 0.146196 0.989256i \(-0.453297\pi\)
0.146196 + 0.989256i \(0.453297\pi\)
\(938\) 0 0
\(939\) 7368.57 0.256085
\(940\) 0 0
\(941\) −7119.76 −0.246650 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(942\) 0 0
\(943\) −90.3053 −0.00311850
\(944\) 0 0
\(945\) 1159.89 0.0399272
\(946\) 0 0
\(947\) −19592.2 −0.672293 −0.336147 0.941810i \(-0.609124\pi\)
−0.336147 + 0.941810i \(0.609124\pi\)
\(948\) 0 0
\(949\) −2134.85 −0.0730244
\(950\) 0 0
\(951\) 3103.45 0.105821
\(952\) 0 0
\(953\) 48924.0 1.66296 0.831482 0.555552i \(-0.187493\pi\)
0.831482 + 0.555552i \(0.187493\pi\)
\(954\) 0 0
\(955\) −32305.0 −1.09462
\(956\) 0 0
\(957\) −2462.79 −0.0831877
\(958\) 0 0
\(959\) 8256.04 0.277999
\(960\) 0 0
\(961\) 51122.0 1.71602
\(962\) 0 0
\(963\) 17412.7 0.582674
\(964\) 0 0
\(965\) −5726.38 −0.191025
\(966\) 0 0
\(967\) 29095.8 0.967588 0.483794 0.875182i \(-0.339258\pi\)
0.483794 + 0.875182i \(0.339258\pi\)
\(968\) 0 0
\(969\) 528.904 0.0175344
\(970\) 0 0
\(971\) −41888.1 −1.38440 −0.692200 0.721706i \(-0.743358\pi\)
−0.692200 + 0.721706i \(0.743358\pi\)
\(972\) 0 0
\(973\) −6899.17 −0.227315
\(974\) 0 0
\(975\) 2604.45 0.0855480
\(976\) 0 0
\(977\) −37197.0 −1.21805 −0.609027 0.793150i \(-0.708440\pi\)
−0.609027 + 0.793150i \(0.708440\pi\)
\(978\) 0 0
\(979\) 17559.6 0.573246
\(980\) 0 0
\(981\) 18347.9 0.597150
\(982\) 0 0
\(983\) 44554.4 1.44564 0.722820 0.691037i \(-0.242846\pi\)
0.722820 + 0.691037i \(0.242846\pi\)
\(984\) 0 0
\(985\) 5691.98 0.184123
\(986\) 0 0
\(987\) 3348.01 0.107972
\(988\) 0 0
\(989\) 21570.6 0.693535
\(990\) 0 0
\(991\) −23053.2 −0.738961 −0.369480 0.929238i \(-0.620464\pi\)
−0.369480 + 0.929238i \(0.620464\pi\)
\(992\) 0 0
\(993\) −12664.9 −0.404742
\(994\) 0 0
\(995\) −17915.4 −0.570810
\(996\) 0 0
\(997\) −36408.5 −1.15654 −0.578269 0.815846i \(-0.696271\pi\)
−0.578269 + 0.815846i \(0.696271\pi\)
\(998\) 0 0
\(999\) −3114.25 −0.0986292
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.a.c.1.1 2
3.2 odd 2 936.4.a.d.1.2 2
4.3 odd 2 624.4.a.q.1.1 2
8.3 odd 2 2496.4.a.v.1.2 2
8.5 even 2 2496.4.a.be.1.2 2
12.11 even 2 1872.4.a.x.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.c.1.1 2 1.1 even 1 trivial
624.4.a.q.1.1 2 4.3 odd 2
936.4.a.d.1.2 2 3.2 odd 2
1872.4.a.x.1.2 2 12.11 even 2
2496.4.a.v.1.2 2 8.3 odd 2
2496.4.a.be.1.2 2 8.5 even 2