Properties

Label 312.4.a.a.1.2
Level $312$
Weight $4$
Character 312.1
Self dual yes
Analytic conductor $18.409$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,4,Mod(1,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 312.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4085959218\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 312.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +1.46410 q^{5} -8.39230 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +1.46410 q^{5} -8.39230 q^{7} +9.00000 q^{9} +34.7846 q^{11} -13.0000 q^{13} -4.39230 q^{15} -108.067 q^{17} +143.244 q^{19} +25.1769 q^{21} -128.708 q^{23} -122.856 q^{25} -27.0000 q^{27} -18.8616 q^{29} -78.5359 q^{31} -104.354 q^{33} -12.2872 q^{35} -327.072 q^{37} +39.0000 q^{39} +327.587 q^{41} -336.918 q^{43} +13.1769 q^{45} +99.2820 q^{47} -272.569 q^{49} +324.200 q^{51} -686.554 q^{53} +50.9282 q^{55} -429.731 q^{57} -242.420 q^{59} -644.851 q^{61} -75.5307 q^{63} -19.0333 q^{65} -871.643 q^{67} +386.123 q^{69} +100.221 q^{71} +604.600 q^{73} +368.569 q^{75} -291.923 q^{77} +1070.39 q^{79} +81.0000 q^{81} +741.672 q^{83} -158.221 q^{85} +56.5847 q^{87} -501.577 q^{89} +109.100 q^{91} +235.608 q^{93} +209.723 q^{95} -1569.71 q^{97} +313.061 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 4 q^{5} + 4 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} - 4 q^{5} + 4 q^{7} + 18 q^{9} + 28 q^{11} - 26 q^{13} + 12 q^{15} - 36 q^{17} + 44 q^{19} - 12 q^{21} - 8 q^{23} - 218 q^{25} - 54 q^{27} - 204 q^{29} - 164 q^{31} - 84 q^{33} - 80 q^{35} - 668 q^{37} + 78 q^{39} - 100 q^{41} - 272 q^{43} - 36 q^{45} + 60 q^{47} - 462 q^{49} + 108 q^{51} - 708 q^{53} + 88 q^{55} - 132 q^{57} - 180 q^{59} - 1068 q^{61} + 36 q^{63} + 52 q^{65} - 420 q^{67} + 24 q^{69} + 436 q^{71} - 412 q^{73} + 654 q^{75} - 376 q^{77} + 672 q^{79} + 162 q^{81} - 124 q^{83} - 552 q^{85} + 612 q^{87} + 140 q^{89} - 52 q^{91} + 492 q^{93} + 752 q^{95} - 188 q^{97} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 1.46410 0.130953 0.0654766 0.997854i \(-0.479143\pi\)
0.0654766 + 0.997854i \(0.479143\pi\)
\(6\) 0 0
\(7\) −8.39230 −0.453142 −0.226571 0.973995i \(-0.572752\pi\)
−0.226571 + 0.973995i \(0.572752\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 34.7846 0.953450 0.476725 0.879052i \(-0.341824\pi\)
0.476725 + 0.879052i \(0.341824\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) −4.39230 −0.0756059
\(16\) 0 0
\(17\) −108.067 −1.54177 −0.770883 0.636977i \(-0.780185\pi\)
−0.770883 + 0.636977i \(0.780185\pi\)
\(18\) 0 0
\(19\) 143.244 1.72960 0.864798 0.502120i \(-0.167446\pi\)
0.864798 + 0.502120i \(0.167446\pi\)
\(20\) 0 0
\(21\) 25.1769 0.261622
\(22\) 0 0
\(23\) −128.708 −1.16684 −0.583422 0.812169i \(-0.698287\pi\)
−0.583422 + 0.812169i \(0.698287\pi\)
\(24\) 0 0
\(25\) −122.856 −0.982851
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −18.8616 −0.120776 −0.0603880 0.998175i \(-0.519234\pi\)
−0.0603880 + 0.998175i \(0.519234\pi\)
\(30\) 0 0
\(31\) −78.5359 −0.455015 −0.227507 0.973776i \(-0.573058\pi\)
−0.227507 + 0.973776i \(0.573058\pi\)
\(32\) 0 0
\(33\) −104.354 −0.550475
\(34\) 0 0
\(35\) −12.2872 −0.0593404
\(36\) 0 0
\(37\) −327.072 −1.45325 −0.726625 0.687034i \(-0.758912\pi\)
−0.726625 + 0.687034i \(0.758912\pi\)
\(38\) 0 0
\(39\) 39.0000 0.160128
\(40\) 0 0
\(41\) 327.587 1.24782 0.623909 0.781497i \(-0.285544\pi\)
0.623909 + 0.781497i \(0.285544\pi\)
\(42\) 0 0
\(43\) −336.918 −1.19487 −0.597436 0.801917i \(-0.703814\pi\)
−0.597436 + 0.801917i \(0.703814\pi\)
\(44\) 0 0
\(45\) 13.1769 0.0436511
\(46\) 0 0
\(47\) 99.2820 0.308123 0.154061 0.988061i \(-0.450765\pi\)
0.154061 + 0.988061i \(0.450765\pi\)
\(48\) 0 0
\(49\) −272.569 −0.794662
\(50\) 0 0
\(51\) 324.200 0.890139
\(52\) 0 0
\(53\) −686.554 −1.77935 −0.889674 0.456597i \(-0.849068\pi\)
−0.889674 + 0.456597i \(0.849068\pi\)
\(54\) 0 0
\(55\) 50.9282 0.124857
\(56\) 0 0
\(57\) −429.731 −0.998583
\(58\) 0 0
\(59\) −242.420 −0.534923 −0.267462 0.963569i \(-0.586185\pi\)
−0.267462 + 0.963569i \(0.586185\pi\)
\(60\) 0 0
\(61\) −644.851 −1.35352 −0.676760 0.736204i \(-0.736617\pi\)
−0.676760 + 0.736204i \(0.736617\pi\)
\(62\) 0 0
\(63\) −75.5307 −0.151047
\(64\) 0 0
\(65\) −19.0333 −0.0363199
\(66\) 0 0
\(67\) −871.643 −1.58938 −0.794688 0.607018i \(-0.792366\pi\)
−0.794688 + 0.607018i \(0.792366\pi\)
\(68\) 0 0
\(69\) 386.123 0.673677
\(70\) 0 0
\(71\) 100.221 0.167521 0.0837605 0.996486i \(-0.473307\pi\)
0.0837605 + 0.996486i \(0.473307\pi\)
\(72\) 0 0
\(73\) 604.600 0.969357 0.484678 0.874692i \(-0.338937\pi\)
0.484678 + 0.874692i \(0.338937\pi\)
\(74\) 0 0
\(75\) 368.569 0.567449
\(76\) 0 0
\(77\) −291.923 −0.432048
\(78\) 0 0
\(79\) 1070.39 1.52441 0.762204 0.647337i \(-0.224117\pi\)
0.762204 + 0.647337i \(0.224117\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 741.672 0.980832 0.490416 0.871489i \(-0.336845\pi\)
0.490416 + 0.871489i \(0.336845\pi\)
\(84\) 0 0
\(85\) −158.221 −0.201899
\(86\) 0 0
\(87\) 56.5847 0.0697301
\(88\) 0 0
\(89\) −501.577 −0.597382 −0.298691 0.954350i \(-0.596550\pi\)
−0.298691 + 0.954350i \(0.596550\pi\)
\(90\) 0 0
\(91\) 109.100 0.125679
\(92\) 0 0
\(93\) 235.608 0.262703
\(94\) 0 0
\(95\) 209.723 0.226496
\(96\) 0 0
\(97\) −1569.71 −1.64309 −0.821544 0.570144i \(-0.806887\pi\)
−0.821544 + 0.570144i \(0.806887\pi\)
\(98\) 0 0
\(99\) 313.061 0.317817
\(100\) 0 0
\(101\) 1639.34 1.61505 0.807526 0.589832i \(-0.200806\pi\)
0.807526 + 0.589832i \(0.200806\pi\)
\(102\) 0 0
\(103\) −830.333 −0.794322 −0.397161 0.917749i \(-0.630005\pi\)
−0.397161 + 0.917749i \(0.630005\pi\)
\(104\) 0 0
\(105\) 36.8616 0.0342602
\(106\) 0 0
\(107\) 1323.67 1.19593 0.597963 0.801523i \(-0.295977\pi\)
0.597963 + 0.801523i \(0.295977\pi\)
\(108\) 0 0
\(109\) −426.441 −0.374731 −0.187365 0.982290i \(-0.559995\pi\)
−0.187365 + 0.982290i \(0.559995\pi\)
\(110\) 0 0
\(111\) 981.215 0.839035
\(112\) 0 0
\(113\) 1548.66 1.28925 0.644625 0.764499i \(-0.277013\pi\)
0.644625 + 0.764499i \(0.277013\pi\)
\(114\) 0 0
\(115\) −188.441 −0.152802
\(116\) 0 0
\(117\) −117.000 −0.0924500
\(118\) 0 0
\(119\) 906.928 0.698638
\(120\) 0 0
\(121\) −121.031 −0.0909323
\(122\) 0 0
\(123\) −982.761 −0.720428
\(124\) 0 0
\(125\) −362.887 −0.259661
\(126\) 0 0
\(127\) 1456.63 1.01776 0.508878 0.860839i \(-0.330060\pi\)
0.508878 + 0.860839i \(0.330060\pi\)
\(128\) 0 0
\(129\) 1010.75 0.689860
\(130\) 0 0
\(131\) −1822.88 −1.21577 −0.607885 0.794025i \(-0.707982\pi\)
−0.607885 + 0.794025i \(0.707982\pi\)
\(132\) 0 0
\(133\) −1202.14 −0.783752
\(134\) 0 0
\(135\) −39.5307 −0.0252020
\(136\) 0 0
\(137\) 609.926 0.380361 0.190181 0.981749i \(-0.439093\pi\)
0.190181 + 0.981749i \(0.439093\pi\)
\(138\) 0 0
\(139\) 548.687 0.334813 0.167407 0.985888i \(-0.446461\pi\)
0.167407 + 0.985888i \(0.446461\pi\)
\(140\) 0 0
\(141\) −297.846 −0.177895
\(142\) 0 0
\(143\) −452.200 −0.264440
\(144\) 0 0
\(145\) −27.6152 −0.0158160
\(146\) 0 0
\(147\) 817.708 0.458799
\(148\) 0 0
\(149\) 1863.89 1.02480 0.512402 0.858746i \(-0.328756\pi\)
0.512402 + 0.858746i \(0.328756\pi\)
\(150\) 0 0
\(151\) −194.418 −0.104778 −0.0523890 0.998627i \(-0.516684\pi\)
−0.0523890 + 0.998627i \(0.516684\pi\)
\(152\) 0 0
\(153\) −972.600 −0.513922
\(154\) 0 0
\(155\) −114.985 −0.0595857
\(156\) 0 0
\(157\) −215.939 −0.109769 −0.0548847 0.998493i \(-0.517479\pi\)
−0.0548847 + 0.998493i \(0.517479\pi\)
\(158\) 0 0
\(159\) 2059.66 1.02731
\(160\) 0 0
\(161\) 1080.15 0.528746
\(162\) 0 0
\(163\) 1331.28 0.639717 0.319858 0.947465i \(-0.396365\pi\)
0.319858 + 0.947465i \(0.396365\pi\)
\(164\) 0 0
\(165\) −152.785 −0.0720865
\(166\) 0 0
\(167\) 3189.68 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 1289.19 0.576532
\(172\) 0 0
\(173\) −3407.54 −1.49752 −0.748759 0.662842i \(-0.769350\pi\)
−0.748759 + 0.662842i \(0.769350\pi\)
\(174\) 0 0
\(175\) 1031.05 0.445371
\(176\) 0 0
\(177\) 727.261 0.308838
\(178\) 0 0
\(179\) 1020.46 0.426106 0.213053 0.977041i \(-0.431659\pi\)
0.213053 + 0.977041i \(0.431659\pi\)
\(180\) 0 0
\(181\) −3458.60 −1.42031 −0.710155 0.704046i \(-0.751375\pi\)
−0.710155 + 0.704046i \(0.751375\pi\)
\(182\) 0 0
\(183\) 1934.55 0.781455
\(184\) 0 0
\(185\) −478.866 −0.190308
\(186\) 0 0
\(187\) −3759.06 −1.47000
\(188\) 0 0
\(189\) 226.592 0.0872072
\(190\) 0 0
\(191\) −3014.88 −1.14214 −0.571071 0.820901i \(-0.693472\pi\)
−0.571071 + 0.820901i \(0.693472\pi\)
\(192\) 0 0
\(193\) 539.795 0.201323 0.100661 0.994921i \(-0.467904\pi\)
0.100661 + 0.994921i \(0.467904\pi\)
\(194\) 0 0
\(195\) 57.1000 0.0209693
\(196\) 0 0
\(197\) 3630.70 1.31308 0.656541 0.754291i \(-0.272019\pi\)
0.656541 + 0.754291i \(0.272019\pi\)
\(198\) 0 0
\(199\) −3846.40 −1.37017 −0.685086 0.728462i \(-0.740236\pi\)
−0.685086 + 0.728462i \(0.740236\pi\)
\(200\) 0 0
\(201\) 2614.93 0.917627
\(202\) 0 0
\(203\) 158.292 0.0547287
\(204\) 0 0
\(205\) 479.621 0.163406
\(206\) 0 0
\(207\) −1158.37 −0.388948
\(208\) 0 0
\(209\) 4982.67 1.64908
\(210\) 0 0
\(211\) 993.169 0.324041 0.162020 0.986787i \(-0.448199\pi\)
0.162020 + 0.986787i \(0.448199\pi\)
\(212\) 0 0
\(213\) −300.662 −0.0967183
\(214\) 0 0
\(215\) −493.282 −0.156472
\(216\) 0 0
\(217\) 659.097 0.206186
\(218\) 0 0
\(219\) −1813.80 −0.559658
\(220\) 0 0
\(221\) 1404.87 0.427609
\(222\) 0 0
\(223\) 3813.70 1.14522 0.572610 0.819828i \(-0.305931\pi\)
0.572610 + 0.819828i \(0.305931\pi\)
\(224\) 0 0
\(225\) −1105.71 −0.327617
\(226\) 0 0
\(227\) −3002.36 −0.877859 −0.438929 0.898522i \(-0.644642\pi\)
−0.438929 + 0.898522i \(0.644642\pi\)
\(228\) 0 0
\(229\) −3848.06 −1.11042 −0.555212 0.831709i \(-0.687363\pi\)
−0.555212 + 0.831709i \(0.687363\pi\)
\(230\) 0 0
\(231\) 875.769 0.249443
\(232\) 0 0
\(233\) 2014.59 0.566438 0.283219 0.959055i \(-0.408598\pi\)
0.283219 + 0.959055i \(0.408598\pi\)
\(234\) 0 0
\(235\) 145.359 0.0403497
\(236\) 0 0
\(237\) −3211.17 −0.880117
\(238\) 0 0
\(239\) −5499.39 −1.48839 −0.744196 0.667961i \(-0.767167\pi\)
−0.744196 + 0.667961i \(0.767167\pi\)
\(240\) 0 0
\(241\) 197.872 0.0528883 0.0264441 0.999650i \(-0.491582\pi\)
0.0264441 + 0.999650i \(0.491582\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −399.069 −0.104064
\(246\) 0 0
\(247\) −1862.17 −0.479704
\(248\) 0 0
\(249\) −2225.01 −0.566283
\(250\) 0 0
\(251\) −1708.87 −0.429733 −0.214867 0.976643i \(-0.568932\pi\)
−0.214867 + 0.976643i \(0.568932\pi\)
\(252\) 0 0
\(253\) −4477.05 −1.11253
\(254\) 0 0
\(255\) 474.662 0.116567
\(256\) 0 0
\(257\) 5410.23 1.31316 0.656578 0.754258i \(-0.272003\pi\)
0.656578 + 0.754258i \(0.272003\pi\)
\(258\) 0 0
\(259\) 2744.89 0.658529
\(260\) 0 0
\(261\) −169.754 −0.0402587
\(262\) 0 0
\(263\) −3232.63 −0.757917 −0.378959 0.925414i \(-0.623718\pi\)
−0.378959 + 0.925414i \(0.623718\pi\)
\(264\) 0 0
\(265\) −1005.18 −0.233011
\(266\) 0 0
\(267\) 1504.73 0.344899
\(268\) 0 0
\(269\) −6804.99 −1.54241 −0.771204 0.636588i \(-0.780345\pi\)
−0.771204 + 0.636588i \(0.780345\pi\)
\(270\) 0 0
\(271\) −7650.61 −1.71491 −0.857456 0.514557i \(-0.827956\pi\)
−0.857456 + 0.514557i \(0.827956\pi\)
\(272\) 0 0
\(273\) −327.300 −0.0725608
\(274\) 0 0
\(275\) −4273.51 −0.937100
\(276\) 0 0
\(277\) 5246.78 1.13808 0.569040 0.822310i \(-0.307315\pi\)
0.569040 + 0.822310i \(0.307315\pi\)
\(278\) 0 0
\(279\) −706.823 −0.151672
\(280\) 0 0
\(281\) 3794.60 0.805576 0.402788 0.915293i \(-0.368041\pi\)
0.402788 + 0.915293i \(0.368041\pi\)
\(282\) 0 0
\(283\) 471.574 0.0990536 0.0495268 0.998773i \(-0.484229\pi\)
0.0495268 + 0.998773i \(0.484229\pi\)
\(284\) 0 0
\(285\) −629.169 −0.130768
\(286\) 0 0
\(287\) −2749.21 −0.565438
\(288\) 0 0
\(289\) 6765.40 1.37704
\(290\) 0 0
\(291\) 4709.12 0.948638
\(292\) 0 0
\(293\) 30.5867 0.00609862 0.00304931 0.999995i \(-0.499029\pi\)
0.00304931 + 0.999995i \(0.499029\pi\)
\(294\) 0 0
\(295\) −354.928 −0.0700499
\(296\) 0 0
\(297\) −939.184 −0.183492
\(298\) 0 0
\(299\) 1673.20 0.323624
\(300\) 0 0
\(301\) 2827.52 0.541447
\(302\) 0 0
\(303\) −4918.02 −0.932451
\(304\) 0 0
\(305\) −944.128 −0.177248
\(306\) 0 0
\(307\) −7700.81 −1.43162 −0.715811 0.698294i \(-0.753943\pi\)
−0.715811 + 0.698294i \(0.753943\pi\)
\(308\) 0 0
\(309\) 2491.00 0.458602
\(310\) 0 0
\(311\) −2903.37 −0.529374 −0.264687 0.964334i \(-0.585269\pi\)
−0.264687 + 0.964334i \(0.585269\pi\)
\(312\) 0 0
\(313\) −5645.42 −1.01948 −0.509742 0.860328i \(-0.670259\pi\)
−0.509742 + 0.860328i \(0.670259\pi\)
\(314\) 0 0
\(315\) −110.585 −0.0197801
\(316\) 0 0
\(317\) 1066.77 0.189008 0.0945041 0.995524i \(-0.469873\pi\)
0.0945041 + 0.995524i \(0.469873\pi\)
\(318\) 0 0
\(319\) −656.092 −0.115154
\(320\) 0 0
\(321\) −3971.01 −0.690469
\(322\) 0 0
\(323\) −15479.9 −2.66663
\(324\) 0 0
\(325\) 1597.13 0.272594
\(326\) 0 0
\(327\) 1279.32 0.216351
\(328\) 0 0
\(329\) −833.205 −0.139623
\(330\) 0 0
\(331\) 2205.86 0.366300 0.183150 0.983085i \(-0.441371\pi\)
0.183150 + 0.983085i \(0.441371\pi\)
\(332\) 0 0
\(333\) −2943.65 −0.484417
\(334\) 0 0
\(335\) −1276.17 −0.208134
\(336\) 0 0
\(337\) −439.466 −0.0710363 −0.0355182 0.999369i \(-0.511308\pi\)
−0.0355182 + 0.999369i \(0.511308\pi\)
\(338\) 0 0
\(339\) −4645.97 −0.744349
\(340\) 0 0
\(341\) −2731.84 −0.433834
\(342\) 0 0
\(343\) 5166.04 0.813237
\(344\) 0 0
\(345\) 565.323 0.0882202
\(346\) 0 0
\(347\) 5767.97 0.892336 0.446168 0.894949i \(-0.352788\pi\)
0.446168 + 0.894949i \(0.352788\pi\)
\(348\) 0 0
\(349\) −2582.12 −0.396039 −0.198020 0.980198i \(-0.563451\pi\)
−0.198020 + 0.980198i \(0.563451\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 0 0
\(353\) 8065.93 1.21616 0.608082 0.793874i \(-0.291939\pi\)
0.608082 + 0.793874i \(0.291939\pi\)
\(354\) 0 0
\(355\) 146.733 0.0219374
\(356\) 0 0
\(357\) −2720.78 −0.403359
\(358\) 0 0
\(359\) 315.815 0.0464292 0.0232146 0.999731i \(-0.492610\pi\)
0.0232146 + 0.999731i \(0.492610\pi\)
\(360\) 0 0
\(361\) 13659.7 1.99150
\(362\) 0 0
\(363\) 363.093 0.0524998
\(364\) 0 0
\(365\) 885.196 0.126940
\(366\) 0 0
\(367\) 5183.06 0.737203 0.368601 0.929588i \(-0.379837\pi\)
0.368601 + 0.929588i \(0.379837\pi\)
\(368\) 0 0
\(369\) 2948.28 0.415939
\(370\) 0 0
\(371\) 5761.77 0.806297
\(372\) 0 0
\(373\) −1691.00 −0.234737 −0.117368 0.993088i \(-0.537446\pi\)
−0.117368 + 0.993088i \(0.537446\pi\)
\(374\) 0 0
\(375\) 1088.66 0.149915
\(376\) 0 0
\(377\) 245.200 0.0334972
\(378\) 0 0
\(379\) 4562.78 0.618402 0.309201 0.950997i \(-0.399938\pi\)
0.309201 + 0.950997i \(0.399938\pi\)
\(380\) 0 0
\(381\) −4369.89 −0.587602
\(382\) 0 0
\(383\) −4896.69 −0.653287 −0.326644 0.945148i \(-0.605918\pi\)
−0.326644 + 0.945148i \(0.605918\pi\)
\(384\) 0 0
\(385\) −427.405 −0.0565781
\(386\) 0 0
\(387\) −3032.26 −0.398291
\(388\) 0 0
\(389\) 1611.91 0.210096 0.105048 0.994467i \(-0.466500\pi\)
0.105048 + 0.994467i \(0.466500\pi\)
\(390\) 0 0
\(391\) 13909.0 1.79900
\(392\) 0 0
\(393\) 5468.64 0.701925
\(394\) 0 0
\(395\) 1567.16 0.199626
\(396\) 0 0
\(397\) 1744.95 0.220595 0.110298 0.993899i \(-0.464820\pi\)
0.110298 + 0.993899i \(0.464820\pi\)
\(398\) 0 0
\(399\) 3606.43 0.452500
\(400\) 0 0
\(401\) −283.494 −0.0353042 −0.0176521 0.999844i \(-0.505619\pi\)
−0.0176521 + 0.999844i \(0.505619\pi\)
\(402\) 0 0
\(403\) 1020.97 0.126198
\(404\) 0 0
\(405\) 118.592 0.0145504
\(406\) 0 0
\(407\) −11377.1 −1.38560
\(408\) 0 0
\(409\) 8619.44 1.04206 0.521032 0.853537i \(-0.325547\pi\)
0.521032 + 0.853537i \(0.325547\pi\)
\(410\) 0 0
\(411\) −1829.78 −0.219602
\(412\) 0 0
\(413\) 2034.47 0.242396
\(414\) 0 0
\(415\) 1085.88 0.128443
\(416\) 0 0
\(417\) −1646.06 −0.193304
\(418\) 0 0
\(419\) 10146.0 1.18297 0.591483 0.806318i \(-0.298543\pi\)
0.591483 + 0.806318i \(0.298543\pi\)
\(420\) 0 0
\(421\) −5435.09 −0.629193 −0.314597 0.949225i \(-0.601869\pi\)
−0.314597 + 0.949225i \(0.601869\pi\)
\(422\) 0 0
\(423\) 893.538 0.102708
\(424\) 0 0
\(425\) 13276.7 1.51533
\(426\) 0 0
\(427\) 5411.79 0.613337
\(428\) 0 0
\(429\) 1356.60 0.152674
\(430\) 0 0
\(431\) −4851.97 −0.542253 −0.271127 0.962544i \(-0.587396\pi\)
−0.271127 + 0.962544i \(0.587396\pi\)
\(432\) 0 0
\(433\) −14096.0 −1.56446 −0.782230 0.622990i \(-0.785918\pi\)
−0.782230 + 0.622990i \(0.785918\pi\)
\(434\) 0 0
\(435\) 82.8457 0.00913138
\(436\) 0 0
\(437\) −18436.5 −2.01817
\(438\) 0 0
\(439\) 6431.04 0.699173 0.349586 0.936904i \(-0.386322\pi\)
0.349586 + 0.936904i \(0.386322\pi\)
\(440\) 0 0
\(441\) −2453.12 −0.264887
\(442\) 0 0
\(443\) 13281.3 1.42441 0.712205 0.701972i \(-0.247697\pi\)
0.712205 + 0.701972i \(0.247697\pi\)
\(444\) 0 0
\(445\) −734.359 −0.0782292
\(446\) 0 0
\(447\) −5591.67 −0.591671
\(448\) 0 0
\(449\) 2227.04 0.234077 0.117038 0.993127i \(-0.462660\pi\)
0.117038 + 0.993127i \(0.462660\pi\)
\(450\) 0 0
\(451\) 11395.0 1.18973
\(452\) 0 0
\(453\) 583.253 0.0604936
\(454\) 0 0
\(455\) 159.733 0.0164581
\(456\) 0 0
\(457\) 14683.2 1.50295 0.751477 0.659759i \(-0.229342\pi\)
0.751477 + 0.659759i \(0.229342\pi\)
\(458\) 0 0
\(459\) 2917.80 0.296713
\(460\) 0 0
\(461\) 3622.75 0.366005 0.183003 0.983112i \(-0.441418\pi\)
0.183003 + 0.983112i \(0.441418\pi\)
\(462\) 0 0
\(463\) 15517.0 1.55753 0.778766 0.627314i \(-0.215846\pi\)
0.778766 + 0.627314i \(0.215846\pi\)
\(464\) 0 0
\(465\) 344.954 0.0344018
\(466\) 0 0
\(467\) 14315.1 1.41847 0.709235 0.704973i \(-0.249041\pi\)
0.709235 + 0.704973i \(0.249041\pi\)
\(468\) 0 0
\(469\) 7315.10 0.720213
\(470\) 0 0
\(471\) 647.817 0.0633754
\(472\) 0 0
\(473\) −11719.6 −1.13925
\(474\) 0 0
\(475\) −17598.4 −1.69994
\(476\) 0 0
\(477\) −6178.98 −0.593116
\(478\) 0 0
\(479\) −6601.85 −0.629742 −0.314871 0.949135i \(-0.601961\pi\)
−0.314871 + 0.949135i \(0.601961\pi\)
\(480\) 0 0
\(481\) 4251.93 0.403059
\(482\) 0 0
\(483\) −3240.46 −0.305271
\(484\) 0 0
\(485\) −2298.21 −0.215168
\(486\) 0 0
\(487\) −616.770 −0.0573892 −0.0286946 0.999588i \(-0.509135\pi\)
−0.0286946 + 0.999588i \(0.509135\pi\)
\(488\) 0 0
\(489\) −3993.84 −0.369341
\(490\) 0 0
\(491\) 1565.75 0.143913 0.0719567 0.997408i \(-0.477076\pi\)
0.0719567 + 0.997408i \(0.477076\pi\)
\(492\) 0 0
\(493\) 2038.31 0.186208
\(494\) 0 0
\(495\) 458.354 0.0416191
\(496\) 0 0
\(497\) −841.081 −0.0759108
\(498\) 0 0
\(499\) 2449.31 0.219732 0.109866 0.993946i \(-0.464958\pi\)
0.109866 + 0.993946i \(0.464958\pi\)
\(500\) 0 0
\(501\) −9569.04 −0.853320
\(502\) 0 0
\(503\) −7106.77 −0.629970 −0.314985 0.949097i \(-0.602000\pi\)
−0.314985 + 0.949097i \(0.602000\pi\)
\(504\) 0 0
\(505\) 2400.16 0.211496
\(506\) 0 0
\(507\) −507.000 −0.0444116
\(508\) 0 0
\(509\) 7657.22 0.666798 0.333399 0.942786i \(-0.391804\pi\)
0.333399 + 0.942786i \(0.391804\pi\)
\(510\) 0 0
\(511\) −5073.99 −0.439256
\(512\) 0 0
\(513\) −3867.58 −0.332861
\(514\) 0 0
\(515\) −1215.69 −0.104019
\(516\) 0 0
\(517\) 3453.49 0.293780
\(518\) 0 0
\(519\) 10222.6 0.864593
\(520\) 0 0
\(521\) 3616.82 0.304138 0.152069 0.988370i \(-0.451406\pi\)
0.152069 + 0.988370i \(0.451406\pi\)
\(522\) 0 0
\(523\) 14089.9 1.17803 0.589014 0.808123i \(-0.299516\pi\)
0.589014 + 0.808123i \(0.299516\pi\)
\(524\) 0 0
\(525\) −3093.15 −0.257135
\(526\) 0 0
\(527\) 8487.11 0.701526
\(528\) 0 0
\(529\) 4398.66 0.361524
\(530\) 0 0
\(531\) −2181.78 −0.178308
\(532\) 0 0
\(533\) −4258.63 −0.346082
\(534\) 0 0
\(535\) 1937.99 0.156610
\(536\) 0 0
\(537\) −3061.39 −0.246012
\(538\) 0 0
\(539\) −9481.21 −0.757671
\(540\) 0 0
\(541\) −16786.5 −1.33403 −0.667013 0.745046i \(-0.732428\pi\)
−0.667013 + 0.745046i \(0.732428\pi\)
\(542\) 0 0
\(543\) 10375.8 0.820016
\(544\) 0 0
\(545\) −624.353 −0.0490722
\(546\) 0 0
\(547\) 19055.0 1.48946 0.744729 0.667368i \(-0.232579\pi\)
0.744729 + 0.667368i \(0.232579\pi\)
\(548\) 0 0
\(549\) −5803.66 −0.451173
\(550\) 0 0
\(551\) −2701.80 −0.208894
\(552\) 0 0
\(553\) −8983.04 −0.690773
\(554\) 0 0
\(555\) 1436.60 0.109874
\(556\) 0 0
\(557\) −13217.4 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(558\) 0 0
\(559\) 4379.93 0.331398
\(560\) 0 0
\(561\) 11277.2 0.848703
\(562\) 0 0
\(563\) −24946.0 −1.86741 −0.933703 0.358048i \(-0.883442\pi\)
−0.933703 + 0.358048i \(0.883442\pi\)
\(564\) 0 0
\(565\) 2267.39 0.168832
\(566\) 0 0
\(567\) −679.777 −0.0503491
\(568\) 0 0
\(569\) −15102.5 −1.11270 −0.556352 0.830947i \(-0.687799\pi\)
−0.556352 + 0.830947i \(0.687799\pi\)
\(570\) 0 0
\(571\) −16747.0 −1.22739 −0.613697 0.789542i \(-0.710318\pi\)
−0.613697 + 0.789542i \(0.710318\pi\)
\(572\) 0 0
\(573\) 9044.64 0.659416
\(574\) 0 0
\(575\) 15812.6 1.14683
\(576\) 0 0
\(577\) 19788.9 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(578\) 0 0
\(579\) −1619.38 −0.116234
\(580\) 0 0
\(581\) −6224.33 −0.444456
\(582\) 0 0
\(583\) −23881.5 −1.69652
\(584\) 0 0
\(585\) −171.300 −0.0121066
\(586\) 0 0
\(587\) 23658.3 1.66351 0.831756 0.555141i \(-0.187336\pi\)
0.831756 + 0.555141i \(0.187336\pi\)
\(588\) 0 0
\(589\) −11249.8 −0.786992
\(590\) 0 0
\(591\) −10892.1 −0.758108
\(592\) 0 0
\(593\) −17388.5 −1.20415 −0.602074 0.798441i \(-0.705659\pi\)
−0.602074 + 0.798441i \(0.705659\pi\)
\(594\) 0 0
\(595\) 1327.84 0.0914890
\(596\) 0 0
\(597\) 11539.2 0.791070
\(598\) 0 0
\(599\) 9053.40 0.617549 0.308774 0.951135i \(-0.400081\pi\)
0.308774 + 0.951135i \(0.400081\pi\)
\(600\) 0 0
\(601\) −13531.6 −0.918414 −0.459207 0.888329i \(-0.651866\pi\)
−0.459207 + 0.888329i \(0.651866\pi\)
\(602\) 0 0
\(603\) −7844.79 −0.529792
\(604\) 0 0
\(605\) −177.202 −0.0119079
\(606\) 0 0
\(607\) 2841.08 0.189977 0.0949884 0.995478i \(-0.469719\pi\)
0.0949884 + 0.995478i \(0.469719\pi\)
\(608\) 0 0
\(609\) −474.876 −0.0315976
\(610\) 0 0
\(611\) −1290.67 −0.0854579
\(612\) 0 0
\(613\) −23429.1 −1.54371 −0.771854 0.635800i \(-0.780670\pi\)
−0.771854 + 0.635800i \(0.780670\pi\)
\(614\) 0 0
\(615\) −1438.86 −0.0943423
\(616\) 0 0
\(617\) −17303.8 −1.12905 −0.564526 0.825415i \(-0.690941\pi\)
−0.564526 + 0.825415i \(0.690941\pi\)
\(618\) 0 0
\(619\) −2669.38 −0.173330 −0.0866652 0.996237i \(-0.527621\pi\)
−0.0866652 + 0.996237i \(0.527621\pi\)
\(620\) 0 0
\(621\) 3475.11 0.224559
\(622\) 0 0
\(623\) 4209.39 0.270699
\(624\) 0 0
\(625\) 14825.7 0.948848
\(626\) 0 0
\(627\) −14948.0 −0.952099
\(628\) 0 0
\(629\) 35345.6 2.24057
\(630\) 0 0
\(631\) 12671.5 0.799439 0.399720 0.916637i \(-0.369107\pi\)
0.399720 + 0.916637i \(0.369107\pi\)
\(632\) 0 0
\(633\) −2979.51 −0.187085
\(634\) 0 0
\(635\) 2132.66 0.133278
\(636\) 0 0
\(637\) 3543.40 0.220400
\(638\) 0 0
\(639\) 901.985 0.0558403
\(640\) 0 0
\(641\) 6148.11 0.378839 0.189420 0.981896i \(-0.439339\pi\)
0.189420 + 0.981896i \(0.439339\pi\)
\(642\) 0 0
\(643\) −21495.1 −1.31833 −0.659164 0.752000i \(-0.729090\pi\)
−0.659164 + 0.752000i \(0.729090\pi\)
\(644\) 0 0
\(645\) 1479.85 0.0903394
\(646\) 0 0
\(647\) 20055.9 1.21867 0.609335 0.792913i \(-0.291436\pi\)
0.609335 + 0.792913i \(0.291436\pi\)
\(648\) 0 0
\(649\) −8432.50 −0.510023
\(650\) 0 0
\(651\) −1977.29 −0.119042
\(652\) 0 0
\(653\) 13667.9 0.819091 0.409546 0.912290i \(-0.365687\pi\)
0.409546 + 0.912290i \(0.365687\pi\)
\(654\) 0 0
\(655\) −2668.88 −0.159209
\(656\) 0 0
\(657\) 5441.40 0.323119
\(658\) 0 0
\(659\) 14754.7 0.872173 0.436087 0.899905i \(-0.356364\pi\)
0.436087 + 0.899905i \(0.356364\pi\)
\(660\) 0 0
\(661\) −27222.0 −1.60184 −0.800918 0.598774i \(-0.795655\pi\)
−0.800918 + 0.598774i \(0.795655\pi\)
\(662\) 0 0
\(663\) −4214.60 −0.246880
\(664\) 0 0
\(665\) −1760.06 −0.102635
\(666\) 0 0
\(667\) 2427.63 0.140927
\(668\) 0 0
\(669\) −11441.1 −0.661193
\(670\) 0 0
\(671\) −22430.9 −1.29051
\(672\) 0 0
\(673\) 9635.48 0.551888 0.275944 0.961174i \(-0.411010\pi\)
0.275944 + 0.961174i \(0.411010\pi\)
\(674\) 0 0
\(675\) 3317.12 0.189150
\(676\) 0 0
\(677\) −16897.8 −0.959286 −0.479643 0.877464i \(-0.659234\pi\)
−0.479643 + 0.877464i \(0.659234\pi\)
\(678\) 0 0
\(679\) 13173.5 0.744552
\(680\) 0 0
\(681\) 9007.09 0.506832
\(682\) 0 0
\(683\) −30252.7 −1.69486 −0.847429 0.530908i \(-0.821851\pi\)
−0.847429 + 0.530908i \(0.821851\pi\)
\(684\) 0 0
\(685\) 892.993 0.0498095
\(686\) 0 0
\(687\) 11544.2 0.641103
\(688\) 0 0
\(689\) 8925.20 0.493502
\(690\) 0 0
\(691\) −9471.02 −0.521410 −0.260705 0.965418i \(-0.583955\pi\)
−0.260705 + 0.965418i \(0.583955\pi\)
\(692\) 0 0
\(693\) −2627.31 −0.144016
\(694\) 0 0
\(695\) 803.334 0.0438449
\(696\) 0 0
\(697\) −35401.2 −1.92384
\(698\) 0 0
\(699\) −6043.77 −0.327033
\(700\) 0 0
\(701\) −21733.2 −1.17097 −0.585485 0.810683i \(-0.699096\pi\)
−0.585485 + 0.810683i \(0.699096\pi\)
\(702\) 0 0
\(703\) −46850.9 −2.51354
\(704\) 0 0
\(705\) −436.077 −0.0232959
\(706\) 0 0
\(707\) −13757.8 −0.731848
\(708\) 0 0
\(709\) 14647.9 0.775901 0.387950 0.921680i \(-0.373183\pi\)
0.387950 + 0.921680i \(0.373183\pi\)
\(710\) 0 0
\(711\) 9633.51 0.508136
\(712\) 0 0
\(713\) 10108.2 0.530931
\(714\) 0 0
\(715\) −662.067 −0.0346292
\(716\) 0 0
\(717\) 16498.2 0.859324
\(718\) 0 0
\(719\) −15330.7 −0.795187 −0.397594 0.917562i \(-0.630155\pi\)
−0.397594 + 0.917562i \(0.630155\pi\)
\(720\) 0 0
\(721\) 6968.41 0.359941
\(722\) 0 0
\(723\) −593.617 −0.0305351
\(724\) 0 0
\(725\) 2317.26 0.118705
\(726\) 0 0
\(727\) 23367.4 1.19209 0.596045 0.802951i \(-0.296738\pi\)
0.596045 + 0.802951i \(0.296738\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 36409.6 1.84221
\(732\) 0 0
\(733\) −18192.0 −0.916694 −0.458347 0.888773i \(-0.651558\pi\)
−0.458347 + 0.888773i \(0.651558\pi\)
\(734\) 0 0
\(735\) 1197.21 0.0600812
\(736\) 0 0
\(737\) −30319.8 −1.51539
\(738\) 0 0
\(739\) −19762.7 −0.983741 −0.491870 0.870668i \(-0.663687\pi\)
−0.491870 + 0.870668i \(0.663687\pi\)
\(740\) 0 0
\(741\) 5586.50 0.276957
\(742\) 0 0
\(743\) −13400.8 −0.661677 −0.330839 0.943687i \(-0.607332\pi\)
−0.330839 + 0.943687i \(0.607332\pi\)
\(744\) 0 0
\(745\) 2728.92 0.134201
\(746\) 0 0
\(747\) 6675.04 0.326944
\(748\) 0 0
\(749\) −11108.7 −0.541924
\(750\) 0 0
\(751\) −9368.29 −0.455198 −0.227599 0.973755i \(-0.573088\pi\)
−0.227599 + 0.973755i \(0.573088\pi\)
\(752\) 0 0
\(753\) 5126.62 0.248107
\(754\) 0 0
\(755\) −284.647 −0.0137210
\(756\) 0 0
\(757\) 5851.52 0.280947 0.140474 0.990084i \(-0.455137\pi\)
0.140474 + 0.990084i \(0.455137\pi\)
\(758\) 0 0
\(759\) 13431.1 0.642318
\(760\) 0 0
\(761\) 28716.6 1.36791 0.683953 0.729526i \(-0.260260\pi\)
0.683953 + 0.729526i \(0.260260\pi\)
\(762\) 0 0
\(763\) 3578.82 0.169806
\(764\) 0 0
\(765\) −1423.98 −0.0672997
\(766\) 0 0
\(767\) 3151.47 0.148361
\(768\) 0 0
\(769\) 38963.7 1.82713 0.913567 0.406687i \(-0.133316\pi\)
0.913567 + 0.406687i \(0.133316\pi\)
\(770\) 0 0
\(771\) −16230.7 −0.758151
\(772\) 0 0
\(773\) −7592.57 −0.353280 −0.176640 0.984275i \(-0.556523\pi\)
−0.176640 + 0.984275i \(0.556523\pi\)
\(774\) 0 0
\(775\) 9648.64 0.447212
\(776\) 0 0
\(777\) −8234.66 −0.380202
\(778\) 0 0
\(779\) 46924.7 2.15822
\(780\) 0 0
\(781\) 3486.13 0.159723
\(782\) 0 0
\(783\) 509.262 0.0232434
\(784\) 0 0
\(785\) −316.156 −0.0143747
\(786\) 0 0
\(787\) −35488.2 −1.60739 −0.803696 0.595041i \(-0.797136\pi\)
−0.803696 + 0.595041i \(0.797136\pi\)
\(788\) 0 0
\(789\) 9697.88 0.437584
\(790\) 0 0
\(791\) −12996.8 −0.584213
\(792\) 0 0
\(793\) 8383.07 0.375399
\(794\) 0 0
\(795\) 3015.55 0.134529
\(796\) 0 0
\(797\) −43362.4 −1.92720 −0.963599 0.267352i \(-0.913851\pi\)
−0.963599 + 0.267352i \(0.913851\pi\)
\(798\) 0 0
\(799\) −10729.1 −0.475053
\(800\) 0 0
\(801\) −4514.19 −0.199127
\(802\) 0 0
\(803\) 21030.8 0.924234
\(804\) 0 0
\(805\) 1581.46 0.0692410
\(806\) 0 0
\(807\) 20415.0 0.890510
\(808\) 0 0
\(809\) −42504.0 −1.84717 −0.923586 0.383392i \(-0.874756\pi\)
−0.923586 + 0.383392i \(0.874756\pi\)
\(810\) 0 0
\(811\) −28029.2 −1.21361 −0.606805 0.794851i \(-0.707549\pi\)
−0.606805 + 0.794851i \(0.707549\pi\)
\(812\) 0 0
\(813\) 22951.8 0.990105
\(814\) 0 0
\(815\) 1949.13 0.0837730
\(816\) 0 0
\(817\) −48261.3 −2.06665
\(818\) 0 0
\(819\) 981.900 0.0418930
\(820\) 0 0
\(821\) 21499.0 0.913911 0.456955 0.889490i \(-0.348940\pi\)
0.456955 + 0.889490i \(0.348940\pi\)
\(822\) 0 0
\(823\) −29687.3 −1.25739 −0.628697 0.777650i \(-0.716411\pi\)
−0.628697 + 0.777650i \(0.716411\pi\)
\(824\) 0 0
\(825\) 12820.5 0.541035
\(826\) 0 0
\(827\) 18571.7 0.780897 0.390448 0.920625i \(-0.372320\pi\)
0.390448 + 0.920625i \(0.372320\pi\)
\(828\) 0 0
\(829\) 2576.14 0.107929 0.0539644 0.998543i \(-0.482814\pi\)
0.0539644 + 0.998543i \(0.482814\pi\)
\(830\) 0 0
\(831\) −15740.3 −0.657071
\(832\) 0 0
\(833\) 29455.6 1.22518
\(834\) 0 0
\(835\) 4670.02 0.193548
\(836\) 0 0
\(837\) 2120.47 0.0875677
\(838\) 0 0
\(839\) 13089.6 0.538621 0.269311 0.963053i \(-0.413204\pi\)
0.269311 + 0.963053i \(0.413204\pi\)
\(840\) 0 0
\(841\) −24033.2 −0.985413
\(842\) 0 0
\(843\) −11383.8 −0.465100
\(844\) 0 0
\(845\) 247.433 0.0100733
\(846\) 0 0
\(847\) 1015.73 0.0412052
\(848\) 0 0
\(849\) −1414.72 −0.0571886
\(850\) 0 0
\(851\) 42096.6 1.69572
\(852\) 0 0
\(853\) 37066.5 1.48785 0.743923 0.668265i \(-0.232963\pi\)
0.743923 + 0.668265i \(0.232963\pi\)
\(854\) 0 0
\(855\) 1887.51 0.0754987
\(856\) 0 0
\(857\) 20389.3 0.812701 0.406350 0.913717i \(-0.366801\pi\)
0.406350 + 0.913717i \(0.366801\pi\)
\(858\) 0 0
\(859\) 32050.7 1.27306 0.636529 0.771253i \(-0.280370\pi\)
0.636529 + 0.771253i \(0.280370\pi\)
\(860\) 0 0
\(861\) 8247.63 0.326456
\(862\) 0 0
\(863\) 23477.1 0.926037 0.463018 0.886349i \(-0.346766\pi\)
0.463018 + 0.886349i \(0.346766\pi\)
\(864\) 0 0
\(865\) −4988.99 −0.196105
\(866\) 0 0
\(867\) −20296.2 −0.795035
\(868\) 0 0
\(869\) 37233.1 1.45345
\(870\) 0 0
\(871\) 11331.4 0.440814
\(872\) 0 0
\(873\) −14127.4 −0.547696
\(874\) 0 0
\(875\) 3045.46 0.117663
\(876\) 0 0
\(877\) 44692.4 1.72082 0.860408 0.509606i \(-0.170209\pi\)
0.860408 + 0.509606i \(0.170209\pi\)
\(878\) 0 0
\(879\) −91.7601 −0.00352104
\(880\) 0 0
\(881\) 8892.46 0.340062 0.170031 0.985439i \(-0.445613\pi\)
0.170031 + 0.985439i \(0.445613\pi\)
\(882\) 0 0
\(883\) −40356.1 −1.53804 −0.769022 0.639223i \(-0.779256\pi\)
−0.769022 + 0.639223i \(0.779256\pi\)
\(884\) 0 0
\(885\) 1064.78 0.0404433
\(886\) 0 0
\(887\) −30987.8 −1.17302 −0.586511 0.809941i \(-0.699499\pi\)
−0.586511 + 0.809941i \(0.699499\pi\)
\(888\) 0 0
\(889\) −12224.5 −0.461188
\(890\) 0 0
\(891\) 2817.55 0.105939
\(892\) 0 0
\(893\) 14221.5 0.532928
\(894\) 0 0
\(895\) 1494.06 0.0557999
\(896\) 0 0
\(897\) −5019.60 −0.186845
\(898\) 0 0
\(899\) 1481.31 0.0549549
\(900\) 0 0
\(901\) 74193.6 2.74334
\(902\) 0 0
\(903\) −8482.55 −0.312604
\(904\) 0 0
\(905\) −5063.75 −0.185994
\(906\) 0 0
\(907\) −11584.8 −0.424110 −0.212055 0.977258i \(-0.568016\pi\)
−0.212055 + 0.977258i \(0.568016\pi\)
\(908\) 0 0
\(909\) 14754.0 0.538351
\(910\) 0 0
\(911\) 19161.5 0.696868 0.348434 0.937333i \(-0.386713\pi\)
0.348434 + 0.937333i \(0.386713\pi\)
\(912\) 0 0
\(913\) 25798.8 0.935174
\(914\) 0 0
\(915\) 2832.38 0.102334
\(916\) 0 0
\(917\) 15298.2 0.550916
\(918\) 0 0
\(919\) 39089.3 1.40309 0.701544 0.712626i \(-0.252494\pi\)
0.701544 + 0.712626i \(0.252494\pi\)
\(920\) 0 0
\(921\) 23102.4 0.826548
\(922\) 0 0
\(923\) −1302.87 −0.0464620
\(924\) 0 0
\(925\) 40182.9 1.42833
\(926\) 0 0
\(927\) −7473.00 −0.264774
\(928\) 0 0
\(929\) 258.811 0.00914027 0.00457014 0.999990i \(-0.498545\pi\)
0.00457014 + 0.999990i \(0.498545\pi\)
\(930\) 0 0
\(931\) −39043.8 −1.37445
\(932\) 0 0
\(933\) 8710.12 0.305634
\(934\) 0 0
\(935\) −5503.64 −0.192501
\(936\) 0 0
\(937\) −29811.6 −1.03938 −0.519692 0.854354i \(-0.673953\pi\)
−0.519692 + 0.854354i \(0.673953\pi\)
\(938\) 0 0
\(939\) 16936.3 0.588599
\(940\) 0 0
\(941\) −39979.7 −1.38502 −0.692509 0.721410i \(-0.743494\pi\)
−0.692509 + 0.721410i \(0.743494\pi\)
\(942\) 0 0
\(943\) −42163.0 −1.45601
\(944\) 0 0
\(945\) 331.754 0.0114201
\(946\) 0 0
\(947\) 8295.11 0.284641 0.142320 0.989821i \(-0.454544\pi\)
0.142320 + 0.989821i \(0.454544\pi\)
\(948\) 0 0
\(949\) −7859.80 −0.268851
\(950\) 0 0
\(951\) −3200.30 −0.109124
\(952\) 0 0
\(953\) 19633.5 0.667359 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(954\) 0 0
\(955\) −4414.09 −0.149567
\(956\) 0 0
\(957\) 1968.28 0.0664841
\(958\) 0 0
\(959\) −5118.68 −0.172358
\(960\) 0 0
\(961\) −23623.1 −0.792961
\(962\) 0 0
\(963\) 11913.0 0.398642
\(964\) 0 0
\(965\) 790.314 0.0263638
\(966\) 0 0
\(967\) 11936.8 0.396961 0.198480 0.980105i \(-0.436399\pi\)
0.198480 + 0.980105i \(0.436399\pi\)
\(968\) 0 0
\(969\) 46439.6 1.53958
\(970\) 0 0
\(971\) −3489.36 −0.115323 −0.0576616 0.998336i \(-0.518364\pi\)
−0.0576616 + 0.998336i \(0.518364\pi\)
\(972\) 0 0
\(973\) −4604.75 −0.151718
\(974\) 0 0
\(975\) −4791.40 −0.157382
\(976\) 0 0
\(977\) 28945.7 0.947856 0.473928 0.880564i \(-0.342836\pi\)
0.473928 + 0.880564i \(0.342836\pi\)
\(978\) 0 0
\(979\) −17447.2 −0.569574
\(980\) 0 0
\(981\) −3837.97 −0.124910
\(982\) 0 0
\(983\) 41249.7 1.33841 0.669206 0.743077i \(-0.266634\pi\)
0.669206 + 0.743077i \(0.266634\pi\)
\(984\) 0 0
\(985\) 5315.72 0.171952
\(986\) 0 0
\(987\) 2499.62 0.0806116
\(988\) 0 0
\(989\) 43363.9 1.39423
\(990\) 0 0
\(991\) 30447.5 0.975981 0.487991 0.872849i \(-0.337730\pi\)
0.487991 + 0.872849i \(0.337730\pi\)
\(992\) 0 0
\(993\) −6617.59 −0.211483
\(994\) 0 0
\(995\) −5631.53 −0.179429
\(996\) 0 0
\(997\) −31771.1 −1.00923 −0.504615 0.863345i \(-0.668366\pi\)
−0.504615 + 0.863345i \(0.668366\pi\)
\(998\) 0 0
\(999\) 8830.94 0.279678
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.4.a.a.1.2 2
3.2 odd 2 936.4.a.g.1.1 2
4.3 odd 2 624.4.a.o.1.2 2
8.3 odd 2 2496.4.a.z.1.1 2
8.5 even 2 2496.4.a.bg.1.1 2
12.11 even 2 1872.4.a.be.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.a.1.2 2 1.1 even 1 trivial
624.4.a.o.1.2 2 4.3 odd 2
936.4.a.g.1.1 2 3.2 odd 2
1872.4.a.be.1.1 2 12.11 even 2
2496.4.a.z.1.1 2 8.3 odd 2
2496.4.a.bg.1.1 2 8.5 even 2