Properties

Label 312.2.c.b
Level $312$
Weight $2$
Character orbit 312.c
Analytic conductor $2.491$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(25,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,0,0,0,0,2,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta q^{5} + \beta q^{7} + q^{9} + 2 \beta q^{11} + ( - \beta - 3) q^{13} + \beta q^{15} + 6 q^{17} - \beta q^{19} + \beta q^{21} - 4 q^{23} + q^{25} + q^{27} + 6 q^{29} - \beta q^{31} + \cdots + 2 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9} - 6 q^{13} + 12 q^{17} - 8 q^{23} + 2 q^{25} + 2 q^{27} + 12 q^{29} - 8 q^{35} - 6 q^{39} - 8 q^{43} + 6 q^{49} + 12 q^{51} + 4 q^{53} - 16 q^{55} - 28 q^{61} + 8 q^{65} - 8 q^{69}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
1.00000i
1.00000i
0 1.00000 0 2.00000i 0 2.00000i 0 1.00000 0
25.2 0 1.00000 0 2.00000i 0 2.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.c.b 2
3.b odd 2 1 936.2.c.a 2
4.b odd 2 1 624.2.c.b 2
8.b even 2 1 2496.2.c.g 2
8.d odd 2 1 2496.2.c.n 2
12.b even 2 1 1872.2.c.a 2
13.b even 2 1 inner 312.2.c.b 2
13.d odd 4 1 4056.2.a.n 1
13.d odd 4 1 4056.2.a.p 1
39.d odd 2 1 936.2.c.a 2
52.b odd 2 1 624.2.c.b 2
52.f even 4 1 8112.2.a.e 1
52.f even 4 1 8112.2.a.k 1
104.e even 2 1 2496.2.c.g 2
104.h odd 2 1 2496.2.c.n 2
156.h even 2 1 1872.2.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.c.b 2 1.a even 1 1 trivial
312.2.c.b 2 13.b even 2 1 inner
624.2.c.b 2 4.b odd 2 1
624.2.c.b 2 52.b odd 2 1
936.2.c.a 2 3.b odd 2 1
936.2.c.a 2 39.d odd 2 1
1872.2.c.a 2 12.b even 2 1
1872.2.c.a 2 156.h even 2 1
2496.2.c.g 2 8.b even 2 1
2496.2.c.g 2 104.e even 2 1
2496.2.c.n 2 8.d odd 2 1
2496.2.c.n 2 104.h odd 2 1
4056.2.a.n 1 13.d odd 4 1
4056.2.a.p 1 13.d odd 4 1
8112.2.a.e 1 52.f even 4 1
8112.2.a.k 1 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4 \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( T^{2} + 36 \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 64 \) Copy content Toggle raw display
$61$ \( (T + 14)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 196 \) Copy content Toggle raw display
$71$ \( T^{2} + 144 \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less