Properties

Label 312.2.bf.a.121.2
Level $312$
Weight $2$
Character 312.121
Analytic conductor $2.491$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(49,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 121.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 312.121
Dual form 312.2.bf.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} -1.73205i q^{5} +(2.36603 - 1.36603i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-2.36603 - 1.36603i) q^{11} +(-2.59808 + 2.50000i) q^{13} +(-1.50000 - 0.866025i) q^{15} +(-0.133975 - 0.232051i) q^{17} +(4.09808 - 2.36603i) q^{19} -2.73205i q^{21} +(4.09808 - 7.09808i) q^{23} +2.00000 q^{25} -1.00000 q^{27} +(-3.96410 + 6.86603i) q^{29} +1.46410i q^{31} +(-2.36603 + 1.36603i) q^{33} +(-2.36603 - 4.09808i) q^{35} +(-1.33013 - 0.767949i) q^{37} +(0.866025 + 3.50000i) q^{39} +(4.33013 + 2.50000i) q^{41} +(6.09808 + 10.5622i) q^{43} +(-1.50000 + 0.866025i) q^{45} -3.26795i q^{47} +(0.232051 - 0.401924i) q^{49} -0.267949 q^{51} -7.92820 q^{53} +(-2.36603 + 4.09808i) q^{55} -4.73205i q^{57} +(3.13397 + 5.42820i) q^{61} +(-2.36603 - 1.36603i) q^{63} +(4.33013 + 4.50000i) q^{65} +(7.56218 + 4.36603i) q^{67} +(-4.09808 - 7.09808i) q^{69} +(-1.90192 + 1.09808i) q^{71} +9.19615i q^{73} +(1.00000 - 1.73205i) q^{75} -7.46410 q^{77} -8.39230 q^{79} +(-0.500000 + 0.866025i) q^{81} +1.66025i q^{83} +(-0.401924 + 0.232051i) q^{85} +(3.96410 + 6.86603i) q^{87} +(8.19615 + 4.73205i) q^{89} +(-2.73205 + 9.46410i) q^{91} +(1.26795 + 0.732051i) q^{93} +(-4.09808 - 7.09808i) q^{95} +(8.66025 - 5.00000i) q^{97} +2.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{7} - 2 q^{9} - 6 q^{11} - 6 q^{15} - 4 q^{17} + 6 q^{19} + 6 q^{23} + 8 q^{25} - 4 q^{27} - 2 q^{29} - 6 q^{33} - 6 q^{35} + 12 q^{37} + 14 q^{43} - 6 q^{45} - 6 q^{49} - 8 q^{51} - 4 q^{53}+ \cdots - 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) 1.73205i 0.774597i −0.921954 0.387298i \(-0.873408\pi\)
0.921954 0.387298i \(-0.126592\pi\)
\(6\) 0 0
\(7\) 2.36603 1.36603i 0.894274 0.516309i 0.0189356 0.999821i \(-0.493972\pi\)
0.875338 + 0.483512i \(0.160639\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −2.36603 1.36603i −0.713384 0.411872i 0.0989291 0.995094i \(-0.468458\pi\)
−0.812313 + 0.583222i \(0.801792\pi\)
\(12\) 0 0
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 0 0
\(15\) −1.50000 0.866025i −0.387298 0.223607i
\(16\) 0 0
\(17\) −0.133975 0.232051i −0.0324936 0.0562806i 0.849321 0.527876i \(-0.177012\pi\)
−0.881815 + 0.471596i \(0.843678\pi\)
\(18\) 0 0
\(19\) 4.09808 2.36603i 0.940163 0.542803i 0.0501517 0.998742i \(-0.484030\pi\)
0.890011 + 0.455938i \(0.150696\pi\)
\(20\) 0 0
\(21\) 2.73205i 0.596182i
\(22\) 0 0
\(23\) 4.09808 7.09808i 0.854508 1.48005i −0.0225928 0.999745i \(-0.507192\pi\)
0.877101 0.480306i \(-0.159475\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −3.96410 + 6.86603i −0.736115 + 1.27499i 0.218117 + 0.975923i \(0.430009\pi\)
−0.954232 + 0.299066i \(0.903325\pi\)
\(30\) 0 0
\(31\) 1.46410i 0.262960i 0.991319 + 0.131480i \(0.0419730\pi\)
−0.991319 + 0.131480i \(0.958027\pi\)
\(32\) 0 0
\(33\) −2.36603 + 1.36603i −0.411872 + 0.237795i
\(34\) 0 0
\(35\) −2.36603 4.09808i −0.399931 0.692701i
\(36\) 0 0
\(37\) −1.33013 0.767949i −0.218672 0.126250i 0.386663 0.922221i \(-0.373628\pi\)
−0.605335 + 0.795971i \(0.706961\pi\)
\(38\) 0 0
\(39\) 0.866025 + 3.50000i 0.138675 + 0.560449i
\(40\) 0 0
\(41\) 4.33013 + 2.50000i 0.676252 + 0.390434i 0.798441 0.602072i \(-0.205658\pi\)
−0.122189 + 0.992507i \(0.538991\pi\)
\(42\) 0 0
\(43\) 6.09808 + 10.5622i 0.929948 + 1.61072i 0.783404 + 0.621513i \(0.213482\pi\)
0.146544 + 0.989204i \(0.453185\pi\)
\(44\) 0 0
\(45\) −1.50000 + 0.866025i −0.223607 + 0.129099i
\(46\) 0 0
\(47\) 3.26795i 0.476679i −0.971182 0.238340i \(-0.923397\pi\)
0.971182 0.238340i \(-0.0766032\pi\)
\(48\) 0 0
\(49\) 0.232051 0.401924i 0.0331501 0.0574177i
\(50\) 0 0
\(51\) −0.267949 −0.0375204
\(52\) 0 0
\(53\) −7.92820 −1.08902 −0.544511 0.838754i \(-0.683285\pi\)
−0.544511 + 0.838754i \(0.683285\pi\)
\(54\) 0 0
\(55\) −2.36603 + 4.09808i −0.319035 + 0.552584i
\(56\) 0 0
\(57\) 4.73205i 0.626775i
\(58\) 0 0
\(59\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(60\) 0 0
\(61\) 3.13397 + 5.42820i 0.401264 + 0.695010i 0.993879 0.110476i \(-0.0352375\pi\)
−0.592614 + 0.805486i \(0.701904\pi\)
\(62\) 0 0
\(63\) −2.36603 1.36603i −0.298091 0.172103i
\(64\) 0 0
\(65\) 4.33013 + 4.50000i 0.537086 + 0.558156i
\(66\) 0 0
\(67\) 7.56218 + 4.36603i 0.923867 + 0.533395i 0.884867 0.465844i \(-0.154249\pi\)
0.0390004 + 0.999239i \(0.487583\pi\)
\(68\) 0 0
\(69\) −4.09808 7.09808i −0.493350 0.854508i
\(70\) 0 0
\(71\) −1.90192 + 1.09808i −0.225717 + 0.130318i −0.608595 0.793481i \(-0.708266\pi\)
0.382878 + 0.923799i \(0.374933\pi\)
\(72\) 0 0
\(73\) 9.19615i 1.07633i 0.842840 + 0.538164i \(0.180882\pi\)
−0.842840 + 0.538164i \(0.819118\pi\)
\(74\) 0 0
\(75\) 1.00000 1.73205i 0.115470 0.200000i
\(76\) 0 0
\(77\) −7.46410 −0.850613
\(78\) 0 0
\(79\) −8.39230 −0.944208 −0.472104 0.881543i \(-0.656505\pi\)
−0.472104 + 0.881543i \(0.656505\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 1.66025i 0.182237i 0.995840 + 0.0911183i \(0.0290441\pi\)
−0.995840 + 0.0911183i \(0.970956\pi\)
\(84\) 0 0
\(85\) −0.401924 + 0.232051i −0.0435948 + 0.0251694i
\(86\) 0 0
\(87\) 3.96410 + 6.86603i 0.424996 + 0.736115i
\(88\) 0 0
\(89\) 8.19615 + 4.73205i 0.868790 + 0.501596i 0.866946 0.498402i \(-0.166080\pi\)
0.00184433 + 0.999998i \(0.499413\pi\)
\(90\) 0 0
\(91\) −2.73205 + 9.46410i −0.286397 + 0.992107i
\(92\) 0 0
\(93\) 1.26795 + 0.732051i 0.131480 + 0.0759101i
\(94\) 0 0
\(95\) −4.09808 7.09808i −0.420454 0.728247i
\(96\) 0 0
\(97\) 8.66025 5.00000i 0.879316 0.507673i 0.00888289 0.999961i \(-0.497172\pi\)
0.870433 + 0.492287i \(0.163839\pi\)
\(98\) 0 0
\(99\) 2.73205i 0.274581i
\(100\) 0 0
\(101\) −3.76795 + 6.52628i −0.374925 + 0.649389i −0.990316 0.138833i \(-0.955665\pi\)
0.615391 + 0.788222i \(0.288998\pi\)
\(102\) 0 0
\(103\) −0.732051 −0.0721311 −0.0360656 0.999349i \(-0.511483\pi\)
−0.0360656 + 0.999349i \(0.511483\pi\)
\(104\) 0 0
\(105\) −4.73205 −0.461801
\(106\) 0 0
\(107\) −4.56218 + 7.90192i −0.441042 + 0.763908i −0.997767 0.0667892i \(-0.978724\pi\)
0.556725 + 0.830697i \(0.312058\pi\)
\(108\) 0 0
\(109\) 20.3923i 1.95323i −0.214999 0.976614i \(-0.568975\pi\)
0.214999 0.976614i \(-0.431025\pi\)
\(110\) 0 0
\(111\) −1.33013 + 0.767949i −0.126250 + 0.0728905i
\(112\) 0 0
\(113\) 6.33013 + 10.9641i 0.595488 + 1.03142i 0.993478 + 0.114026i \(0.0363747\pi\)
−0.397990 + 0.917390i \(0.630292\pi\)
\(114\) 0 0
\(115\) −12.2942 7.09808i −1.14644 0.661899i
\(116\) 0 0
\(117\) 3.46410 + 1.00000i 0.320256 + 0.0924500i
\(118\) 0 0
\(119\) −0.633975 0.366025i −0.0581164 0.0335535i
\(120\) 0 0
\(121\) −1.76795 3.06218i −0.160723 0.278380i
\(122\) 0 0
\(123\) 4.33013 2.50000i 0.390434 0.225417i
\(124\) 0 0
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 2.00000 3.46410i 0.177471 0.307389i −0.763542 0.645758i \(-0.776542\pi\)
0.941014 + 0.338368i \(0.109875\pi\)
\(128\) 0 0
\(129\) 12.1962 1.07381
\(130\) 0 0
\(131\) −15.3205 −1.33856 −0.669280 0.743011i \(-0.733397\pi\)
−0.669280 + 0.743011i \(0.733397\pi\)
\(132\) 0 0
\(133\) 6.46410 11.1962i 0.560509 0.970830i
\(134\) 0 0
\(135\) 1.73205i 0.149071i
\(136\) 0 0
\(137\) 4.79423 2.76795i 0.409599 0.236482i −0.281019 0.959702i \(-0.590672\pi\)
0.690617 + 0.723220i \(0.257339\pi\)
\(138\) 0 0
\(139\) −10.0000 17.3205i −0.848189 1.46911i −0.882823 0.469706i \(-0.844360\pi\)
0.0346338 0.999400i \(-0.488974\pi\)
\(140\) 0 0
\(141\) −2.83013 1.63397i −0.238340 0.137605i
\(142\) 0 0
\(143\) 9.56218 2.36603i 0.799629 0.197857i
\(144\) 0 0
\(145\) 11.8923 + 6.86603i 0.987602 + 0.570192i
\(146\) 0 0
\(147\) −0.232051 0.401924i −0.0191392 0.0331501i
\(148\) 0 0
\(149\) 18.6962 10.7942i 1.53165 0.884298i 0.532362 0.846517i \(-0.321304\pi\)
0.999286 0.0377811i \(-0.0120290\pi\)
\(150\) 0 0
\(151\) 17.2679i 1.40525i 0.711562 + 0.702623i \(0.247988\pi\)
−0.711562 + 0.702623i \(0.752012\pi\)
\(152\) 0 0
\(153\) −0.133975 + 0.232051i −0.0108312 + 0.0187602i
\(154\) 0 0
\(155\) 2.53590 0.203688
\(156\) 0 0
\(157\) −23.0526 −1.83979 −0.919897 0.392159i \(-0.871728\pi\)
−0.919897 + 0.392159i \(0.871728\pi\)
\(158\) 0 0
\(159\) −3.96410 + 6.86603i −0.314374 + 0.544511i
\(160\) 0 0
\(161\) 22.3923i 1.76476i
\(162\) 0 0
\(163\) 11.6603 6.73205i 0.913302 0.527295i 0.0318096 0.999494i \(-0.489873\pi\)
0.881492 + 0.472199i \(0.156540\pi\)
\(164\) 0 0
\(165\) 2.36603 + 4.09808i 0.184195 + 0.319035i
\(166\) 0 0
\(167\) −1.26795 0.732051i −0.0981169 0.0566478i 0.450139 0.892959i \(-0.351375\pi\)
−0.548256 + 0.836311i \(0.684708\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) −4.09808 2.36603i −0.313388 0.180934i
\(172\) 0 0
\(173\) 8.73205 + 15.1244i 0.663886 + 1.14988i 0.979586 + 0.201025i \(0.0644271\pi\)
−0.315701 + 0.948859i \(0.602240\pi\)
\(174\) 0 0
\(175\) 4.73205 2.73205i 0.357709 0.206524i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3660 17.9545i 0.774793 1.34198i −0.160118 0.987098i \(-0.551187\pi\)
0.934911 0.354883i \(-0.115479\pi\)
\(180\) 0 0
\(181\) −19.1962 −1.42684 −0.713419 0.700737i \(-0.752855\pi\)
−0.713419 + 0.700737i \(0.752855\pi\)
\(182\) 0 0
\(183\) 6.26795 0.463340
\(184\) 0 0
\(185\) −1.33013 + 2.30385i −0.0977929 + 0.169382i
\(186\) 0 0
\(187\) 0.732051i 0.0535329i
\(188\) 0 0
\(189\) −2.36603 + 1.36603i −0.172103 + 0.0993637i
\(190\) 0 0
\(191\) 7.46410 + 12.9282i 0.540083 + 0.935452i 0.998899 + 0.0469202i \(0.0149407\pi\)
−0.458815 + 0.888532i \(0.651726\pi\)
\(192\) 0 0
\(193\) −10.1603 5.86603i −0.731351 0.422246i 0.0875652 0.996159i \(-0.472091\pi\)
−0.818916 + 0.573913i \(0.805425\pi\)
\(194\) 0 0
\(195\) 6.06218 1.50000i 0.434122 0.107417i
\(196\) 0 0
\(197\) −0.928203 0.535898i −0.0661317 0.0381812i 0.466570 0.884485i \(-0.345490\pi\)
−0.532701 + 0.846303i \(0.678823\pi\)
\(198\) 0 0
\(199\) −0.169873 0.294229i −0.0120420 0.0208573i 0.859942 0.510392i \(-0.170500\pi\)
−0.871984 + 0.489535i \(0.837167\pi\)
\(200\) 0 0
\(201\) 7.56218 4.36603i 0.533395 0.307956i
\(202\) 0 0
\(203\) 21.6603i 1.52025i
\(204\) 0 0
\(205\) 4.33013 7.50000i 0.302429 0.523823i
\(206\) 0 0
\(207\) −8.19615 −0.569672
\(208\) 0 0
\(209\) −12.9282 −0.894263
\(210\) 0 0
\(211\) 5.66025 9.80385i 0.389668 0.674925i −0.602737 0.797940i \(-0.705923\pi\)
0.992405 + 0.123015i \(0.0392564\pi\)
\(212\) 0 0
\(213\) 2.19615i 0.150478i
\(214\) 0 0
\(215\) 18.2942 10.5622i 1.24766 0.720335i
\(216\) 0 0
\(217\) 2.00000 + 3.46410i 0.135769 + 0.235159i
\(218\) 0 0
\(219\) 7.96410 + 4.59808i 0.538164 + 0.310709i
\(220\) 0 0
\(221\) 0.928203 + 0.267949i 0.0624377 + 0.0180242i
\(222\) 0 0
\(223\) −14.5359 8.39230i −0.973396 0.561990i −0.0731260 0.997323i \(-0.523298\pi\)
−0.900270 + 0.435332i \(0.856631\pi\)
\(224\) 0 0
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) 0 0
\(227\) −19.0981 + 11.0263i −1.26758 + 0.731840i −0.974530 0.224256i \(-0.928005\pi\)
−0.293054 + 0.956096i \(0.594671\pi\)
\(228\) 0 0
\(229\) 0.143594i 0.00948893i 0.999989 + 0.00474446i \(0.00151022\pi\)
−0.999989 + 0.00474446i \(0.998490\pi\)
\(230\) 0 0
\(231\) −3.73205 + 6.46410i −0.245551 + 0.425307i
\(232\) 0 0
\(233\) 2.00000 0.131024 0.0655122 0.997852i \(-0.479132\pi\)
0.0655122 + 0.997852i \(0.479132\pi\)
\(234\) 0 0
\(235\) −5.66025 −0.369234
\(236\) 0 0
\(237\) −4.19615 + 7.26795i −0.272569 + 0.472104i
\(238\) 0 0
\(239\) 23.2679i 1.50508i −0.658547 0.752539i \(-0.728829\pi\)
0.658547 0.752539i \(-0.271171\pi\)
\(240\) 0 0
\(241\) 4.62436 2.66987i 0.297881 0.171982i −0.343610 0.939113i \(-0.611650\pi\)
0.641491 + 0.767131i \(0.278316\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −0.696152 0.401924i −0.0444755 0.0256780i
\(246\) 0 0
\(247\) −4.73205 + 16.3923i −0.301093 + 1.04302i
\(248\) 0 0
\(249\) 1.43782 + 0.830127i 0.0911183 + 0.0526072i
\(250\) 0 0
\(251\) −1.26795 2.19615i −0.0800322 0.138620i 0.823231 0.567706i \(-0.192169\pi\)
−0.903264 + 0.429086i \(0.858836\pi\)
\(252\) 0 0
\(253\) −19.3923 + 11.1962i −1.21918 + 0.703896i
\(254\) 0 0
\(255\) 0.464102i 0.0290632i
\(256\) 0 0
\(257\) −7.13397 + 12.3564i −0.445005 + 0.770771i −0.998053 0.0623783i \(-0.980131\pi\)
0.553047 + 0.833150i \(0.313465\pi\)
\(258\) 0 0
\(259\) −4.19615 −0.260736
\(260\) 0 0
\(261\) 7.92820 0.490743
\(262\) 0 0
\(263\) −14.8301 + 25.6865i −0.914465 + 1.58390i −0.106782 + 0.994282i \(0.534055\pi\)
−0.807683 + 0.589617i \(0.799279\pi\)
\(264\) 0 0
\(265\) 13.7321i 0.843553i
\(266\) 0 0
\(267\) 8.19615 4.73205i 0.501596 0.289597i
\(268\) 0 0
\(269\) −1.26795 2.19615i −0.0773082 0.133902i 0.824779 0.565455i \(-0.191299\pi\)
−0.902088 + 0.431553i \(0.857966\pi\)
\(270\) 0 0
\(271\) −13.8564 8.00000i −0.841717 0.485965i 0.0161307 0.999870i \(-0.494865\pi\)
−0.857847 + 0.513905i \(0.828199\pi\)
\(272\) 0 0
\(273\) 6.83013 + 7.09808i 0.413378 + 0.429595i
\(274\) 0 0
\(275\) −4.73205 2.73205i −0.285353 0.164749i
\(276\) 0 0
\(277\) 8.06218 + 13.9641i 0.484409 + 0.839022i 0.999840 0.0179100i \(-0.00570122\pi\)
−0.515430 + 0.856932i \(0.672368\pi\)
\(278\) 0 0
\(279\) 1.26795 0.732051i 0.0759101 0.0438267i
\(280\) 0 0
\(281\) 30.7128i 1.83217i 0.400981 + 0.916086i \(0.368669\pi\)
−0.400981 + 0.916086i \(0.631331\pi\)
\(282\) 0 0
\(283\) 11.7583 20.3660i 0.698960 1.21063i −0.269867 0.962898i \(-0.586980\pi\)
0.968827 0.247737i \(-0.0796869\pi\)
\(284\) 0 0
\(285\) −8.19615 −0.485498
\(286\) 0 0
\(287\) 13.6603 0.806339
\(288\) 0 0
\(289\) 8.46410 14.6603i 0.497888 0.862368i
\(290\) 0 0
\(291\) 10.0000i 0.586210i
\(292\) 0 0
\(293\) −19.1603 + 11.0622i −1.11935 + 0.646259i −0.941236 0.337750i \(-0.890334\pi\)
−0.178118 + 0.984009i \(0.557001\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.36603 + 1.36603i 0.137291 + 0.0792648i
\(298\) 0 0
\(299\) 7.09808 + 28.6865i 0.410492 + 1.65899i
\(300\) 0 0
\(301\) 28.8564 + 16.6603i 1.66326 + 0.960281i
\(302\) 0 0
\(303\) 3.76795 + 6.52628i 0.216463 + 0.374925i
\(304\) 0 0
\(305\) 9.40192 5.42820i 0.538353 0.310818i
\(306\) 0 0
\(307\) 7.26795i 0.414804i −0.978256 0.207402i \(-0.933499\pi\)
0.978256 0.207402i \(-0.0665008\pi\)
\(308\) 0 0
\(309\) −0.366025 + 0.633975i −0.0208225 + 0.0360656i
\(310\) 0 0
\(311\) 21.6603 1.22824 0.614120 0.789213i \(-0.289511\pi\)
0.614120 + 0.789213i \(0.289511\pi\)
\(312\) 0 0
\(313\) −31.3205 −1.77034 −0.885170 0.465268i \(-0.845958\pi\)
−0.885170 + 0.465268i \(0.845958\pi\)
\(314\) 0 0
\(315\) −2.36603 + 4.09808i −0.133310 + 0.230900i
\(316\) 0 0
\(317\) 0.803848i 0.0451486i −0.999745 0.0225743i \(-0.992814\pi\)
0.999745 0.0225743i \(-0.00718623\pi\)
\(318\) 0 0
\(319\) 18.7583 10.8301i 1.05026 0.606371i
\(320\) 0 0
\(321\) 4.56218 + 7.90192i 0.254636 + 0.441042i
\(322\) 0 0
\(323\) −1.09808 0.633975i −0.0610986 0.0352753i
\(324\) 0 0
\(325\) −5.19615 + 5.00000i −0.288231 + 0.277350i
\(326\) 0 0
\(327\) −17.6603 10.1962i −0.976614 0.563849i
\(328\) 0 0
\(329\) −4.46410 7.73205i −0.246114 0.426282i
\(330\) 0 0
\(331\) −10.3923 + 6.00000i −0.571213 + 0.329790i −0.757634 0.652680i \(-0.773645\pi\)
0.186421 + 0.982470i \(0.440311\pi\)
\(332\) 0 0
\(333\) 1.53590i 0.0841667i
\(334\) 0 0
\(335\) 7.56218 13.0981i 0.413166 0.715624i
\(336\) 0 0
\(337\) 4.07180 0.221805 0.110902 0.993831i \(-0.464626\pi\)
0.110902 + 0.993831i \(0.464626\pi\)
\(338\) 0 0
\(339\) 12.6603 0.687611
\(340\) 0 0
\(341\) 2.00000 3.46410i 0.108306 0.187592i
\(342\) 0 0
\(343\) 17.8564i 0.964155i
\(344\) 0 0
\(345\) −12.2942 + 7.09808i −0.661899 + 0.382148i
\(346\) 0 0
\(347\) 8.75833 + 15.1699i 0.470172 + 0.814361i 0.999418 0.0341067i \(-0.0108586\pi\)
−0.529246 + 0.848468i \(0.677525\pi\)
\(348\) 0 0
\(349\) −10.7321 6.19615i −0.574474 0.331672i 0.184461 0.982840i \(-0.440946\pi\)
−0.758934 + 0.651167i \(0.774280\pi\)
\(350\) 0 0
\(351\) 2.59808 2.50000i 0.138675 0.133440i
\(352\) 0 0
\(353\) −15.1865 8.76795i −0.808298 0.466671i 0.0380667 0.999275i \(-0.487880\pi\)
−0.846364 + 0.532604i \(0.821213\pi\)
\(354\) 0 0
\(355\) 1.90192 + 3.29423i 0.100944 + 0.174840i
\(356\) 0 0
\(357\) −0.633975 + 0.366025i −0.0335535 + 0.0193721i
\(358\) 0 0
\(359\) 25.5167i 1.34672i −0.739316 0.673359i \(-0.764851\pi\)
0.739316 0.673359i \(-0.235149\pi\)
\(360\) 0 0
\(361\) 1.69615 2.93782i 0.0892712 0.154622i
\(362\) 0 0
\(363\) −3.53590 −0.185587
\(364\) 0 0
\(365\) 15.9282 0.833720
\(366\) 0 0
\(367\) 0.562178 0.973721i 0.0293454 0.0508278i −0.850980 0.525199i \(-0.823991\pi\)
0.880325 + 0.474371i \(0.157324\pi\)
\(368\) 0 0
\(369\) 5.00000i 0.260290i
\(370\) 0 0
\(371\) −18.7583 + 10.8301i −0.973884 + 0.562272i
\(372\) 0 0
\(373\) 16.3301 + 28.2846i 0.845542 + 1.46452i 0.885150 + 0.465306i \(0.154056\pi\)
−0.0396078 + 0.999215i \(0.512611\pi\)
\(374\) 0 0
\(375\) −10.5000 6.06218i −0.542218 0.313050i
\(376\) 0 0
\(377\) −6.86603 27.7487i −0.353618 1.42913i
\(378\) 0 0
\(379\) 13.5167 + 7.80385i 0.694304 + 0.400857i 0.805222 0.592973i \(-0.202046\pi\)
−0.110918 + 0.993830i \(0.535379\pi\)
\(380\) 0 0
\(381\) −2.00000 3.46410i −0.102463 0.177471i
\(382\) 0 0
\(383\) 0.588457 0.339746i 0.0300688 0.0173602i −0.484890 0.874575i \(-0.661140\pi\)
0.514959 + 0.857215i \(0.327807\pi\)
\(384\) 0 0
\(385\) 12.9282i 0.658882i
\(386\) 0 0
\(387\) 6.09808 10.5622i 0.309983 0.536906i
\(388\) 0 0
\(389\) −17.5359 −0.889105 −0.444553 0.895753i \(-0.646637\pi\)
−0.444553 + 0.895753i \(0.646637\pi\)
\(390\) 0 0
\(391\) −2.19615 −0.111064
\(392\) 0 0
\(393\) −7.66025 + 13.2679i −0.386409 + 0.669280i
\(394\) 0 0
\(395\) 14.5359i 0.731380i
\(396\) 0 0
\(397\) 15.1244 8.73205i 0.759070 0.438249i −0.0698920 0.997555i \(-0.522265\pi\)
0.828962 + 0.559305i \(0.188932\pi\)
\(398\) 0 0
\(399\) −6.46410 11.1962i −0.323610 0.560509i
\(400\) 0 0
\(401\) −19.4545 11.2321i −0.971511 0.560902i −0.0718141 0.997418i \(-0.522879\pi\)
−0.899696 + 0.436516i \(0.856212\pi\)
\(402\) 0 0
\(403\) −3.66025 3.80385i −0.182330 0.189483i
\(404\) 0 0
\(405\) 1.50000 + 0.866025i 0.0745356 + 0.0430331i
\(406\) 0 0
\(407\) 2.09808 + 3.63397i 0.103998 + 0.180129i
\(408\) 0 0
\(409\) −28.7487 + 16.5981i −1.42153 + 0.820722i −0.996430 0.0844233i \(-0.973095\pi\)
−0.425102 + 0.905145i \(0.639762\pi\)
\(410\) 0 0
\(411\) 5.53590i 0.273066i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.87564 0.141160
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 5.80385 10.0526i 0.283537 0.491100i −0.688717 0.725031i \(-0.741826\pi\)
0.972253 + 0.233931i \(0.0751590\pi\)
\(420\) 0 0
\(421\) 5.00000i 0.243685i 0.992549 + 0.121843i \(0.0388803\pi\)
−0.992549 + 0.121843i \(0.961120\pi\)
\(422\) 0 0
\(423\) −2.83013 + 1.63397i −0.137605 + 0.0794466i
\(424\) 0 0
\(425\) −0.267949 0.464102i −0.0129974 0.0225122i
\(426\) 0 0
\(427\) 14.8301 + 8.56218i 0.717680 + 0.414353i
\(428\) 0 0
\(429\) 2.73205 9.46410i 0.131905 0.456931i
\(430\) 0 0
\(431\) −24.2942 14.0263i −1.17021 0.675622i −0.216482 0.976287i \(-0.569458\pi\)
−0.953730 + 0.300665i \(0.902792\pi\)
\(432\) 0 0
\(433\) −1.57180 2.72243i −0.0755357 0.130832i 0.825783 0.563987i \(-0.190733\pi\)
−0.901319 + 0.433156i \(0.857400\pi\)
\(434\) 0 0
\(435\) 11.8923 6.86603i 0.570192 0.329201i
\(436\) 0 0
\(437\) 38.7846i 1.85532i
\(438\) 0 0
\(439\) 4.90192 8.49038i 0.233956 0.405224i −0.725013 0.688735i \(-0.758166\pi\)
0.958969 + 0.283512i \(0.0914995\pi\)
\(440\) 0 0
\(441\) −0.464102 −0.0221001
\(442\) 0 0
\(443\) 19.3205 0.917945 0.458973 0.888450i \(-0.348218\pi\)
0.458973 + 0.888450i \(0.348218\pi\)
\(444\) 0 0
\(445\) 8.19615 14.1962i 0.388535 0.672962i
\(446\) 0 0
\(447\) 21.5885i 1.02110i
\(448\) 0 0
\(449\) 2.87564 1.66025i 0.135710 0.0783522i −0.430608 0.902539i \(-0.641701\pi\)
0.566318 + 0.824187i \(0.308367\pi\)
\(450\) 0 0
\(451\) −6.83013 11.8301i −0.321618 0.557059i
\(452\) 0 0
\(453\) 14.9545 + 8.63397i 0.702623 + 0.405660i
\(454\) 0 0
\(455\) 16.3923 + 4.73205i 0.768483 + 0.221842i
\(456\) 0 0
\(457\) 34.1603 + 19.7224i 1.59795 + 0.922576i 0.991882 + 0.127163i \(0.0405872\pi\)
0.606067 + 0.795413i \(0.292746\pi\)
\(458\) 0 0
\(459\) 0.133975 + 0.232051i 0.00625340 + 0.0108312i
\(460\) 0 0
\(461\) 29.0885 16.7942i 1.35478 0.782185i 0.365869 0.930666i \(-0.380772\pi\)
0.988915 + 0.148481i \(0.0474384\pi\)
\(462\) 0 0
\(463\) 6.33975i 0.294633i −0.989089 0.147316i \(-0.952936\pi\)
0.989089 0.147316i \(-0.0470636\pi\)
\(464\) 0 0
\(465\) 1.26795 2.19615i 0.0587997 0.101844i
\(466\) 0 0
\(467\) −11.6603 −0.539572 −0.269786 0.962920i \(-0.586953\pi\)
−0.269786 + 0.962920i \(0.586953\pi\)
\(468\) 0 0
\(469\) 23.8564 1.10159
\(470\) 0 0
\(471\) −11.5263 + 19.9641i −0.531103 + 0.919897i
\(472\) 0 0
\(473\) 33.3205i 1.53208i
\(474\) 0 0
\(475\) 8.19615 4.73205i 0.376065 0.217121i
\(476\) 0 0
\(477\) 3.96410 + 6.86603i 0.181504 + 0.314374i
\(478\) 0 0
\(479\) 1.26795 + 0.732051i 0.0579341 + 0.0334483i 0.528687 0.848817i \(-0.322684\pi\)
−0.470753 + 0.882265i \(0.656018\pi\)
\(480\) 0 0
\(481\) 5.37564 1.33013i 0.245108 0.0606486i
\(482\) 0 0
\(483\) −19.3923 11.1962i −0.882380 0.509443i
\(484\) 0 0
\(485\) −8.66025 15.0000i −0.393242 0.681115i
\(486\) 0 0
\(487\) 0.509619 0.294229i 0.0230930 0.0133328i −0.488409 0.872615i \(-0.662423\pi\)
0.511502 + 0.859282i \(0.329089\pi\)
\(488\) 0 0
\(489\) 13.4641i 0.608868i
\(490\) 0 0
\(491\) −12.9545 + 22.4378i −0.584628 + 1.01260i 0.410294 + 0.911953i \(0.365426\pi\)
−0.994922 + 0.100651i \(0.967907\pi\)
\(492\) 0 0
\(493\) 2.12436 0.0956762
\(494\) 0 0
\(495\) 4.73205 0.212690
\(496\) 0 0
\(497\) −3.00000 + 5.19615i −0.134568 + 0.233079i
\(498\) 0 0
\(499\) 13.8564i 0.620298i −0.950688 0.310149i \(-0.899621\pi\)
0.950688 0.310149i \(-0.100379\pi\)
\(500\) 0 0
\(501\) −1.26795 + 0.732051i −0.0566478 + 0.0327056i
\(502\) 0 0
\(503\) −4.63397 8.02628i −0.206619 0.357874i 0.744029 0.668148i \(-0.232913\pi\)
−0.950647 + 0.310274i \(0.899579\pi\)
\(504\) 0 0
\(505\) 11.3038 + 6.52628i 0.503015 + 0.290416i
\(506\) 0 0
\(507\) −11.0000 6.92820i −0.488527 0.307692i
\(508\) 0 0
\(509\) 25.6244 + 14.7942i 1.13578 + 0.655743i 0.945382 0.325964i \(-0.105689\pi\)
0.190398 + 0.981707i \(0.439022\pi\)
\(510\) 0 0
\(511\) 12.5622 + 21.7583i 0.555718 + 0.962532i
\(512\) 0 0
\(513\) −4.09808 + 2.36603i −0.180934 + 0.104463i
\(514\) 0 0
\(515\) 1.26795i 0.0558725i
\(516\) 0 0
\(517\) −4.46410 + 7.73205i −0.196331 + 0.340055i
\(518\) 0 0
\(519\) 17.4641 0.766589
\(520\) 0 0
\(521\) 19.9808 0.875373 0.437687 0.899128i \(-0.355798\pi\)
0.437687 + 0.899128i \(0.355798\pi\)
\(522\) 0 0
\(523\) 4.29423 7.43782i 0.187774 0.325233i −0.756734 0.653723i \(-0.773206\pi\)
0.944508 + 0.328490i \(0.106540\pi\)
\(524\) 0 0
\(525\) 5.46410i 0.238473i
\(526\) 0 0
\(527\) 0.339746 0.196152i 0.0147996 0.00854453i
\(528\) 0 0
\(529\) −22.0885 38.2583i −0.960368 1.66341i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.5000 + 4.33013i −0.758009 + 0.187559i
\(534\) 0 0
\(535\) 13.6865 + 7.90192i 0.591720 + 0.341630i
\(536\) 0 0
\(537\) −10.3660 17.9545i −0.447327 0.774793i
\(538\) 0 0
\(539\) −1.09808 + 0.633975i −0.0472975 + 0.0273072i
\(540\) 0 0
\(541\) 17.3923i 0.747754i −0.927478 0.373877i \(-0.878028\pi\)
0.927478 0.373877i \(-0.121972\pi\)
\(542\) 0 0
\(543\) −9.59808 + 16.6244i −0.411893 + 0.713419i
\(544\) 0 0
\(545\) −35.3205 −1.51296
\(546\) 0 0
\(547\) −2.05256 −0.0877611 −0.0438805 0.999037i \(-0.513972\pi\)
−0.0438805 + 0.999037i \(0.513972\pi\)
\(548\) 0 0
\(549\) 3.13397 5.42820i 0.133755 0.231670i
\(550\) 0 0
\(551\) 37.5167i 1.59826i
\(552\) 0 0
\(553\) −19.8564 + 11.4641i −0.844380 + 0.487503i
\(554\) 0 0
\(555\) 1.33013 + 2.30385i 0.0564607 + 0.0977929i
\(556\) 0 0
\(557\) 0.356406 + 0.205771i 0.0151014 + 0.00871881i 0.507532 0.861633i \(-0.330558\pi\)
−0.492430 + 0.870352i \(0.663891\pi\)
\(558\) 0 0
\(559\) −42.2487 12.1962i −1.78693 0.515842i
\(560\) 0 0
\(561\) 0.633975 + 0.366025i 0.0267664 + 0.0154536i
\(562\) 0 0
\(563\) −9.46410 16.3923i −0.398864 0.690853i 0.594722 0.803932i \(-0.297262\pi\)
−0.993586 + 0.113078i \(0.963929\pi\)
\(564\) 0 0
\(565\) 18.9904 10.9641i 0.798931 0.461263i
\(566\) 0 0
\(567\) 2.73205i 0.114735i
\(568\) 0 0
\(569\) −8.00000 + 13.8564i −0.335377 + 0.580891i −0.983557 0.180597i \(-0.942197\pi\)
0.648180 + 0.761487i \(0.275531\pi\)
\(570\) 0 0
\(571\) 13.6603 0.571664 0.285832 0.958280i \(-0.407730\pi\)
0.285832 + 0.958280i \(0.407730\pi\)
\(572\) 0 0
\(573\) 14.9282 0.623635
\(574\) 0 0
\(575\) 8.19615 14.1962i 0.341803 0.592020i
\(576\) 0 0
\(577\) 25.5885i 1.06526i 0.846348 + 0.532631i \(0.178797\pi\)
−0.846348 + 0.532631i \(0.821203\pi\)
\(578\) 0 0
\(579\) −10.1603 + 5.86603i −0.422246 + 0.243784i
\(580\) 0 0
\(581\) 2.26795 + 3.92820i 0.0940904 + 0.162969i
\(582\) 0 0
\(583\) 18.7583 + 10.8301i 0.776891 + 0.448538i
\(584\) 0 0
\(585\) 1.73205 6.00000i 0.0716115 0.248069i
\(586\) 0 0
\(587\) −25.8564 14.9282i −1.06721 0.616153i −0.139791 0.990181i \(-0.544643\pi\)
−0.927417 + 0.374028i \(0.877976\pi\)
\(588\) 0 0
\(589\) 3.46410 + 6.00000i 0.142736 + 0.247226i
\(590\) 0 0
\(591\) −0.928203 + 0.535898i −0.0381812 + 0.0220439i
\(592\) 0 0
\(593\) 28.1769i 1.15709i 0.815651 + 0.578544i \(0.196379\pi\)
−0.815651 + 0.578544i \(0.803621\pi\)
\(594\) 0 0
\(595\) −0.633975 + 1.09808i −0.0259904 + 0.0450167i
\(596\) 0 0
\(597\) −0.339746 −0.0139049
\(598\) 0 0
\(599\) −26.5359 −1.08423 −0.542114 0.840305i \(-0.682376\pi\)
−0.542114 + 0.840305i \(0.682376\pi\)
\(600\) 0 0
\(601\) 20.8205 36.0622i 0.849286 1.47101i −0.0325600 0.999470i \(-0.510366\pi\)
0.881846 0.471537i \(-0.156301\pi\)
\(602\) 0 0
\(603\) 8.73205i 0.355597i
\(604\) 0 0
\(605\) −5.30385 + 3.06218i −0.215632 + 0.124495i
\(606\) 0 0
\(607\) −0.392305 0.679492i −0.0159232 0.0275797i 0.857954 0.513726i \(-0.171735\pi\)
−0.873877 + 0.486147i \(0.838402\pi\)
\(608\) 0 0
\(609\) 18.7583 + 10.8301i 0.760126 + 0.438859i
\(610\) 0 0
\(611\) 8.16987 + 8.49038i 0.330518 + 0.343484i
\(612\) 0 0
\(613\) 31.4545 + 18.1603i 1.27043 + 0.733486i 0.975070 0.221899i \(-0.0712255\pi\)
0.295365 + 0.955385i \(0.404559\pi\)
\(614\) 0 0
\(615\) −4.33013 7.50000i −0.174608 0.302429i
\(616\) 0 0
\(617\) 32.7224 18.8923i 1.31736 0.760576i 0.334053 0.942554i \(-0.391584\pi\)
0.983302 + 0.181979i \(0.0582502\pi\)
\(618\) 0 0
\(619\) 44.3923i 1.78428i 0.451762 + 0.892139i \(0.350796\pi\)
−0.451762 + 0.892139i \(0.649204\pi\)
\(620\) 0 0
\(621\) −4.09808 + 7.09808i −0.164450 + 0.284836i
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −6.46410 + 11.1962i −0.258151 + 0.447131i
\(628\) 0 0
\(629\) 0.411543i 0.0164093i
\(630\) 0 0
\(631\) −29.3205 + 16.9282i −1.16723 + 0.673901i −0.953026 0.302888i \(-0.902049\pi\)
−0.214205 + 0.976789i \(0.568716\pi\)
\(632\) 0 0
\(633\) −5.66025 9.80385i −0.224975 0.389668i
\(634\) 0 0
\(635\) −6.00000 3.46410i −0.238103 0.137469i
\(636\) 0 0
\(637\) 0.401924 + 1.62436i 0.0159248 + 0.0643593i
\(638\) 0 0
\(639\) 1.90192 + 1.09808i 0.0752389 + 0.0434392i
\(640\) 0 0
\(641\) −6.25833 10.8397i −0.247189 0.428144i 0.715556 0.698556i \(-0.246174\pi\)
−0.962745 + 0.270412i \(0.912840\pi\)
\(642\) 0 0
\(643\) −24.0000 + 13.8564i −0.946468 + 0.546443i −0.891982 0.452071i \(-0.850685\pi\)
−0.0544858 + 0.998515i \(0.517352\pi\)
\(644\) 0 0
\(645\) 21.1244i 0.831771i
\(646\) 0 0
\(647\) −7.12436 + 12.3397i −0.280087 + 0.485125i −0.971406 0.237425i \(-0.923697\pi\)
0.691319 + 0.722550i \(0.257030\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 0 0
\(653\) −16.7321 + 28.9808i −0.654776 + 1.13410i 0.327174 + 0.944964i \(0.393904\pi\)
−0.981950 + 0.189141i \(0.939430\pi\)
\(654\) 0 0
\(655\) 26.5359i 1.03684i
\(656\) 0 0
\(657\) 7.96410 4.59808i 0.310709 0.179388i
\(658\) 0 0
\(659\) 4.33975 + 7.51666i 0.169053 + 0.292808i 0.938087 0.346400i \(-0.112596\pi\)
−0.769034 + 0.639207i \(0.779263\pi\)
\(660\) 0 0
\(661\) −4.66987 2.69615i −0.181637 0.104868i 0.406425 0.913684i \(-0.366775\pi\)
−0.588062 + 0.808816i \(0.700109\pi\)
\(662\) 0 0
\(663\) 0.696152 0.669873i 0.0270363 0.0260157i
\(664\) 0 0
\(665\) −19.3923 11.1962i −0.752001 0.434168i
\(666\) 0 0
\(667\) 32.4904 + 56.2750i 1.25803 + 2.17898i
\(668\) 0 0
\(669\) −14.5359 + 8.39230i −0.561990 + 0.324465i
\(670\) 0 0
\(671\) 17.1244i 0.661078i
\(672\) 0 0
\(673\) −23.8923 + 41.3827i −0.920981 + 1.59519i −0.123080 + 0.992397i \(0.539277\pi\)
−0.797901 + 0.602789i \(0.794056\pi\)
\(674\) 0 0
\(675\) −2.00000 −0.0769800
\(676\) 0 0
\(677\) 21.4641 0.824932 0.412466 0.910973i \(-0.364667\pi\)
0.412466 + 0.910973i \(0.364667\pi\)
\(678\) 0 0
\(679\) 13.6603 23.6603i 0.524232 0.907997i
\(680\) 0 0
\(681\) 22.0526i 0.845056i
\(682\) 0 0
\(683\) −32.7846 + 18.9282i −1.25447 + 0.724268i −0.971994 0.235007i \(-0.924489\pi\)
−0.282475 + 0.959275i \(0.591155\pi\)
\(684\) 0 0
\(685\) −4.79423 8.30385i −0.183178 0.317274i
\(686\) 0 0
\(687\) 0.124356 + 0.0717968i 0.00474446 + 0.00273922i
\(688\) 0 0
\(689\) 20.5981 19.8205i 0.784724 0.755101i
\(690\) 0 0
\(691\) −23.9545 13.8301i −0.911271 0.526123i −0.0304314 0.999537i \(-0.509688\pi\)
−0.880840 + 0.473414i \(0.843021\pi\)
\(692\) 0 0
\(693\) 3.73205 + 6.46410i 0.141769 + 0.245551i
\(694\) 0 0
\(695\) −30.0000 + 17.3205i −1.13796 + 0.657004i
\(696\) 0 0
\(697\) 1.33975i 0.0507465i
\(698\) 0 0
\(699\) 1.00000 1.73205i 0.0378235 0.0655122i
\(700\) 0 0
\(701\) 44.1051 1.66583 0.832914 0.553403i \(-0.186671\pi\)
0.832914 + 0.553403i \(0.186671\pi\)
\(702\) 0 0
\(703\) −7.26795 −0.274116
\(704\) 0 0
\(705\) −2.83013 + 4.90192i −0.106589 + 0.184617i
\(706\) 0 0
\(707\) 20.5885i 0.774309i
\(708\) 0 0
\(709\) 6.18653 3.57180i 0.232340 0.134142i −0.379311 0.925269i \(-0.623839\pi\)
0.611651 + 0.791128i \(0.290506\pi\)
\(710\) 0 0
\(711\) 4.19615 + 7.26795i 0.157368 + 0.272569i
\(712\) 0 0
\(713\) 10.3923 + 6.00000i 0.389195 + 0.224702i
\(714\) 0 0
\(715\) −4.09808 16.5622i −0.153259 0.619390i
\(716\) 0 0
\(717\) −20.1506 11.6340i −0.752539 0.434479i
\(718\) 0 0
\(719\) −12.5885 21.8038i −0.469470 0.813146i 0.529921 0.848047i \(-0.322222\pi\)
−0.999391 + 0.0349010i \(0.988888\pi\)
\(720\) 0 0
\(721\) −1.73205 + 1.00000i −0.0645049 + 0.0372419i
\(722\) 0 0
\(723\) 5.33975i 0.198587i
\(724\) 0 0
\(725\) −7.92820 + 13.7321i −0.294446 + 0.509996i
\(726\) 0 0
\(727\) −4.73205 −0.175502 −0.0877510 0.996142i \(-0.527968\pi\)
−0.0877510 + 0.996142i \(0.527968\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.63397 2.83013i 0.0604347 0.104676i
\(732\) 0 0
\(733\) 35.0000i 1.29275i 0.763018 + 0.646377i \(0.223717\pi\)
−0.763018 + 0.646377i \(0.776283\pi\)
\(734\) 0 0
\(735\) −0.696152 + 0.401924i −0.0256780 + 0.0148252i
\(736\) 0 0
\(737\) −11.9282 20.6603i −0.439381 0.761030i
\(738\) 0 0
\(739\) −14.5359 8.39230i −0.534712 0.308716i 0.208221 0.978082i \(-0.433233\pi\)
−0.742933 + 0.669366i \(0.766566\pi\)
\(740\) 0 0
\(741\) 11.8301 + 12.2942i 0.434591 + 0.451640i
\(742\) 0 0
\(743\) 38.1962 + 22.0526i 1.40128 + 0.809030i 0.994524 0.104507i \(-0.0333263\pi\)
0.406757 + 0.913537i \(0.366660\pi\)
\(744\) 0 0
\(745\) −18.6962 32.3827i −0.684974 1.18641i
\(746\) 0 0
\(747\) 1.43782 0.830127i 0.0526072 0.0303728i
\(748\) 0 0
\(749\) 24.9282i 0.910857i
\(750\) 0 0
\(751\) 7.83013 13.5622i 0.285725 0.494891i −0.687059 0.726601i \(-0.741099\pi\)
0.972785 + 0.231710i \(0.0744321\pi\)
\(752\) 0 0
\(753\) −2.53590 −0.0924133
\(754\) 0 0
\(755\) 29.9090 1.08850
\(756\) 0 0
\(757\) 3.39230 5.87564i 0.123295 0.213554i −0.797770 0.602962i \(-0.793987\pi\)
0.921065 + 0.389408i \(0.127320\pi\)
\(758\) 0 0
\(759\) 22.3923i 0.812789i
\(760\) 0 0
\(761\) −2.19615 + 1.26795i −0.0796105 + 0.0459631i −0.539277 0.842129i \(-0.681302\pi\)
0.459666 + 0.888092i \(0.347969\pi\)
\(762\) 0 0
\(763\) −27.8564 48.2487i −1.00847 1.74672i
\(764\) 0 0
\(765\) 0.401924 + 0.232051i 0.0145316 + 0.00838981i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.7321 21.7846i −1.36065 0.785573i −0.370942 0.928656i \(-0.620965\pi\)
−0.989711 + 0.143083i \(0.954298\pi\)
\(770\) 0 0
\(771\) 7.13397 + 12.3564i 0.256924 + 0.445005i
\(772\) 0 0
\(773\) −4.51666 + 2.60770i −0.162453 + 0.0937923i −0.579022 0.815312i \(-0.696566\pi\)
0.416569 + 0.909104i \(0.363232\pi\)
\(774\) 0 0
\(775\) 2.92820i 0.105184i
\(776\) 0 0
\(777\) −2.09808 + 3.63397i −0.0752681 + 0.130368i
\(778\) 0 0
\(779\) 23.6603 0.847717
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) 0 0
\(783\) 3.96410 6.86603i 0.141665 0.245372i
\(784\) 0 0
\(785\) 39.9282i 1.42510i
\(786\) 0 0
\(787\) 37.5167 21.6603i 1.33732 0.772105i 0.350915 0.936407i \(-0.385871\pi\)
0.986410 + 0.164303i \(0.0525374\pi\)
\(788\) 0 0
\(789\) 14.8301 + 25.6865i 0.527967 + 0.914465i
\(790\) 0 0
\(791\) 29.9545 + 17.2942i 1.06506 + 0.614912i
\(792\) 0 0
\(793\) −21.7128 6.26795i −0.771045 0.222581i
\(794\) 0 0
\(795\) 11.8923 + 6.86603i 0.421777 + 0.243513i
\(796\) 0 0
\(797\) 3.00000 + 5.19615i 0.106265 + 0.184057i 0.914255 0.405140i \(-0.132777\pi\)
−0.807989 + 0.589197i \(0.799444\pi\)
\(798\) 0 0
\(799\) −0.758330 + 0.437822i −0.0268278 + 0.0154890i
\(800\) 0 0
\(801\) 9.46410i 0.334398i
\(802\) 0 0
\(803\) 12.5622 21.7583i 0.443310 0.767835i
\(804\) 0 0
\(805\) −38.7846 −1.36698
\(806\) 0 0
\(807\) −2.53590 −0.0892679
\(808\) 0 0
\(809\) −2.86603 + 4.96410i −0.100764 + 0.174529i −0.912000 0.410191i \(-0.865462\pi\)
0.811236 + 0.584719i \(0.198795\pi\)
\(810\) 0 0
\(811\) 1.75129i 0.0614961i 0.999527 + 0.0307480i \(0.00978895\pi\)
−0.999527 + 0.0307480i \(0.990211\pi\)
\(812\) 0 0
\(813\) −13.8564 + 8.00000i −0.485965 + 0.280572i
\(814\) 0 0
\(815\) −11.6603 20.1962i −0.408441 0.707440i
\(816\) 0 0
\(817\) 49.9808 + 28.8564i 1.74861 + 1.00956i
\(818\) 0 0
\(819\) 9.56218 2.36603i 0.334130 0.0826756i
\(820\) 0 0
\(821\) −13.0526 7.53590i −0.455537 0.263005i 0.254629 0.967039i \(-0.418047\pi\)
−0.710166 + 0.704034i \(0.751380\pi\)
\(822\) 0 0
\(823\) −12.0000 20.7846i −0.418294 0.724506i 0.577474 0.816409i \(-0.304038\pi\)
−0.995768 + 0.0919029i \(0.970705\pi\)
\(824\) 0 0
\(825\) −4.73205 + 2.73205i −0.164749 + 0.0951178i
\(826\) 0 0
\(827\) 56.3923i 1.96095i −0.196637 0.980476i \(-0.563002\pi\)
0.196637 0.980476i \(-0.436998\pi\)
\(828\) 0 0
\(829\) 12.8660 22.2846i 0.446856 0.773976i −0.551324 0.834291i \(-0.685877\pi\)
0.998179 + 0.0603148i \(0.0192105\pi\)
\(830\) 0 0
\(831\) 16.1244 0.559348
\(832\) 0 0
\(833\) −0.124356 −0.00430867
\(834\) 0 0
\(835\) −1.26795 + 2.19615i −0.0438792 + 0.0760010i
\(836\) 0 0
\(837\) 1.46410i 0.0506068i
\(838\) 0 0
\(839\) 15.4641 8.92820i 0.533880 0.308236i −0.208715 0.977977i \(-0.566928\pi\)
0.742595 + 0.669741i \(0.233595\pi\)
\(840\) 0 0
\(841\) −16.9282 29.3205i −0.583731 1.01105i
\(842\) 0 0
\(843\) 26.5981 + 15.3564i 0.916086 + 0.528903i
\(844\) 0 0
\(845\) −22.5000 0.866025i −0.774024 0.0297922i
\(846\) 0 0
\(847\) −8.36603 4.83013i −0.287460 0.165965i
\(848\) 0 0
\(849\) −11.7583 20.3660i −0.403545 0.698960i
\(850\) 0 0
\(851\) −10.9019 + 6.29423i −0.373713 + 0.215763i
\(852\) 0 0
\(853\) 34.0333i 1.16528i −0.812731 0.582639i \(-0.802020\pi\)
0.812731 0.582639i \(-0.197980\pi\)
\(854\) 0 0
\(855\) −4.09808 + 7.09808i −0.140151 + 0.242749i
\(856\) 0 0
\(857\) 34.5167 1.17907 0.589533 0.807744i \(-0.299312\pi\)
0.589533 + 0.807744i \(0.299312\pi\)
\(858\) 0 0
\(859\) 34.4449 1.17524 0.587622 0.809136i \(-0.300064\pi\)
0.587622 + 0.809136i \(0.300064\pi\)
\(860\) 0 0
\(861\) 6.83013 11.8301i 0.232770 0.403170i
\(862\) 0 0
\(863\) 27.6603i 0.941566i 0.882249 + 0.470783i \(0.156029\pi\)
−0.882249 + 0.470783i \(0.843971\pi\)
\(864\) 0 0
\(865\) 26.1962 15.1244i 0.890696 0.514244i
\(866\) 0 0
\(867\) −8.46410 14.6603i −0.287456 0.497888i
\(868\) 0 0
\(869\) 19.8564 + 11.4641i 0.673582 + 0.388893i
\(870\) 0 0
\(871\) −30.5622 + 7.56218i −1.03556 + 0.256235i
\(872\) 0 0
\(873\) −8.66025 5.00000i −0.293105 0.169224i
\(874\) 0 0
\(875\) −16.5622 28.6865i −0.559904 0.969782i
\(876\) 0 0
\(877\) −16.4545 + 9.50000i −0.555628 + 0.320792i −0.751389 0.659860i \(-0.770616\pi\)
0.195761 + 0.980652i \(0.437282\pi\)
\(878\) 0 0
\(879\) 22.1244i 0.746236i
\(880\) 0 0
\(881\) −12.2583 + 21.2321i −0.412994 + 0.715326i −0.995216 0.0977040i \(-0.968850\pi\)
0.582222 + 0.813030i \(0.302183\pi\)
\(882\) 0 0
\(883\) 8.78461 0.295626 0.147813 0.989015i \(-0.452777\pi\)
0.147813 + 0.989015i \(0.452777\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.9282 25.8564i 0.501240 0.868173i −0.498759 0.866741i \(-0.666211\pi\)
0.999999 0.00143243i \(-0.000455957\pi\)
\(888\) 0 0
\(889\) 10.9282i 0.366520i
\(890\) 0 0
\(891\) 2.36603 1.36603i 0.0792648 0.0457636i
\(892\) 0 0
\(893\) −7.73205 13.3923i −0.258743 0.448156i
\(894\) 0 0
\(895\) −31.0981 17.9545i −1.03949 0.600152i
\(896\) 0 0
\(897\) 28.3923 + 8.19615i 0.947991 + 0.273662i
\(898\) 0 0
\(899\) −10.0526 5.80385i −0.335272 0.193569i
\(900\) 0 0
\(901\) 1.06218 + 1.83975i 0.0353863 + 0.0612908i
\(902\) 0 0
\(903\) 28.8564 16.6603i 0.960281 0.554419i
\(904\) 0 0
\(905\) 33.2487i 1.10522i
\(906\) 0 0
\(907\) −25.5167 + 44.1962i −0.847267 + 1.46751i 0.0363712 + 0.999338i \(0.488420\pi\)
−0.883638 + 0.468171i \(0.844913\pi\)
\(908\) 0 0
\(909\) 7.53590 0.249950
\(910\) 0 0
\(911\) −2.53590 −0.0840181 −0.0420090 0.999117i \(-0.513376\pi\)
−0.0420090 + 0.999117i \(0.513376\pi\)
\(912\) 0 0
\(913\) 2.26795 3.92820i 0.0750582 0.130005i
\(914\) 0 0
\(915\) 10.8564i 0.358902i
\(916\) 0 0
\(917\) −36.2487 + 20.9282i −1.19704 + 0.691110i
\(918\) 0 0
\(919\) −6.19615 10.7321i −0.204392 0.354018i 0.745547 0.666453i \(-0.232188\pi\)
−0.949939 + 0.312436i \(0.898855\pi\)
\(920\) 0 0
\(921\) −6.29423 3.63397i −0.207402 0.119744i
\(922\) 0 0
\(923\) 2.19615 7.60770i 0.0722872 0.250410i
\(924\) 0 0
\(925\) −2.66025 1.53590i −0.0874686 0.0505000i
\(926\) 0 0
\(927\) 0.366025 + 0.633975i 0.0120219 + 0.0208225i
\(928\) 0 0
\(929\) −34.5788 + 19.9641i −1.13449 + 0.655001i −0.945061 0.326893i \(-0.893998\pi\)
−0.189433 + 0.981894i \(0.560665\pi\)
\(930\) 0 0
\(931\) 2.19615i 0.0719760i
\(932\) 0 0
\(933\) 10.8301 18.7583i 0.354562 0.614120i
\(934\) 0 0
\(935\) 1.26795 0.0414664
\(936\) 0 0
\(937\) −19.6795 −0.642901 −0.321450 0.946926i \(-0.604170\pi\)
−0.321450 + 0.946926i \(0.604170\pi\)
\(938\) 0 0
\(939\) −15.6603 + 27.1244i −0.511053 + 0.885170i
\(940\) 0 0
\(941\) 26.7846i 0.873153i −0.899667 0.436577i \(-0.856191\pi\)
0.899667 0.436577i \(-0.143809\pi\)
\(942\) 0 0
\(943\) 35.4904 20.4904i 1.15573 0.667259i
\(944\) 0 0
\(945\) 2.36603 + 4.09808i 0.0769668 + 0.133310i
\(946\) 0 0
\(947\) 23.3205 + 13.4641i 0.757815 + 0.437525i 0.828511 0.559973i \(-0.189189\pi\)
−0.0706959 + 0.997498i \(0.522522\pi\)
\(948\) 0 0
\(949\) −22.9904 23.8923i −0.746299 0.775577i
\(950\) 0 0
\(951\) −0.696152 0.401924i −0.0225743 0.0130333i
\(952\) 0 0
\(953\) 16.3923 + 28.3923i 0.530999 + 0.919717i 0.999346 + 0.0361722i \(0.0115165\pi\)
−0.468347 + 0.883545i \(0.655150\pi\)
\(954\) 0 0
\(955\) 22.3923 12.9282i 0.724598 0.418347i
\(956\) 0 0
\(957\) 21.6603i 0.700177i
\(958\) 0 0
\(959\) 7.56218 13.0981i 0.244195 0.422959i
\(960\) 0 0
\(961\) 28.8564 0.930852
\(962\) 0 0
\(963\) 9.12436 0.294028
\(964\) 0 0
\(965\) −10.1603 + 17.5981i −0.327070 + 0.566502i
\(966\) 0 0
\(967\) 2.73205i 0.0878568i 0.999035 + 0.0439284i \(0.0139873\pi\)
−0.999035 + 0.0439284i \(0.986013\pi\)
\(968\) 0 0
\(969\) −1.09808 + 0.633975i −0.0352753 + 0.0203662i
\(970\) 0 0
\(971\) −0.196152 0.339746i −0.00629483 0.0109030i 0.862861 0.505442i \(-0.168670\pi\)
−0.869156 + 0.494539i \(0.835337\pi\)
\(972\) 0 0
\(973\) −47.3205 27.3205i −1.51703 0.875855i
\(974\) 0 0
\(975\) 1.73205 + 7.00000i 0.0554700 + 0.224179i
\(976\) 0 0
\(977\) −42.4019 24.4808i −1.35656 0.783209i −0.367400 0.930063i \(-0.619752\pi\)
−0.989158 + 0.146854i \(0.953085\pi\)
\(978\) 0 0
\(979\) −12.9282 22.3923i −0.413187 0.715661i
\(980\) 0 0
\(981\) −17.6603 + 10.1962i −0.563849 + 0.325538i
\(982\) 0 0
\(983\) 42.6410i 1.36004i −0.733195 0.680019i \(-0.761972\pi\)
0.733195 0.680019i \(-0.238028\pi\)
\(984\) 0 0
\(985\) −0.928203 + 1.60770i −0.0295750 + 0.0512254i
\(986\) 0 0
\(987\) −8.92820 −0.284188
\(988\) 0 0
\(989\) 99.9615 3.17859
\(990\) 0 0
\(991\) 18.5622 32.1506i 0.589647 1.02130i −0.404631 0.914480i \(-0.632600\pi\)
0.994279 0.106819i \(-0.0340665\pi\)
\(992\) 0 0
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) −0.509619 + 0.294229i −0.0161560 + 0.00932767i
\(996\) 0 0
\(997\) −9.99038 17.3038i −0.316399 0.548018i 0.663335 0.748322i \(-0.269140\pi\)
−0.979734 + 0.200304i \(0.935807\pi\)
\(998\) 0 0
\(999\) 1.33013 + 0.767949i 0.0420834 + 0.0242968i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.bf.a.121.2 yes 4
3.2 odd 2 936.2.bi.a.433.2 4
4.3 odd 2 624.2.bv.c.433.1 4
12.11 even 2 1872.2.by.g.433.1 4
13.4 even 6 4056.2.c.k.337.3 4
13.6 odd 12 4056.2.a.t.1.1 2
13.7 odd 12 4056.2.a.u.1.2 2
13.9 even 3 4056.2.c.k.337.2 4
13.10 even 6 inner 312.2.bf.a.49.2 4
39.23 odd 6 936.2.bi.a.361.2 4
52.7 even 12 8112.2.a.br.1.2 2
52.19 even 12 8112.2.a.bw.1.1 2
52.23 odd 6 624.2.bv.c.49.1 4
156.23 even 6 1872.2.by.g.1297.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.a.49.2 4 13.10 even 6 inner
312.2.bf.a.121.2 yes 4 1.1 even 1 trivial
624.2.bv.c.49.1 4 52.23 odd 6
624.2.bv.c.433.1 4 4.3 odd 2
936.2.bi.a.361.2 4 39.23 odd 6
936.2.bi.a.433.2 4 3.2 odd 2
1872.2.by.g.433.1 4 12.11 even 2
1872.2.by.g.1297.1 4 156.23 even 6
4056.2.a.t.1.1 2 13.6 odd 12
4056.2.a.u.1.2 2 13.7 odd 12
4056.2.c.k.337.2 4 13.9 even 3
4056.2.c.k.337.3 4 13.4 even 6
8112.2.a.br.1.2 2 52.7 even 12
8112.2.a.bw.1.1 2 52.19 even 12