Properties

Label 310.2.n
Level $310$
Weight $2$
Character orbit 310.n
Rep. character $\chi_{310}(39,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $64$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 310 = 2 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 310.n (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 155 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(310, [\chi])\).

Total New Old
Modular forms 208 64 144
Cusp forms 176 64 112
Eisenstein series 32 0 32

Trace form

\( 64 q + 16 q^{4} + 4 q^{5} - 16 q^{6} + 8 q^{9} - 4 q^{10} + 4 q^{11} - 14 q^{15} - 16 q^{16} + 16 q^{19} - 4 q^{20} + 32 q^{21} - 4 q^{24} - 8 q^{25} - 48 q^{26} - 40 q^{29} - 8 q^{30} - 60 q^{31} - 20 q^{34}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(310, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
310.2.n.a 310.n 155.n $64$ $2.475$ None 310.2.n.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(310, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(310, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 2}\)