Newspace parameters
Level: | \( N \) | \(=\) | \( 310 = 2 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 310.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.47536246266\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.2058981376.2 |
Defining polynomial: |
\( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -97\nu^{7} + 102\nu^{6} - 30\nu^{5} - 432\nu^{4} - 1769\nu^{3} + 1637\nu^{2} - 408\nu - 4773 ) / 1631 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 145\nu^{7} + 167\nu^{6} - 241\nu^{5} + 444\nu^{4} + 3132\nu^{3} + 2984\nu^{2} - 3930\nu + 4226 ) / 1631 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 485\nu^{7} - 510\nu^{6} + 150\nu^{5} + 529\nu^{4} + 8845\nu^{3} - 8185\nu^{2} + 2040\nu + 4293 ) / 1631 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -552\nu^{7} + 984\nu^{6} - 961\nu^{5} - 138\nu^{4} - 9966\nu^{3} + 16176\nu^{2} - 15353\nu + 2213 ) / 1631 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -137\nu^{7} + 305\nu^{6} - 309\nu^{5} + 24\nu^{4} - 2400\nu^{3} + 5281\nu^{2} - 4948\nu + 1236 ) / 233 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -1084\nu^{7} + 2216\nu^{6} - 1899\nu^{5} - 271\nu^{4} - 19500\nu^{3} + 38219\nu^{2} - 30067\nu + 4334 ) / 1631 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -1661\nu^{7} + 2890\nu^{6} - 2481\nu^{5} - 823\nu^{4} - 30006\nu^{3} + 49100\nu^{2} - 37656\nu + 1769 ) / 1631 \)
|
\(\nu\) | \(=\) |
\( ( 2\beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 - 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} - 2\beta_{4} - \beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( -5\beta_{6} + 5\beta_{5} - 3\beta_{4} - 5\beta_{3} + 3\beta_{2} + 3\beta _1 + 5 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{3} - 5\beta _1 - 12 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -34\beta_{7} + 23\beta_{6} + 11\beta_{5} + 13\beta_{4} - 23\beta_{3} - 11\beta_{2} + 11\beta _1 + 21 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( -\beta_{7} + 7\beta_{6} - 23\beta_{5} + 35\beta_{4} + 22\beta_{2} \)
|
\(\nu^{7}\) | \(=\) |
\( ( 103\beta_{6} - 105\beta_{5} + 61\beta_{4} + 103\beta_{3} - 43\beta_{2} - 43\beta _1 - 85 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/310\mathbb{Z}\right)^\times\).
\(n\) | \(187\) | \(251\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
249.1 |
|
− | 1.00000i | − | 1.78165i | −1.00000 | −0.264435 | − | 2.22038i | −1.78165 | − | 1.70316i | 1.00000i | −0.174289 | −2.22038 | + | 0.264435i | |||||||||||||||||||||||||||||||||||
249.2 | − | 1.00000i | − | 0.287336i | −1.00000 | −0.437190 | + | 2.19291i | −0.287336 | 1.04306i | 1.00000i | 2.91744 | 2.19291 | + | 0.437190i | |||||||||||||||||||||||||||||||||||||
249.3 | − | 1.00000i | 1.55241i | −1.00000 | −2.23418 | − | 0.0917505i | 1.55241 | − | 4.87834i | 1.00000i | 0.590025 | −0.0917505 | + | 2.23418i | |||||||||||||||||||||||||||||||||||||
249.4 | − | 1.00000i | 2.51658i | −1.00000 | 1.93581 | + | 1.11922i | 2.51658 | − | 0.461555i | 1.00000i | −3.33317 | 1.11922 | − | 1.93581i | |||||||||||||||||||||||||||||||||||||
249.5 | 1.00000i | − | 2.51658i | −1.00000 | 1.93581 | − | 1.11922i | 2.51658 | 0.461555i | − | 1.00000i | −3.33317 | 1.11922 | + | 1.93581i | |||||||||||||||||||||||||||||||||||||
249.6 | 1.00000i | − | 1.55241i | −1.00000 | −2.23418 | + | 0.0917505i | 1.55241 | 4.87834i | − | 1.00000i | 0.590025 | −0.0917505 | − | 2.23418i | |||||||||||||||||||||||||||||||||||||
249.7 | 1.00000i | 0.287336i | −1.00000 | −0.437190 | − | 2.19291i | −0.287336 | − | 1.04306i | − | 1.00000i | 2.91744 | 2.19291 | − | 0.437190i | |||||||||||||||||||||||||||||||||||||
249.8 | 1.00000i | 1.78165i | −1.00000 | −0.264435 | + | 2.22038i | −1.78165 | 1.70316i | − | 1.00000i | −0.174289 | −2.22038 | − | 0.264435i | ||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 310.2.b.b | ✓ | 8 |
3.b | odd | 2 | 1 | 2790.2.d.l | 8 | ||
4.b | odd | 2 | 1 | 2480.2.d.e | 8 | ||
5.b | even | 2 | 1 | inner | 310.2.b.b | ✓ | 8 |
5.c | odd | 4 | 1 | 1550.2.a.n | 4 | ||
5.c | odd | 4 | 1 | 1550.2.a.q | 4 | ||
15.d | odd | 2 | 1 | 2790.2.d.l | 8 | ||
20.d | odd | 2 | 1 | 2480.2.d.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
310.2.b.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
310.2.b.b | ✓ | 8 | 5.b | even | 2 | 1 | inner |
1550.2.a.n | 4 | 5.c | odd | 4 | 1 | ||
1550.2.a.q | 4 | 5.c | odd | 4 | 1 | ||
2480.2.d.e | 8 | 4.b | odd | 2 | 1 | ||
2480.2.d.e | 8 | 20.d | odd | 2 | 1 | ||
2790.2.d.l | 8 | 3.b | odd | 2 | 1 | ||
2790.2.d.l | 8 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} + 12T_{3}^{6} + 44T_{3}^{4} + 52T_{3}^{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(310, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{4} \)
$3$
\( T^{8} + 12 T^{6} + 44 T^{4} + 52 T^{2} + \cdots + 4 \)
$5$
\( T^{8} + 2 T^{7} + 4 T^{6} + 6 T^{5} + \cdots + 625 \)
$7$
\( T^{8} + 28 T^{6} + 104 T^{4} + \cdots + 16 \)
$11$
\( (T^{4} - 6 T^{3} + 6 T^{2} + 10 T - 2)^{2} \)
$13$
\( T^{8} + 40 T^{6} + 548 T^{4} + \cdots + 3844 \)
$17$
\( T^{8} + 24 T^{6} + 152 T^{4} + \cdots + 144 \)
$19$
\( (T^{4} + 2 T^{3} - 20 T^{2} - 64 T - 40)^{2} \)
$23$
\( T^{8} + 104 T^{6} + 2632 T^{4} + \cdots + 1296 \)
$29$
\( (T^{4} - 4 T^{3} - 34 T^{2} + 198 T - 250)^{2} \)
$31$
\( (T - 1)^{8} \)
$37$
\( T^{8} + 92 T^{6} + 2748 T^{4} + \cdots + 88804 \)
$41$
\( (T^{4} + 4 T^{3} - 56 T^{2} + 116 T - 36)^{2} \)
$43$
\( T^{8} + 168 T^{6} + 8148 T^{4} + \cdots + 252004 \)
$47$
\( T^{8} + 188 T^{6} + 7272 T^{4} + \cdots + 138384 \)
$53$
\( T^{8} + 296 T^{6} + 22116 T^{4} + \cdots + 11236 \)
$59$
\( (T^{4} - 176 T^{2} - 608 T + 320)^{2} \)
$61$
\( (T^{4} - 138 T^{2} - 338 T + 1942)^{2} \)
$67$
\( T^{8} + 292 T^{6} + 17552 T^{4} + \cdots + 341056 \)
$71$
\( (T^{4} - 12 T^{3} - 96 T^{2} + 640 T + 3504)^{2} \)
$73$
\( T^{8} + 392 T^{6} + \cdots + 28005264 \)
$79$
\( (T^{4} - 12 T^{3} + 32 T^{2} + 32 T - 80)^{2} \)
$83$
\( T^{8} + 308 T^{6} + 28588 T^{4} + \cdots + 5008644 \)
$89$
\( (T^{4} - 12 T^{3} - 240 T^{2} + 3392 T - 5760)^{2} \)
$97$
\( T^{8} + 788 T^{6} + \cdots + 1177038864 \)
show more
show less