Newspace parameters
Level: | \( N \) | \(=\) | \( 310 = 2 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 310.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.47536246266\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.619810816.2 |
Defining polynomial: |
\( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 64\nu^{7} + 16\nu^{6} + 4\nu^{5} - 127\nu^{4} + 944\nu^{3} - 276\nu^{2} + 378\nu + 63 ) / 319 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -63\nu^{7} + 64\nu^{6} + 16\nu^{5} + 130\nu^{4} - 1009\nu^{3} + 1448\nu^{2} - 402\nu - 67 ) / 319 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -67\nu^{7} + 63\nu^{6} - 64\nu^{5} + 118\nu^{4} - 1068\nu^{3} + 1545\nu^{2} - 1263\nu + 268 ) / 319 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 83\nu^{7} - 59\nu^{6} + 65\nu^{5} - 70\nu^{4} + 1304\nu^{3} - 1614\nu^{2} + 1198\nu + 306 ) / 319 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -172\nu^{7} - 43\nu^{6} + 69\nu^{5} + 441\nu^{4} - 2218\nu^{3} + 662\nu^{2} + 619\nu - 269 ) / 319 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -196\nu^{7} - 49\nu^{6} - 92\nu^{5} + 369\nu^{4} - 2572\nu^{3} + 1244\nu^{2} - 1038\nu - 173 ) / 319 \)
|
\(\beta_{7}\) | \(=\) |
\( \nu^{7} - 2\nu^{4} + 14\nu^{3} - 8\nu^{2} + \nu + 2 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{7} - \beta_{5} + \beta_{4} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( ( 3\beta_{7} + 5\beta_{5} - 5\beta_{4} - 2\beta_{2} + 3\beta _1 + 2 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{7} - \beta_{5} + 5\beta_{4} + 4\beta_{3} - 7 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 11\beta_{7} + 2\beta_{6} + 9\beta_{5} - 11\beta_{4} - 12\beta_{3} + 12\beta_{2} - 11\beta _1 + 12 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( -15\beta_{6} + 16\beta_{5} - 16\beta_{4} + 16\beta_{3} - 28\beta_{2} + 7\beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -43\beta_{7} + 16\beta_{6} - 89\beta_{5} + 105\beta_{4} + 60\beta_{2} - 43\beta _1 - 60 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/310\mathbb{Z}\right)^\times\).
\(n\) | \(187\) | \(251\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
249.1 |
|
− | 1.00000i | − | 3.44579i | −1.00000 | −1.82630 | + | 1.29021i | −3.44579 | 2.40146i | 1.00000i | −8.87345 | 1.29021 | + | 1.82630i | ||||||||||||||||||||||||||||||||||||
249.2 | − | 1.00000i | − | 1.79682i | −1.00000 | 1.60536 | + | 1.55654i | −1.79682 | − | 3.47817i | 1.00000i | −0.228545 | 1.55654 | − | 1.60536i | ||||||||||||||||||||||||||||||||||||
249.3 | − | 1.00000i | 0.370326i | −1.00000 | 1.45220 | − | 1.70032i | 0.370326 | 4.27844i | 1.00000i | 2.86286 | −1.70032 | − | 1.45220i | ||||||||||||||||||||||||||||||||||||||
249.4 | − | 1.00000i | 0.872276i | −1.00000 | −2.23127 | − | 0.146426i | 0.872276 | 2.79827i | 1.00000i | 2.23913 | −0.146426 | + | 2.23127i | ||||||||||||||||||||||||||||||||||||||
249.5 | 1.00000i | − | 0.872276i | −1.00000 | −2.23127 | + | 0.146426i | 0.872276 | − | 2.79827i | − | 1.00000i | 2.23913 | −0.146426 | − | 2.23127i | ||||||||||||||||||||||||||||||||||||
249.6 | 1.00000i | − | 0.370326i | −1.00000 | 1.45220 | + | 1.70032i | 0.370326 | − | 4.27844i | − | 1.00000i | 2.86286 | −1.70032 | + | 1.45220i | ||||||||||||||||||||||||||||||||||||
249.7 | 1.00000i | 1.79682i | −1.00000 | 1.60536 | − | 1.55654i | −1.79682 | 3.47817i | − | 1.00000i | −0.228545 | 1.55654 | + | 1.60536i | ||||||||||||||||||||||||||||||||||||||
249.8 | 1.00000i | 3.44579i | −1.00000 | −1.82630 | − | 1.29021i | −3.44579 | − | 2.40146i | − | 1.00000i | −8.87345 | 1.29021 | − | 1.82630i | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 310.2.b.a | ✓ | 8 |
3.b | odd | 2 | 1 | 2790.2.d.m | 8 | ||
4.b | odd | 2 | 1 | 2480.2.d.d | 8 | ||
5.b | even | 2 | 1 | inner | 310.2.b.a | ✓ | 8 |
5.c | odd | 4 | 1 | 1550.2.a.o | 4 | ||
5.c | odd | 4 | 1 | 1550.2.a.p | 4 | ||
15.d | odd | 2 | 1 | 2790.2.d.m | 8 | ||
20.d | odd | 2 | 1 | 2480.2.d.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
310.2.b.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
310.2.b.a | ✓ | 8 | 5.b | even | 2 | 1 | inner |
1550.2.a.o | 4 | 5.c | odd | 4 | 1 | ||
1550.2.a.p | 4 | 5.c | odd | 4 | 1 | ||
2480.2.d.d | 8 | 4.b | odd | 2 | 1 | ||
2480.2.d.d | 8 | 20.d | odd | 2 | 1 | ||
2790.2.d.m | 8 | 3.b | odd | 2 | 1 | ||
2790.2.d.m | 8 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} + 16T_{3}^{6} + 52T_{3}^{4} + 36T_{3}^{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(310, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{4} \)
$3$
\( T^{8} + 16 T^{6} + 52 T^{4} + 36 T^{2} + \cdots + 4 \)
$5$
\( T^{8} + 2 T^{7} - 4 T^{6} + 6 T^{5} + \cdots + 625 \)
$7$
\( T^{8} + 44 T^{6} + 680 T^{4} + \cdots + 10000 \)
$11$
\( (T^{4} + 8 T^{3} + 2 T^{2} - 62 T - 82)^{2} \)
$13$
\( T^{8} + 84 T^{6} + 2044 T^{4} + \cdots + 36100 \)
$17$
\( T^{8} + 128 T^{6} + 5256 T^{4} + \cdots + 2704 \)
$19$
\( (T^{4} + 6 T^{3} + 4 T^{2} - 16 T - 8)^{2} \)
$23$
\( T^{8} + 32 T^{6} + 184 T^{4} + \cdots + 16 \)
$29$
\( (T^{4} - 6 T^{3} - 38 T^{2} + 202 T - 2)^{2} \)
$31$
\( (T + 1)^{8} \)
$37$
\( T^{8} + 152 T^{6} + 4804 T^{4} + \cdots + 37636 \)
$41$
\( (T^{4} - 104 T^{2} - 44 T + 1468)^{2} \)
$43$
\( T^{8} + 172 T^{6} + 8044 T^{4} + \cdots + 6724 \)
$47$
\( T^{8} + 172 T^{6} + 8584 T^{4} + \cdots + 795664 \)
$53$
\( T^{8} + 148 T^{6} + 6364 T^{4} + \cdots + 3364 \)
$59$
\( (T^{4} - 4 T^{3} - 64 T^{2} - 128 T - 64)^{2} \)
$61$
\( (T^{4} - 2 T^{3} - 62 T^{2} + 10 T + 574)^{2} \)
$67$
\( T^{8} + 308 T^{6} + \cdots + 16321600 \)
$71$
\( (T^{4} + 12 T^{3} + 32 T^{2} - 16)^{2} \)
$73$
\( T^{8} + 400 T^{6} + 42712 T^{4} + \cdots + 2999824 \)
$79$
\( (T^{4} - 16 T^{3} - 80 T^{2} + 1328 T + 2800)^{2} \)
$83$
\( T^{8} + 168 T^{6} + 8308 T^{4} + \cdots + 36100 \)
$89$
\( (T^{4} + 12 T^{3} - 176 T^{2} + \cdots + 10048)^{2} \)
$97$
\( T^{8} + 436 T^{6} + 53528 T^{4} + \cdots + 4080400 \)
show more
show less