Newspace parameters
Level: | \( N \) | \(=\) | \( 31 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 31.g (of order \(15\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.68393579001\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −6.50086 | − | 20.0076i | 12.4466 | − | 2.64560i | −254.489 | + | 184.897i | −49.9845 | + | 86.5756i | −133.846 | − | 231.827i | 1216.98 | + | 541.833i | 3175.24 | + | 2306.95i | −1850.01 | + | 823.676i | 2057.11 | + | 437.253i |
7.2 | −6.02816 | − | 18.5528i | −73.4236 | + | 15.6067i | −204.312 | + | 148.441i | −23.2656 | + | 40.2972i | 732.156 | + | 1268.13i | −1235.64 | − | 550.141i | 1965.54 | + | 1428.04i | 3149.53 | − | 1402.26i | 887.873 | + | 188.723i |
7.3 | −5.07105 | − | 15.6071i | 91.2249 | − | 19.3905i | −114.312 | + | 83.0523i | −24.8635 | + | 43.0649i | −765.235 | − | 1325.43i | −449.966 | − | 200.338i | 176.534 | + | 128.260i | 5948.07 | − | 2648.25i | 798.203 | + | 169.663i |
7.4 | −5.03785 | − | 15.5049i | 8.90236 | − | 1.89225i | −111.468 | + | 80.9861i | 146.446 | − | 253.652i | −74.1879 | − | 128.497i | −709.897 | − | 316.067i | 129.014 | + | 93.7340i | −1922.25 | + | 855.842i | −4670.62 | − | 992.770i |
7.5 | −3.48119 | − | 10.7140i | −57.4298 | + | 12.2071i | 0.883320 | − | 0.641769i | −149.805 | + | 259.470i | 330.710 | + | 572.807i | 948.617 | + | 422.351i | −1176.53 | − | 854.796i | 1151.24 | − | 512.566i | 3301.45 | + | 701.746i |
7.6 | −3.14721 | − | 9.68611i | 14.5381 | − | 3.09018i | 19.6383 | − | 14.2681i | −175.802 | + | 304.498i | −75.6864 | − | 131.093i | −506.982 | − | 225.723i | −1254.66 | − | 911.567i | −1796.12 | + | 799.682i | 3502.68 | + | 744.518i |
7.7 | −3.04864 | − | 9.38274i | −48.5446 | + | 10.3185i | 24.8125 | − | 18.0273i | 262.812 | − | 455.203i | 244.811 | + | 424.024i | 799.983 | + | 356.175i | −1266.41 | − | 920.104i | 252.185 | − | 112.280i | −5072.27 | − | 1078.14i |
7.8 | −1.55903 | − | 4.79820i | 51.7322 | − | 10.9960i | 82.9620 | − | 60.2754i | 69.7933 | − | 120.886i | −133.413 | − | 231.078i | 958.697 | + | 426.839i | −940.998 | − | 683.675i | 557.384 | − | 248.163i | −688.843 | − | 146.418i |
7.9 | 0.0902673 | + | 0.277814i | −68.2722 | + | 14.5117i | 103.485 | − | 75.1864i | 30.5078 | − | 52.8410i | −10.1943 | − | 17.6571i | −598.793 | − | 266.600i | 60.4785 | + | 43.9402i | 2452.58 | − | 1091.96i | 17.4338 | + | 3.70568i |
7.10 | 0.634131 | + | 1.95166i | 40.2459 | − | 8.55452i | 100.147 | − | 72.7613i | 154.916 | − | 268.322i | 42.2167 | + | 73.1214i | −1012.16 | − | 450.644i | 418.014 | + | 303.705i | −451.374 | + | 200.965i | 621.909 | + | 132.191i |
7.11 | 0.822068 | + | 2.53007i | −31.4883 | + | 6.69304i | 97.8287 | − | 71.0767i | −80.8758 | + | 140.081i | −42.8193 | − | 74.1652i | −375.195 | − | 167.047i | 535.733 | + | 389.233i | −1051.21 | + | 468.029i | −420.900 | − | 89.4650i |
7.12 | 1.98393 | + | 6.10590i | 65.6357 | − | 13.9513i | 70.2081 | − | 51.0092i | −258.562 | + | 447.842i | 215.402 | + | 373.087i | 364.514 | + | 162.292i | 1115.58 | + | 810.513i | 2115.48 | − | 941.873i | −3247.45 | − | 690.267i |
7.13 | 3.18005 | + | 9.78717i | −14.7307 | + | 3.13111i | 17.8781 | − | 12.9892i | 43.8183 | − | 75.8955i | −77.4890 | − | 134.215i | 1230.52 | + | 547.864i | 1249.64 | + | 907.917i | −1790.73 | + | 797.286i | 882.147 | + | 187.506i |
7.14 | 4.89079 | + | 15.0523i | 14.0858 | − | 2.99403i | −99.0982 | + | 71.9990i | −109.494 | + | 189.650i | 113.958 | + | 197.381i | −1077.80 | − | 479.865i | 70.5248 | + | 51.2393i | −1808.48 | + | 805.187i | −3390.18 | − | 720.605i |
7.15 | 4.89387 | + | 15.0618i | 74.4930 | − | 15.8340i | −99.3535 | + | 72.1845i | 128.211 | − | 222.068i | 603.048 | + | 1044.51i | 141.206 | + | 62.8690i | 66.5262 | + | 48.3341i | 3300.57 | − | 1469.51i | 3972.20 | + | 844.316i |
7.16 | 5.12040 | + | 15.7590i | −83.6064 | + | 17.7711i | −118.572 | + | 86.1478i | −218.479 | + | 378.417i | −708.152 | − | 1226.56i | 384.830 | + | 171.337i | −248.849 | − | 180.799i | 4676.30 | − | 2082.02i | −7082.16 | − | 1505.36i |
7.17 | 5.20562 | + | 16.0213i | −55.0184 | + | 11.6945i | −126.028 | + | 91.5648i | 247.149 | − | 428.075i | −473.766 | − | 820.587i | −708.649 | − | 315.511i | −378.590 | − | 275.062i | 892.338 | − | 397.295i | 8144.86 | + | 1731.24i |
7.18 | 6.86187 | + | 21.1187i | 10.3111 | − | 2.19169i | −295.358 | + | 214.590i | −40.5298 | + | 70.1998i | 117.039 | + | 202.718i | 629.172 | + | 280.125i | −4259.11 | − | 3094.42i | −1896.41 | + | 844.336i | −1760.64 | − | 374.235i |
9.1 | −6.50086 | + | 20.0076i | 12.4466 | + | 2.64560i | −254.489 | − | 184.897i | −49.9845 | − | 86.5756i | −133.846 | + | 231.827i | 1216.98 | − | 541.833i | 3175.24 | − | 2306.95i | −1850.01 | − | 823.676i | 2057.11 | − | 437.253i |
9.2 | −6.02816 | + | 18.5528i | −73.4236 | − | 15.6067i | −204.312 | − | 148.441i | −23.2656 | − | 40.2972i | 732.156 | − | 1268.13i | −1235.64 | + | 550.141i | 1965.54 | − | 1428.04i | 3149.53 | + | 1402.26i | 887.873 | − | 188.723i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.g | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 31.8.g.a | ✓ | 144 |
31.g | even | 15 | 1 | inner | 31.8.g.a | ✓ | 144 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.8.g.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
31.8.g.a | ✓ | 144 | 31.g | even | 15 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(31, [\chi])\).