Newspace parameters
Level: | \( N \) | \(=\) | \( 31 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 31.h (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.13167659222\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −10.9086 | + | 7.92554i | 24.5923 | + | 2.58476i | 36.4056 | − | 112.045i | −35.9360 | + | 62.2430i | −288.752 | + | 166.711i | −396.026 | + | 84.1779i | 224.214 | + | 690.060i | −114.969 | − | 24.4373i | −101.299 | − | 963.794i |
3.2 | −10.5954 | + | 7.69802i | −9.40640 | − | 0.988652i | 33.2262 | − | 102.260i | 3.18721 | − | 5.52041i | 107.275 | − | 61.9354i | 559.643 | − | 118.956i | 176.139 | + | 542.099i | −625.567 | − | 132.968i | 8.72642 | + | 83.0263i |
3.3 | −9.78414 | + | 7.10859i | −41.2325 | − | 4.33371i | 25.4202 | − | 78.2354i | 84.9544 | − | 147.145i | 434.231 | − | 250.704i | −520.971 | + | 110.736i | 68.2472 | + | 210.043i | 968.269 | + | 205.812i | 214.791 | + | 2043.60i |
3.4 | −6.15108 | + | 4.46902i | 31.4465 | + | 3.30516i | −1.91345 | + | 5.88901i | 118.800 | − | 205.767i | −208.201 | + | 120.205i | −18.5129 | + | 3.93503i | −164.917 | − | 507.561i | 264.889 | + | 56.3040i | 188.831 | + | 1796.61i |
3.5 | −5.64430 | + | 4.10083i | −33.7620 | − | 3.54853i | −4.73571 | + | 14.5750i | −94.8796 | + | 164.336i | 205.115 | − | 118.423i | −72.5032 | + | 15.4110i | −171.019 | − | 526.344i | 414.214 | + | 88.0438i | −138.385 | − | 1316.65i |
3.6 | −4.30092 | + | 3.12480i | 44.0319 | + | 4.62794i | −11.0436 | + | 33.9886i | −60.2226 | + | 104.309i | −203.839 | + | 117.686i | 223.276 | − | 47.4587i | −163.850 | − | 504.277i | 1204.32 | + | 255.986i | −66.9310 | − | 636.806i |
3.7 | −3.40745 | + | 2.47566i | −4.50848 | − | 0.473860i | −14.2952 | + | 43.9963i | 3.09445 | − | 5.35975i | 16.5355 | − | 9.54679i | 75.1395 | − | 15.9714i | −143.507 | − | 441.670i | −692.968 | − | 147.295i | 2.72471 | + | 25.9239i |
3.8 | 0.956037 | − | 0.694602i | −3.64397 | − | 0.382996i | −19.3456 | + | 59.5395i | 44.8637 | − | 77.7063i | −3.74980 | + | 2.16495i | −354.332 | + | 75.3156i | 46.2323 | + | 142.288i | −699.938 | − | 148.776i | −11.0835 | − | 105.453i |
3.9 | 1.79320 | − | 1.30284i | −45.9055 | − | 4.82486i | −18.2589 | + | 56.1951i | 51.8358 | − | 89.7823i | −88.6038 | + | 51.1554i | 331.482 | − | 70.4587i | 84.3075 | + | 259.472i | 1370.96 | + | 291.407i | −24.0196 | − | 228.531i |
3.10 | 3.63195 | − | 2.63877i | 19.6548 | + | 2.06580i | −13.5491 | + | 41.6999i | −95.3245 | + | 165.107i | 76.8365 | − | 44.3616i | −314.282 | + | 66.8028i | 149.613 | + | 460.460i | −331.025 | − | 70.3616i | 89.4647 | + | 851.199i |
3.11 | 5.47146 | − | 3.97525i | 20.3573 | + | 2.13963i | −5.64283 | + | 17.3668i | 21.9247 | − | 37.9746i | 119.889 | − | 69.2182i | 611.595 | − | 129.999i | 171.917 | + | 529.107i | −303.230 | − | 64.4535i | −30.9987 | − | 294.932i |
3.12 | 7.18633 | − | 5.22117i | 49.0045 | + | 5.15058i | 4.60558 | − | 14.1745i | 67.5410 | − | 116.984i | 379.054 | − | 218.847i | −500.379 | + | 106.359i | 134.765 | + | 414.765i | 1661.84 | + | 353.235i | −125.424 | − | 1193.33i |
3.13 | 8.05615 | − | 5.85314i | −31.0823 | − | 3.26689i | 10.8653 | − | 33.4399i | −68.8559 | + | 119.262i | −269.526 | + | 155.611i | −37.8568 | + | 8.04670i | 88.7433 | + | 273.124i | 242.369 | + | 51.5172i | 143.343 | + | 1363.81i |
3.14 | 10.4803 | − | 7.61435i | −16.5290 | − | 1.73726i | 32.0803 | − | 98.7331i | 74.3205 | − | 128.727i | −186.456 | + | 107.650i | −175.897 | + | 37.3880i | −159.380 | − | 490.522i | −442.881 | − | 94.1374i | −201.274 | − | 1914.99i |
3.15 | 11.9075 | − | 8.65128i | 25.2718 | + | 2.65618i | 47.1660 | − | 145.162i | −50.0274 | + | 86.6500i | 323.903 | − | 187.005i | 188.008 | − | 39.9623i | −403.123 | − | 1240.68i | −81.4594 | − | 17.3147i | 153.934 | + | 1464.58i |
11.1 | −4.91477 | − | 15.1261i | −28.9908 | + | 26.1034i | −152.867 | + | 111.064i | −58.9849 | − | 102.165i | 537.326 | + | 310.225i | −38.2952 | − | 364.354i | 1607.79 | + | 1168.12i | 82.8760 | − | 788.513i | −1255.46 | + | 1394.33i |
11.2 | −4.12294 | − | 12.6891i | 34.5075 | − | 31.0707i | −92.2379 | + | 67.0148i | −33.4493 | − | 57.9359i | −536.533 | − | 309.767i | 0.258431 | + | 2.45881i | 539.834 | + | 392.212i | 149.179 | − | 1419.34i | −597.246 | + | 663.309i |
11.3 | −3.87999 | − | 11.9414i | 0.287429 | − | 0.258802i | −75.7653 | + | 55.0467i | 76.8496 | + | 133.107i | −4.20568 | − | 2.42815i | 36.1992 | + | 344.412i | 301.194 | + | 218.830i | −76.1856 | + | 724.858i | 1291.31 | − | 1434.15i |
11.4 | −2.84211 | − | 8.74713i | 5.74195 | − | 5.17008i | −16.6576 | + | 12.1024i | −21.0413 | − | 36.4446i | −61.5426 | − | 35.5317i | −50.4756 | − | 480.244i | −323.004 | − | 234.676i | −69.9609 | + | 665.634i | −258.983 | + | 287.630i |
11.5 | −2.31599 | − | 7.12789i | −16.2945 | + | 14.6716i | 6.33409 | − | 4.60199i | −92.6733 | − | 160.515i | 142.315 | + | 82.1659i | 60.8261 | + | 578.722i | −435.526 | − | 316.428i | −25.9475 | + | 246.874i | −929.502 | + | 1032.32i |
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.h | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 31.7.h.a | ✓ | 120 |
31.h | odd | 30 | 1 | inner | 31.7.h.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.7.h.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
31.7.h.a | ✓ | 120 | 31.h | odd | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(31, [\chi])\).