Properties

Label 31.7.b.c.30.3
Level $31$
Weight $7$
Character 31.30
Analytic conductor $7.132$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,7,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13167659222\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7208 x^{10} + 19859688 x^{8} + 26566749360 x^{6} + 17884354852944 x^{4} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 30.3
Root \(39.6325i\) of defining polynomial
Character \(\chi\) \(=\) 31.30
Dual form 31.7.b.c.30.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.88527 q^{2} -39.6325i q^{3} -29.3637 q^{4} -192.768 q^{5} +233.248i q^{6} +330.261 q^{7} +549.470 q^{8} -841.735 q^{9} +1134.49 q^{10} -487.165i q^{11} +1163.75i q^{12} +3875.41i q^{13} -1943.67 q^{14} +7639.86i q^{15} -1354.50 q^{16} -5095.71i q^{17} +4953.83 q^{18} -9888.66 q^{19} +5660.36 q^{20} -13089.1i q^{21} +2867.09i q^{22} +18711.6i q^{23} -21776.9i q^{24} +21534.3 q^{25} -22807.8i q^{26} +4467.96i q^{27} -9697.66 q^{28} -9663.04i q^{29} -44962.6i q^{30} +(-1475.62 + 29754.4i) q^{31} -27194.5 q^{32} -19307.6 q^{33} +29989.6i q^{34} -63663.5 q^{35} +24716.4 q^{36} -22210.9i q^{37} +58197.4 q^{38} +153592. q^{39} -105920. q^{40} -32327.0 q^{41} +77032.6i q^{42} +90033.4i q^{43} +14304.9i q^{44} +162259. q^{45} -110123. i q^{46} -2523.71 q^{47} +53682.3i q^{48} -8576.89 q^{49} -126735. q^{50} -201956. q^{51} -113796. i q^{52} +21169.4i q^{53} -26295.1i q^{54} +93909.6i q^{55} +181468. q^{56} +391912. i q^{57} +56869.6i q^{58} -12229.6 q^{59} -224334. i q^{60} +248340. i q^{61} +(8684.43 - 175113. i) q^{62} -277992. q^{63} +246735. q^{64} -747053. i q^{65} +113630. q^{66} -413987. q^{67} +149629. i q^{68} +741586. q^{69} +374677. q^{70} -78313.0 q^{71} -462508. q^{72} +316585. i q^{73} +130717. i q^{74} -853459. i q^{75} +290367. q^{76} -160891. i q^{77} -903931. q^{78} -2574.72i q^{79} +261104. q^{80} -436548. q^{81} +190253. q^{82} -727400. i q^{83} +384342. i q^{84} +982288. i q^{85} -529870. i q^{86} -382970. q^{87} -267682. i q^{88} -279841. i q^{89} -954938. q^{90} +1.27990e6i q^{91} -549440. i q^{92} +(1.17924e6 + 58482.6i) q^{93} +14852.7 q^{94} +1.90621e6 q^{95} +1.07778e6i q^{96} +1.08152e6 q^{97} +50477.3 q^{98} +410064. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 122 q^{4} - 146 q^{5} + 6 q^{7} + 1142 q^{8} - 5668 q^{9} - 3004 q^{10} - 1312 q^{14} - 1102 q^{16} - 16382 q^{18} + 10430 q^{19} - 8052 q^{20} + 29618 q^{25} + 136504 q^{28} + 90076 q^{31}+ \cdots + 408810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.88527 −0.735658 −0.367829 0.929893i \(-0.619899\pi\)
−0.367829 + 0.929893i \(0.619899\pi\)
\(3\) 39.6325i 1.46787i −0.679220 0.733935i \(-0.737682\pi\)
0.679220 0.733935i \(-0.262318\pi\)
\(4\) −29.3637 −0.458807
\(5\) −192.768 −1.54214 −0.771070 0.636750i \(-0.780278\pi\)
−0.771070 + 0.636750i \(0.780278\pi\)
\(6\) 233.248i 1.07985i
\(7\) 330.261 0.962859 0.481430 0.876485i \(-0.340118\pi\)
0.481430 + 0.876485i \(0.340118\pi\)
\(8\) 549.470 1.07318
\(9\) −841.735 −1.15464
\(10\) 1134.49 1.13449
\(11\) 487.165i 0.366014i −0.983112 0.183007i \(-0.941417\pi\)
0.983112 0.183007i \(-0.0585831\pi\)
\(12\) 1163.75i 0.673469i
\(13\) 3875.41i 1.76396i 0.471291 + 0.881978i \(0.343788\pi\)
−0.471291 + 0.881978i \(0.656212\pi\)
\(14\) −1943.67 −0.708335
\(15\) 7639.86i 2.26366i
\(16\) −1354.50 −0.330689
\(17\) 5095.71i 1.03719i −0.855020 0.518595i \(-0.826455\pi\)
0.855020 0.518595i \(-0.173545\pi\)
\(18\) 4953.83 0.849423
\(19\) −9888.66 −1.44171 −0.720853 0.693088i \(-0.756250\pi\)
−0.720853 + 0.693088i \(0.756250\pi\)
\(20\) 5660.36 0.707545
\(21\) 13089.1i 1.41335i
\(22\) 2867.09i 0.269261i
\(23\) 18711.6i 1.53789i 0.639312 + 0.768947i \(0.279219\pi\)
−0.639312 + 0.768947i \(0.720781\pi\)
\(24\) 21776.9i 1.57529i
\(25\) 21534.3 1.37820
\(26\) 22807.8i 1.29767i
\(27\) 4467.96i 0.226996i
\(28\) −9697.66 −0.441767
\(29\) 9663.04i 0.396205i −0.980181 0.198102i \(-0.936522\pi\)
0.980181 0.198102i \(-0.0634779\pi\)
\(30\) 44962.6i 1.66528i
\(31\) −1475.62 + 29754.4i −0.0495325 + 0.998773i
\(32\) −27194.5 −0.829909
\(33\) −19307.6 −0.537261
\(34\) 29989.6i 0.763017i
\(35\) −63663.5 −1.48486
\(36\) 24716.4 0.529758
\(37\) 22210.9i 0.438491i −0.975670 0.219246i \(-0.929640\pi\)
0.975670 0.219246i \(-0.0703596\pi\)
\(38\) 58197.4 1.06060
\(39\) 153592. 2.58926
\(40\) −105920. −1.65500
\(41\) −32327.0 −0.469044 −0.234522 0.972111i \(-0.575353\pi\)
−0.234522 + 0.972111i \(0.575353\pi\)
\(42\) 77032.6i 1.03974i
\(43\) 90033.4i 1.13240i 0.824269 + 0.566198i \(0.191586\pi\)
−0.824269 + 0.566198i \(0.808414\pi\)
\(44\) 14304.9i 0.167930i
\(45\) 162259. 1.78062
\(46\) 110123.i 1.13136i
\(47\) −2523.71 −0.0243079 −0.0121539 0.999926i \(-0.503869\pi\)
−0.0121539 + 0.999926i \(0.503869\pi\)
\(48\) 53682.3i 0.485408i
\(49\) −8576.89 −0.0729024
\(50\) −126735. −1.01388
\(51\) −201956. −1.52246
\(52\) 113796.i 0.809316i
\(53\) 21169.4i 0.142194i 0.997469 + 0.0710971i \(0.0226500\pi\)
−0.997469 + 0.0710971i \(0.977350\pi\)
\(54\) 26295.1i 0.166991i
\(55\) 93909.6i 0.564445i
\(56\) 181468. 1.03332
\(57\) 391912.i 2.11624i
\(58\) 56869.6i 0.291471i
\(59\) −12229.6 −0.0595465 −0.0297732 0.999557i \(-0.509479\pi\)
−0.0297732 + 0.999557i \(0.509479\pi\)
\(60\) 224334.i 1.03858i
\(61\) 248340.i 1.09410i 0.837100 + 0.547049i \(0.184249\pi\)
−0.837100 + 0.547049i \(0.815751\pi\)
\(62\) 8684.43 175113.i 0.0364390 0.734755i
\(63\) −277992. −1.11176
\(64\) 246735. 0.941218
\(65\) 747053.i 2.72027i
\(66\) 113630. 0.395241
\(67\) −413987. −1.37645 −0.688227 0.725495i \(-0.741611\pi\)
−0.688227 + 0.725495i \(0.741611\pi\)
\(68\) 149629.i 0.475870i
\(69\) 741586. 2.25743
\(70\) 374677. 1.09235
\(71\) −78313.0 −0.218806 −0.109403 0.993997i \(-0.534894\pi\)
−0.109403 + 0.993997i \(0.534894\pi\)
\(72\) −462508. −1.23914
\(73\) 316585.i 0.813807i 0.913471 + 0.406904i \(0.133392\pi\)
−0.913471 + 0.406904i \(0.866608\pi\)
\(74\) 130717.i 0.322580i
\(75\) 853459.i 2.02301i
\(76\) 290367. 0.661465
\(77\) 160891.i 0.352420i
\(78\) −903931. −1.90481
\(79\) 2574.72i 0.00522215i −0.999997 0.00261107i \(-0.999169\pi\)
0.999997 0.00261107i \(-0.000831131\pi\)
\(80\) 261104. 0.509969
\(81\) −436548. −0.821443
\(82\) 190253. 0.345056
\(83\) 727400.i 1.27215i −0.771626 0.636076i \(-0.780556\pi\)
0.771626 0.636076i \(-0.219444\pi\)
\(84\) 384342.i 0.648456i
\(85\) 982288.i 1.59949i
\(86\) 529870.i 0.833056i
\(87\) −382970. −0.581577
\(88\) 267682.i 0.392800i
\(89\) 279841.i 0.396954i −0.980105 0.198477i \(-0.936400\pi\)
0.980105 0.198477i \(-0.0635996\pi\)
\(90\) −954938. −1.30993
\(91\) 1.27990e6i 1.69844i
\(92\) 549440.i 0.705597i
\(93\) 1.17924e6 + 58482.6i 1.46607 + 0.0727073i
\(94\) 14852.7 0.0178823
\(95\) 1.90621e6 2.22331
\(96\) 1.07778e6i 1.21820i
\(97\) 1.08152e6 1.18500 0.592499 0.805571i \(-0.298141\pi\)
0.592499 + 0.805571i \(0.298141\pi\)
\(98\) 50477.3 0.0536312
\(99\) 410064.i 0.422616i
\(100\) −632326. −0.632326
\(101\) −1.77983e6 −1.72749 −0.863745 0.503930i \(-0.831887\pi\)
−0.863745 + 0.503930i \(0.831887\pi\)
\(102\) 1.18856e6 1.12001
\(103\) −1.00154e6 −0.916547 −0.458273 0.888811i \(-0.651532\pi\)
−0.458273 + 0.888811i \(0.651532\pi\)
\(104\) 2.12942e6i 1.89305i
\(105\) 2.52314e6i 2.17959i
\(106\) 124588.i 0.104606i
\(107\) 713784. 0.582660 0.291330 0.956623i \(-0.405902\pi\)
0.291330 + 0.956623i \(0.405902\pi\)
\(108\) 131196.i 0.104147i
\(109\) 30026.3 0.0231858 0.0115929 0.999933i \(-0.496310\pi\)
0.0115929 + 0.999933i \(0.496310\pi\)
\(110\) 552683.i 0.415239i
\(111\) −880274. −0.643648
\(112\) −447339. −0.318407
\(113\) −2.01059e6 −1.39344 −0.696721 0.717342i \(-0.745359\pi\)
−0.696721 + 0.717342i \(0.745359\pi\)
\(114\) 2.30651e6i 1.55683i
\(115\) 3.60698e6i 2.37165i
\(116\) 283742.i 0.181782i
\(117\) 3.26207e6i 2.03674i
\(118\) 71974.4 0.0438059
\(119\) 1.68291e6i 0.998668i
\(120\) 4.19787e6i 2.42932i
\(121\) 1.53423e6 0.866034
\(122\) 1.46154e6i 0.804882i
\(123\) 1.28120e6i 0.688496i
\(124\) 43329.7 873699.i 0.0227259 0.458244i
\(125\) −1.13913e6 −0.583232
\(126\) 1.63606e6 0.817874
\(127\) 1.50624e6i 0.735332i −0.929958 0.367666i \(-0.880157\pi\)
0.929958 0.367666i \(-0.119843\pi\)
\(128\) 288346. 0.137494
\(129\) 3.56825e6 1.66221
\(130\) 4.39661e6i 2.00119i
\(131\) −1.43346e6 −0.637636 −0.318818 0.947816i \(-0.603286\pi\)
−0.318818 + 0.947816i \(0.603286\pi\)
\(132\) 566941. 0.246499
\(133\) −3.26584e6 −1.38816
\(134\) 2.43642e6 1.01260
\(135\) 861278.i 0.350060i
\(136\) 2.79994e6i 1.11309i
\(137\) 2.16763e6i 0.842993i −0.906830 0.421497i \(-0.861505\pi\)
0.906830 0.421497i \(-0.138495\pi\)
\(138\) −4.36443e6 −1.66070
\(139\) 2.40552e6i 0.895705i −0.894107 0.447853i \(-0.852189\pi\)
0.894107 0.447853i \(-0.147811\pi\)
\(140\) 1.86939e6 0.681266
\(141\) 100021.i 0.0356808i
\(142\) 460893. 0.160966
\(143\) 1.88796e6 0.645633
\(144\) 1.14013e6 0.381828
\(145\) 1.86272e6i 0.611004i
\(146\) 1.86319e6i 0.598684i
\(147\) 339924.i 0.107011i
\(148\) 652193.i 0.201183i
\(149\) −1.10206e6 −0.333155 −0.166577 0.986028i \(-0.553272\pi\)
−0.166577 + 0.986028i \(0.553272\pi\)
\(150\) 5.02283e6i 1.48825i
\(151\) 4.93438e6i 1.43318i 0.697493 + 0.716591i \(0.254299\pi\)
−0.697493 + 0.716591i \(0.745701\pi\)
\(152\) −5.43352e6 −1.54722
\(153\) 4.28924e6i 1.19758i
\(154\) 946889.i 0.259261i
\(155\) 284452. 5.73569e6i 0.0763860 1.54025i
\(156\) −4.51003e6 −1.18797
\(157\) −3.41153e6 −0.881557 −0.440778 0.897616i \(-0.645298\pi\)
−0.440778 + 0.897616i \(0.645298\pi\)
\(158\) 15152.9i 0.00384171i
\(159\) 838998. 0.208723
\(160\) 5.24221e6 1.27984
\(161\) 6.17969e6i 1.48078i
\(162\) 2.56920e6 0.604301
\(163\) 2.46450e6 0.569071 0.284536 0.958665i \(-0.408161\pi\)
0.284536 + 0.958665i \(0.408161\pi\)
\(164\) 949239. 0.215201
\(165\) 3.72187e6 0.828532
\(166\) 4.28094e6i 0.935869i
\(167\) 5.34081e6i 1.14672i 0.819303 + 0.573360i \(0.194360\pi\)
−0.819303 + 0.573360i \(0.805640\pi\)
\(168\) 7.19204e6i 1.51679i
\(169\) −1.01920e7 −2.11154
\(170\) 5.78103e6i 1.17668i
\(171\) 8.32363e6 1.66466
\(172\) 2.64371e6i 0.519551i
\(173\) −3.01771e6 −0.582827 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(174\) 2.25388e6 0.427842
\(175\) 7.11194e6 1.32701
\(176\) 659866.i 0.121037i
\(177\) 484689.i 0.0874065i
\(178\) 1.64694e6i 0.292023i
\(179\) 1.58938e6i 0.277121i 0.990354 + 0.138560i \(0.0442475\pi\)
−0.990354 + 0.138560i \(0.955752\pi\)
\(180\) −4.76452e6 −0.816962
\(181\) 9.23498e6i 1.55740i −0.627397 0.778700i \(-0.715879\pi\)
0.627397 0.778700i \(-0.284121\pi\)
\(182\) 7.53253e6i 1.24947i
\(183\) 9.84232e6 1.60599
\(184\) 1.02814e7i 1.65044i
\(185\) 4.28154e6i 0.676215i
\(186\) −6.94015e6 344186.i −1.07853 0.0534877i
\(187\) −2.48245e6 −0.379626
\(188\) 74105.5 0.0111526
\(189\) 1.47559e6i 0.218565i
\(190\) −1.12186e7 −1.63560
\(191\) 2.10873e6 0.302636 0.151318 0.988485i \(-0.451648\pi\)
0.151318 + 0.988485i \(0.451648\pi\)
\(192\) 9.77872e6i 1.38159i
\(193\) 1.10931e7 1.54305 0.771526 0.636198i \(-0.219494\pi\)
0.771526 + 0.636198i \(0.219494\pi\)
\(194\) −6.36501e6 −0.871753
\(195\) −2.96076e7 −3.99300
\(196\) 251849. 0.0334481
\(197\) 5.00480e6i 0.654619i 0.944917 + 0.327309i \(0.106142\pi\)
−0.944917 + 0.327309i \(0.893858\pi\)
\(198\) 2.41333e6i 0.310901i
\(199\) 1.26621e6i 0.160674i −0.996768 0.0803369i \(-0.974400\pi\)
0.996768 0.0803369i \(-0.0255996\pi\)
\(200\) 1.18325e7 1.47906
\(201\) 1.64073e7i 2.02046i
\(202\) 1.04748e7 1.27084
\(203\) 3.19132e6i 0.381489i
\(204\) 5.93016e6 0.698515
\(205\) 6.23160e6 0.723332
\(206\) 5.89430e6 0.674265
\(207\) 1.57502e7i 1.77572i
\(208\) 5.24925e6i 0.583321i
\(209\) 4.81741e6i 0.527685i
\(210\) 1.48494e7i 1.60343i
\(211\) −1.18260e7 −1.25890 −0.629451 0.777040i \(-0.716720\pi\)
−0.629451 + 0.777040i \(0.716720\pi\)
\(212\) 621612.i 0.0652397i
\(213\) 3.10374e6i 0.321178i
\(214\) −4.20081e6 −0.428639
\(215\) 1.73555e7i 1.74631i
\(216\) 2.45501e6i 0.243608i
\(217\) −487340. + 9.82672e6i −0.0476928 + 0.961677i
\(218\) −176713. −0.0170568
\(219\) 1.25471e7 1.19456
\(220\) 2.75753e6i 0.258971i
\(221\) 1.97480e7 1.82956
\(222\) 5.18064e6 0.473505
\(223\) 196617.i 0.0177299i 0.999961 + 0.00886496i \(0.00282184\pi\)
−0.999961 + 0.00886496i \(0.997178\pi\)
\(224\) −8.98126e6 −0.799086
\(225\) −1.81262e7 −1.59133
\(226\) 1.18329e7 1.02510
\(227\) −1.75289e7 −1.49857 −0.749284 0.662248i \(-0.769602\pi\)
−0.749284 + 0.662248i \(0.769602\pi\)
\(228\) 1.15080e7i 0.970945i
\(229\) 3.38621e6i 0.281973i −0.990011 0.140987i \(-0.954973\pi\)
0.990011 0.140987i \(-0.0450275\pi\)
\(230\) 2.12280e7i 1.74472i
\(231\) −6.37653e6 −0.517307
\(232\) 5.30955e6i 0.425200i
\(233\) 5.73177e6 0.453128 0.226564 0.973996i \(-0.427251\pi\)
0.226564 + 0.973996i \(0.427251\pi\)
\(234\) 1.91981e7i 1.49834i
\(235\) 486490. 0.0374861
\(236\) 359106. 0.0273203
\(237\) −102043. −0.00766543
\(238\) 9.90439e6i 0.734678i
\(239\) 1.94664e7i 1.42591i 0.701209 + 0.712955i \(0.252644\pi\)
−0.701209 + 0.712955i \(0.747356\pi\)
\(240\) 1.03482e7i 0.748568i
\(241\) 1.88617e7i 1.34750i 0.738959 + 0.673750i \(0.235318\pi\)
−0.738959 + 0.673750i \(0.764682\pi\)
\(242\) −9.02936e6 −0.637105
\(243\) 2.05586e7i 1.43277i
\(244\) 7.29216e6i 0.501980i
\(245\) 1.65335e6 0.112426
\(246\) 7.54020e6i 0.506498i
\(247\) 3.83226e7i 2.54311i
\(248\) −810810. + 1.63492e7i −0.0531574 + 1.07187i
\(249\) −2.88287e7 −1.86735
\(250\) 6.70406e6 0.429060
\(251\) 506851.i 0.0320523i −0.999872 0.0160262i \(-0.994898\pi\)
0.999872 0.0160262i \(-0.00510150\pi\)
\(252\) 8.16286e6 0.510083
\(253\) 9.11562e6 0.562891
\(254\) 8.86464e6i 0.540953i
\(255\) 3.89305e7 2.34785
\(256\) −1.74880e7 −1.04237
\(257\) 3.19186e6 0.188038 0.0940189 0.995570i \(-0.470029\pi\)
0.0940189 + 0.995570i \(0.470029\pi\)
\(258\) −2.10001e7 −1.22282
\(259\) 7.33539e6i 0.422205i
\(260\) 2.19362e7i 1.24808i
\(261\) 8.13372e6i 0.457475i
\(262\) 8.43631e6 0.469082
\(263\) 1.40279e7i 0.771129i −0.922681 0.385564i \(-0.874007\pi\)
0.922681 0.385564i \(-0.125993\pi\)
\(264\) −1.06089e7 −0.576580
\(265\) 4.08078e6i 0.219283i
\(266\) 1.92203e7 1.02121
\(267\) −1.10908e7 −0.582678
\(268\) 1.21562e7 0.631527
\(269\) 2.47587e7i 1.27195i 0.771709 + 0.635976i \(0.219402\pi\)
−0.771709 + 0.635976i \(0.780598\pi\)
\(270\) 5.06885e6i 0.257524i
\(271\) 649621.i 0.0326402i −0.999867 0.0163201i \(-0.994805\pi\)
0.999867 0.0163201i \(-0.00519507\pi\)
\(272\) 6.90215e6i 0.342987i
\(273\) 5.07255e7 2.49309
\(274\) 1.27571e7i 0.620155i
\(275\) 1.04908e7i 0.504440i
\(276\) −2.17757e7 −1.03572
\(277\) 2.68623e7i 1.26387i −0.775020 0.631937i \(-0.782260\pi\)
0.775020 0.631937i \(-0.217740\pi\)
\(278\) 1.41571e7i 0.658933i
\(279\) 1.24208e6 2.50453e7i 0.0571923 1.15323i
\(280\) −3.49812e7 −1.59353
\(281\) 3.68160e7 1.65927 0.829636 0.558305i \(-0.188548\pi\)
0.829636 + 0.558305i \(0.188548\pi\)
\(282\) 588651.i 0.0262488i
\(283\) −2.57920e7 −1.13796 −0.568979 0.822352i \(-0.692661\pi\)
−0.568979 + 0.822352i \(0.692661\pi\)
\(284\) 2.29956e6 0.100390
\(285\) 7.55480e7i 3.26354i
\(286\) −1.11112e7 −0.474965
\(287\) −1.06763e7 −0.451624
\(288\) 2.28905e7 0.958249
\(289\) −1.82872e6 −0.0757624
\(290\) 1.09626e7i 0.449490i
\(291\) 4.28632e7i 1.73942i
\(292\) 9.29609e6i 0.373381i
\(293\) −4.26083e7 −1.69392 −0.846958 0.531660i \(-0.821568\pi\)
−0.846958 + 0.531660i \(0.821568\pi\)
\(294\) 2.00054e6i 0.0787237i
\(295\) 2.35747e6 0.0918290
\(296\) 1.22042e7i 0.470582i
\(297\) 2.17663e6 0.0830837
\(298\) 6.48591e6 0.245088
\(299\) −7.25150e7 −2.71278
\(300\) 2.50607e7i 0.928173i
\(301\) 2.97345e7i 1.09034i
\(302\) 2.90401e7i 1.05433i
\(303\) 7.05393e7i 2.53573i
\(304\) 1.33942e7 0.476756
\(305\) 4.78718e7i 1.68725i
\(306\) 2.52433e7i 0.881012i
\(307\) 9.10595e6 0.314710 0.157355 0.987542i \(-0.449703\pi\)
0.157355 + 0.987542i \(0.449703\pi\)
\(308\) 4.72436e6i 0.161693i
\(309\) 3.96933e7i 1.34537i
\(310\) −1.67408e6 + 3.37560e7i −0.0561940 + 1.13310i
\(311\) −1.34073e7 −0.445717 −0.222858 0.974851i \(-0.571539\pi\)
−0.222858 + 0.974851i \(0.571539\pi\)
\(312\) 8.43943e7 2.77875
\(313\) 8.81172e6i 0.287361i −0.989624 0.143680i \(-0.954106\pi\)
0.989624 0.143680i \(-0.0458937\pi\)
\(314\) 2.00778e7 0.648524
\(315\) 5.35878e7 1.71449
\(316\) 75603.2i 0.00239596i
\(317\) 1.23463e7 0.387578 0.193789 0.981043i \(-0.437922\pi\)
0.193789 + 0.981043i \(0.437922\pi\)
\(318\) −4.93773e6 −0.153549
\(319\) −4.70749e6 −0.145017
\(320\) −4.75625e7 −1.45149
\(321\) 2.82890e7i 0.855270i
\(322\) 3.63691e7i 1.08934i
\(323\) 5.03898e7i 1.49532i
\(324\) 1.28187e7 0.376884
\(325\) 8.34544e7i 2.43108i
\(326\) −1.45043e7 −0.418642
\(327\) 1.19002e6i 0.0340338i
\(328\) −1.77627e7 −0.503370
\(329\) −833483. −0.0234050
\(330\) −2.19042e7 −0.609517
\(331\) 3.35851e7i 0.926109i −0.886330 0.463054i \(-0.846753\pi\)
0.886330 0.463054i \(-0.153247\pi\)
\(332\) 2.13591e7i 0.583672i
\(333\) 1.86957e7i 0.506301i
\(334\) 3.14321e7i 0.843594i
\(335\) 7.98032e7 2.12269
\(336\) 1.77292e7i 0.467380i
\(337\) 3.61455e7i 0.944419i −0.881486 0.472209i \(-0.843457\pi\)
0.881486 0.472209i \(-0.156543\pi\)
\(338\) 5.99826e7 1.55337
\(339\) 7.96849e7i 2.04539i
\(340\) 2.88436e7i 0.733858i
\(341\) 1.44953e7 + 718871.i 0.365565 + 0.0181296i
\(342\) −4.89868e7 −1.22462
\(343\) −4.16874e7 −1.03305
\(344\) 4.94706e7i 1.21527i
\(345\) −1.42954e8 −3.48127
\(346\) 1.77600e7 0.428762
\(347\) 5.03735e7i 1.20563i 0.797881 + 0.602814i \(0.205954\pi\)
−0.797881 + 0.602814i \(0.794046\pi\)
\(348\) 1.12454e7 0.266832
\(349\) 1.45096e7 0.341333 0.170667 0.985329i \(-0.445408\pi\)
0.170667 + 0.985329i \(0.445408\pi\)
\(350\) −4.18557e7 −0.976225
\(351\) −1.73152e7 −0.400411
\(352\) 1.32482e7i 0.303759i
\(353\) 1.97053e7i 0.447981i −0.974591 0.223990i \(-0.928092\pi\)
0.974591 0.223990i \(-0.0719085\pi\)
\(354\) 2.85253e6i 0.0643013i
\(355\) 1.50962e7 0.337429
\(356\) 8.21714e6i 0.182126i
\(357\) −6.66981e7 −1.46591
\(358\) 9.35393e6i 0.203866i
\(359\) 6.43138e7 1.39002 0.695009 0.719001i \(-0.255400\pi\)
0.695009 + 0.719001i \(0.255400\pi\)
\(360\) 8.91565e7 1.91093
\(361\) 5.07398e7 1.07852
\(362\) 5.43503e7i 1.14571i
\(363\) 6.08054e7i 1.27122i
\(364\) 3.75824e7i 0.779257i
\(365\) 6.10273e7i 1.25501i
\(366\) −5.79246e7 −1.18146
\(367\) 1.95113e7i 0.394718i −0.980331 0.197359i \(-0.936763\pi\)
0.980331 0.197359i \(-0.0632365\pi\)
\(368\) 2.53449e7i 0.508565i
\(369\) 2.72108e7 0.541579
\(370\) 2.51980e7i 0.497463i
\(371\) 6.99144e6i 0.136913i
\(372\) −3.46269e7 1.71726e6i −0.672643 0.0333586i
\(373\) −1.81517e7 −0.349776 −0.174888 0.984588i \(-0.555956\pi\)
−0.174888 + 0.984588i \(0.555956\pi\)
\(374\) 1.46099e7 0.279275
\(375\) 4.51464e7i 0.856109i
\(376\) −1.38670e6 −0.0260868
\(377\) 3.74483e7 0.698888
\(378\) 8.68425e6i 0.160789i
\(379\) 8.86585e7 1.62856 0.814278 0.580475i \(-0.197133\pi\)
0.814278 + 0.580475i \(0.197133\pi\)
\(380\) −5.59734e7 −1.02007
\(381\) −5.96961e7 −1.07937
\(382\) −1.24104e7 −0.222636
\(383\) 1.11145e8i 1.97831i −0.146892 0.989153i \(-0.546927\pi\)
0.146892 0.989153i \(-0.453073\pi\)
\(384\) 1.14279e7i 0.201824i
\(385\) 3.10146e7i 0.543481i
\(386\) −6.52857e7 −1.13516
\(387\) 7.57842e7i 1.30751i
\(388\) −3.17573e7 −0.543686
\(389\) 8.03857e7i 1.36562i 0.730596 + 0.682810i \(0.239242\pi\)
−0.730596 + 0.682810i \(0.760758\pi\)
\(390\) 1.74249e8 2.93748
\(391\) 9.53488e7 1.59509
\(392\) −4.71274e6 −0.0782376
\(393\) 5.68118e7i 0.935967i
\(394\) 2.94546e7i 0.481575i
\(395\) 496323.i 0.00805328i
\(396\) 1.20410e7i 0.193899i
\(397\) −4.77926e6 −0.0763816 −0.0381908 0.999270i \(-0.512159\pi\)
−0.0381908 + 0.999270i \(0.512159\pi\)
\(398\) 7.45195e6i 0.118201i
\(399\) 1.29433e8i 2.03764i
\(400\) −2.91683e7 −0.455754
\(401\) 8.62081e7i 1.33695i −0.743735 0.668475i \(-0.766947\pi\)
0.743735 0.668475i \(-0.233053\pi\)
\(402\) 9.65615e7i 1.48637i
\(403\) −1.15311e8 5.71864e6i −1.76179 0.0873731i
\(404\) 5.22624e7 0.792584
\(405\) 8.41523e7 1.26678
\(406\) 1.87818e7i 0.280646i
\(407\) −1.08204e7 −0.160494
\(408\) −1.10969e8 −1.63388
\(409\) 1.08176e7i 0.158111i −0.996870 0.0790557i \(-0.974810\pi\)
0.996870 0.0790557i \(-0.0251905\pi\)
\(410\) −3.66746e7 −0.532125
\(411\) −8.59087e7 −1.23740
\(412\) 2.94087e7 0.420518
\(413\) −4.03895e6 −0.0573349
\(414\) 9.26940e7i 1.30632i
\(415\) 1.40219e8i 1.96184i
\(416\) 1.05390e8i 1.46392i
\(417\) −9.53369e7 −1.31478
\(418\) 2.83517e7i 0.388196i
\(419\) 2.34155e7 0.318319 0.159159 0.987253i \(-0.449122\pi\)
0.159159 + 0.987253i \(0.449122\pi\)
\(420\) 7.40888e7i 1.00001i
\(421\) 2.47698e7 0.331952 0.165976 0.986130i \(-0.446922\pi\)
0.165976 + 0.986130i \(0.446922\pi\)
\(422\) 6.95994e7 0.926122
\(423\) 2.12430e6 0.0280669
\(424\) 1.16320e7i 0.152600i
\(425\) 1.09733e8i 1.42945i
\(426\) 1.82663e7i 0.236278i
\(427\) 8.20168e7i 1.05346i
\(428\) −2.09593e7 −0.267329
\(429\) 7.48247e7i 0.947705i
\(430\) 1.02142e8i 1.28469i
\(431\) −1.09881e7 −0.137243 −0.0686217 0.997643i \(-0.521860\pi\)
−0.0686217 + 0.997643i \(0.521860\pi\)
\(432\) 6.05186e6i 0.0750650i
\(433\) 1.48292e8i 1.82664i 0.407241 + 0.913321i \(0.366491\pi\)
−0.407241 + 0.913321i \(0.633509\pi\)
\(434\) 2.86812e6 5.78328e7i 0.0350856 0.707466i
\(435\) 7.38243e7 0.896874
\(436\) −881682. −0.0106378
\(437\) 1.85032e8i 2.21719i
\(438\) −7.38427e7 −0.878790
\(439\) 5.66761e7 0.669894 0.334947 0.942237i \(-0.391282\pi\)
0.334947 + 0.942237i \(0.391282\pi\)
\(440\) 5.16005e7i 0.605753i
\(441\) 7.21947e6 0.0841762
\(442\) −1.16222e8 −1.34593
\(443\) −4.73407e7 −0.544532 −0.272266 0.962222i \(-0.587773\pi\)
−0.272266 + 0.962222i \(0.587773\pi\)
\(444\) 2.58480e7 0.295310
\(445\) 5.39442e7i 0.612159i
\(446\) 1.15714e6i 0.0130432i
\(447\) 4.36773e7i 0.489028i
\(448\) 8.14868e7 0.906261
\(449\) 6.53871e7i 0.722359i 0.932496 + 0.361179i \(0.117626\pi\)
−0.932496 + 0.361179i \(0.882374\pi\)
\(450\) 1.06677e8 1.17067
\(451\) 1.57486e7i 0.171677i
\(452\) 5.90384e7 0.639321
\(453\) 1.95562e8 2.10373
\(454\) 1.03162e8 1.10243
\(455\) 2.46722e8i 2.61923i
\(456\) 2.15344e8i 2.27111i
\(457\) 7.47026e7i 0.782686i 0.920245 + 0.391343i \(0.127989\pi\)
−0.920245 + 0.391343i \(0.872011\pi\)
\(458\) 1.99288e7i 0.207436i
\(459\) 2.27674e7 0.235438
\(460\) 1.05914e8i 1.08813i
\(461\) 2.55947e7i 0.261245i −0.991432 0.130622i \(-0.958302\pi\)
0.991432 0.130622i \(-0.0416975\pi\)
\(462\) 3.75276e7 0.380561
\(463\) 1.04209e8i 1.04994i 0.851121 + 0.524969i \(0.175923\pi\)
−0.851121 + 0.524969i \(0.824077\pi\)
\(464\) 1.30886e7i 0.131021i
\(465\) −2.27320e8 1.12735e7i −2.26088 0.112125i
\(466\) −3.37330e7 −0.333347
\(467\) −9.18593e7 −0.901929 −0.450965 0.892542i \(-0.648920\pi\)
−0.450965 + 0.892542i \(0.648920\pi\)
\(468\) 9.57862e7i 0.934471i
\(469\) −1.36724e8 −1.32533
\(470\) −2.86312e6 −0.0275770
\(471\) 1.35207e8i 1.29401i
\(472\) −6.71980e6 −0.0639043
\(473\) 4.38611e7 0.414473
\(474\) 600548. 0.00563914
\(475\) −2.12946e8 −1.98695
\(476\) 4.94165e7i 0.458196i
\(477\) 1.78191e7i 0.164184i
\(478\) 1.14565e8i 1.04898i
\(479\) −1.49592e7 −0.136113 −0.0680567 0.997681i \(-0.521680\pi\)
−0.0680567 + 0.997681i \(0.521680\pi\)
\(480\) 2.07762e8i 1.87863i
\(481\) 8.60764e7 0.773479
\(482\) 1.11006e8i 0.991299i
\(483\) 2.44917e8 2.17359
\(484\) −4.50506e7 −0.397342
\(485\) −2.08481e8 −1.82743
\(486\) 1.20993e8i 1.05403i
\(487\) 9.53784e7i 0.825777i −0.910781 0.412889i \(-0.864520\pi\)
0.910781 0.412889i \(-0.135480\pi\)
\(488\) 1.36455e8i 1.17417i
\(489\) 9.76744e7i 0.835323i
\(490\) −9.73038e6 −0.0827069
\(491\) 9.35853e7i 0.790612i 0.918550 + 0.395306i \(0.129361\pi\)
−0.918550 + 0.395306i \(0.870639\pi\)
\(492\) 3.76207e7i 0.315887i
\(493\) −4.92401e7 −0.410940
\(494\) 2.25539e8i 1.87086i
\(495\) 7.90470e7i 0.651733i
\(496\) 1.99873e6 4.03024e7i 0.0163798 0.330283i
\(497\) −2.58637e7 −0.210679
\(498\) 1.69664e8 1.37373
\(499\) 2.07866e8i 1.67294i −0.548009 0.836472i \(-0.684614\pi\)
0.548009 0.836472i \(-0.315386\pi\)
\(500\) 3.34489e7 0.267591
\(501\) 2.11670e8 1.68324
\(502\) 2.98295e6i 0.0235795i
\(503\) −2.37963e8 −1.86984 −0.934922 0.354853i \(-0.884531\pi\)
−0.934922 + 0.354853i \(0.884531\pi\)
\(504\) −1.52748e8 −1.19312
\(505\) 3.43094e8 2.66403
\(506\) −5.36478e7 −0.414096
\(507\) 4.03935e8i 3.09947i
\(508\) 4.42288e7i 0.337376i
\(509\) 2.02835e8i 1.53812i −0.639177 0.769060i \(-0.720725\pi\)
0.639177 0.769060i \(-0.279275\pi\)
\(510\) −2.29116e8 −1.72721
\(511\) 1.04556e8i 0.783582i
\(512\) 8.44675e7 0.629332
\(513\) 4.41822e7i 0.327261i
\(514\) −1.87850e7 −0.138332
\(515\) 1.93063e8 1.41344
\(516\) −1.04777e8 −0.762634
\(517\) 1.22946e6i 0.00889702i
\(518\) 4.31707e7i 0.310599i
\(519\) 1.19600e8i 0.855515i
\(520\) 4.10483e8i 2.91935i
\(521\) 2.21686e8 1.56756 0.783781 0.621037i \(-0.213288\pi\)
0.783781 + 0.621037i \(0.213288\pi\)
\(522\) 4.78691e7i 0.336545i
\(523\) 2.48932e8i 1.74011i −0.492958 0.870053i \(-0.664084\pi\)
0.492958 0.870053i \(-0.335916\pi\)
\(524\) 4.20917e7 0.292552
\(525\) 2.81864e8i 1.94788i
\(526\) 8.25582e7i 0.567287i
\(527\) 1.51620e8 + 7.51935e6i 1.03592 + 0.0513746i
\(528\) 2.61521e7 0.177666
\(529\) −2.02087e8 −1.36512
\(530\) 2.40165e7i 0.161318i
\(531\) 1.02941e7 0.0687549
\(532\) 9.58969e7 0.636898
\(533\) 1.25280e8i 0.827373i
\(534\) 6.52722e7 0.428652
\(535\) −1.37594e8 −0.898544
\(536\) −2.27473e8 −1.47719
\(537\) 6.29912e7 0.406777
\(538\) 1.45711e8i 0.935722i
\(539\) 4.17836e6i 0.0266833i
\(540\) 2.52903e7i 0.160610i
\(541\) 2.63770e7 0.166584 0.0832922 0.996525i \(-0.473457\pi\)
0.0832922 + 0.996525i \(0.473457\pi\)
\(542\) 3.82319e6i 0.0240120i
\(543\) −3.66005e8 −2.28606
\(544\) 1.38575e8i 0.860773i
\(545\) −5.78810e6 −0.0357558
\(546\) −2.98533e8 −1.83406
\(547\) 1.99610e8 1.21961 0.609805 0.792552i \(-0.291248\pi\)
0.609805 + 0.792552i \(0.291248\pi\)
\(548\) 6.36496e7i 0.386771i
\(549\) 2.09036e8i 1.26329i
\(550\) 6.17409e7i 0.371095i
\(551\) 9.55546e7i 0.571211i
\(552\) 4.07479e8 2.42264
\(553\) 850329.i 0.00502819i
\(554\) 1.58092e8i 0.929779i
\(555\) 1.69688e8 0.992596
\(556\) 7.06349e7i 0.410956i
\(557\) 2.98300e7i 0.172618i −0.996268 0.0863092i \(-0.972493\pi\)
0.996268 0.0863092i \(-0.0275073\pi\)
\(558\) −7.30998e6 + 1.47398e8i −0.0420740 + 0.848380i
\(559\) −3.48916e8 −1.99750
\(560\) 8.62324e7 0.491028
\(561\) 9.83858e7i 0.557242i
\(562\) −2.16672e8 −1.22066
\(563\) −1.55878e8 −0.873494 −0.436747 0.899584i \(-0.643870\pi\)
−0.436747 + 0.899584i \(0.643870\pi\)
\(564\) 2.93698e6i 0.0163706i
\(565\) 3.87577e8 2.14888
\(566\) 1.51793e8 0.837148
\(567\) −1.44175e8 −0.790933
\(568\) −4.30306e7 −0.234819
\(569\) 1.72498e8i 0.936370i 0.883630 + 0.468185i \(0.155092\pi\)
−0.883630 + 0.468185i \(0.844908\pi\)
\(570\) 4.44620e8i 2.40085i
\(571\) 8.70403e7i 0.467533i 0.972293 + 0.233766i \(0.0751051\pi\)
−0.972293 + 0.233766i \(0.924895\pi\)
\(572\) −5.54375e7 −0.296221
\(573\) 8.35740e7i 0.444230i
\(574\) 6.28331e7 0.332241
\(575\) 4.02941e8i 2.11952i
\(576\) −2.07685e8 −1.08677
\(577\) −1.89831e8 −0.988187 −0.494094 0.869409i \(-0.664500\pi\)
−0.494094 + 0.869409i \(0.664500\pi\)
\(578\) 1.07625e7 0.0557353
\(579\) 4.39647e8i 2.26500i
\(580\) 5.46963e7i 0.280333i
\(581\) 2.40232e8i 1.22490i
\(582\) 2.52261e8i 1.27962i
\(583\) 1.03130e7 0.0520451
\(584\) 1.73954e8i 0.873364i
\(585\) 6.28821e8i 3.14094i
\(586\) 2.50761e8 1.24614
\(587\) 1.18312e7i 0.0584946i 0.999572 + 0.0292473i \(0.00931103\pi\)
−0.999572 + 0.0292473i \(0.990689\pi\)
\(588\) 9.98140e6i 0.0490975i
\(589\) 1.45919e7 2.94232e8i 0.0714113 1.43994i
\(590\) −1.38743e7 −0.0675548
\(591\) 1.98353e8 0.960895
\(592\) 3.00847e7i 0.145004i
\(593\) 1.07406e8 0.515069 0.257534 0.966269i \(-0.417090\pi\)
0.257534 + 0.966269i \(0.417090\pi\)
\(594\) −1.28101e7 −0.0611212
\(595\) 3.24411e8i 1.54009i
\(596\) 3.23605e7 0.152854
\(597\) −5.01829e7 −0.235848
\(598\) 4.26770e8 1.99568
\(599\) 2.92891e7 0.136278 0.0681389 0.997676i \(-0.478294\pi\)
0.0681389 + 0.997676i \(0.478294\pi\)
\(600\) 4.68950e8i 2.17106i
\(601\) 9.95699e7i 0.458675i −0.973347 0.229337i \(-0.926344\pi\)
0.973347 0.229337i \(-0.0736559\pi\)
\(602\) 1.74995e8i 0.802115i
\(603\) 3.48467e8 1.58931
\(604\) 1.44891e8i 0.657554i
\(605\) −2.95750e8 −1.33555
\(606\) 4.15142e8i 1.86543i
\(607\) −3.10423e8 −1.38800 −0.693998 0.719977i \(-0.744153\pi\)
−0.693998 + 0.719977i \(0.744153\pi\)
\(608\) 2.68917e8 1.19649
\(609\) −1.26480e8 −0.559977
\(610\) 2.81738e8i 1.24124i
\(611\) 9.78043e6i 0.0428780i
\(612\) 1.25948e8i 0.549460i
\(613\) 1.26594e8i 0.549583i 0.961504 + 0.274791i \(0.0886088\pi\)
−0.961504 + 0.274791i \(0.911391\pi\)
\(614\) −5.35909e7 −0.231519
\(615\) 2.46974e8i 1.06176i
\(616\) 8.84050e7i 0.378211i
\(617\) −1.23498e8 −0.525780 −0.262890 0.964826i \(-0.584676\pi\)
−0.262890 + 0.964826i \(0.584676\pi\)
\(618\) 2.33606e8i 0.989734i
\(619\) 4.88743e7i 0.206067i 0.994678 + 0.103034i \(0.0328549\pi\)
−0.994678 + 0.103034i \(0.967145\pi\)
\(620\) −8.35255e6 + 1.68421e8i −0.0350465 + 0.706676i
\(621\) −8.36025e7 −0.349096
\(622\) 7.89053e7 0.327895
\(623\) 9.24203e7i 0.382211i
\(624\) −2.08041e8 −0.856239
\(625\) −1.16887e8 −0.478771
\(626\) 5.18593e7i 0.211399i
\(627\) 1.90926e8 0.774573
\(628\) 1.00175e8 0.404464
\(629\) −1.13180e8 −0.454799
\(630\) −3.15378e8 −1.26128
\(631\) 3.26706e8i 1.30038i −0.759774 0.650188i \(-0.774690\pi\)
0.759774 0.650188i \(-0.225310\pi\)
\(632\) 1.41473e6i 0.00560432i
\(633\) 4.68695e8i 1.84791i
\(634\) −7.26613e7 −0.285125
\(635\) 2.90355e8i 1.13399i
\(636\) −2.46361e7 −0.0957634
\(637\) 3.32390e7i 0.128597i
\(638\) 2.77049e7 0.106683
\(639\) 6.59188e7 0.252643
\(640\) −5.55838e7 −0.212035
\(641\) 4.41982e8i 1.67815i 0.544017 + 0.839074i \(0.316903\pi\)
−0.544017 + 0.839074i \(0.683097\pi\)
\(642\) 1.66489e8i 0.629186i
\(643\) 8.65353e7i 0.325507i −0.986667 0.162754i \(-0.947962\pi\)
0.986667 0.162754i \(-0.0520376\pi\)
\(644\) 1.81458e8i 0.679390i
\(645\) −6.87842e8 −2.56336
\(646\) 2.96557e8i 1.10005i
\(647\) 2.49200e8i 0.920100i −0.887893 0.460050i \(-0.847831\pi\)
0.887893 0.460050i \(-0.152169\pi\)
\(648\) −2.39870e8 −0.881558
\(649\) 5.95783e6i 0.0217949i
\(650\) 4.91151e8i 1.78844i
\(651\) 3.89457e8 + 1.93145e7i 1.41162 + 0.0700068i
\(652\) −7.23668e7 −0.261094
\(653\) 4.39958e8 1.58005 0.790026 0.613074i \(-0.210067\pi\)
0.790026 + 0.613074i \(0.210067\pi\)
\(654\) 7.00357e6i 0.0250372i
\(655\) 2.76325e8 0.983324
\(656\) 4.37870e7 0.155108
\(657\) 2.66481e8i 0.939657i
\(658\) 4.90527e6 0.0172181
\(659\) −1.51407e8 −0.529042 −0.264521 0.964380i \(-0.585214\pi\)
−0.264521 + 0.964380i \(0.585214\pi\)
\(660\) −1.09288e8 −0.380137
\(661\) 2.69858e7 0.0934397 0.0467199 0.998908i \(-0.485123\pi\)
0.0467199 + 0.998908i \(0.485123\pi\)
\(662\) 1.97657e8i 0.681300i
\(663\) 7.82662e8i 2.68555i
\(664\) 3.99684e8i 1.36525i
\(665\) 6.29547e8 2.14074
\(666\) 1.10029e8i 0.372464i
\(667\) 1.80811e8 0.609321
\(668\) 1.56826e8i 0.526124i
\(669\) 7.79243e6 0.0260252
\(670\) −4.69663e8 −1.56157
\(671\) 1.20982e8 0.400456
\(672\) 3.55950e8i 1.17295i
\(673\) 1.80249e8i 0.591328i 0.955292 + 0.295664i \(0.0955409\pi\)
−0.955292 + 0.295664i \(0.904459\pi\)
\(674\) 2.12726e8i 0.694769i
\(675\) 9.62145e7i 0.312845i
\(676\) 2.99274e8 0.968790
\(677\) 2.11700e8i 0.682268i 0.940015 + 0.341134i \(0.110811\pi\)
−0.940015 + 0.341134i \(0.889189\pi\)
\(678\) 4.68967e8i 1.50471i
\(679\) 3.57182e8 1.14099
\(680\) 5.39738e8i 1.71655i
\(681\) 6.94713e8i 2.19970i
\(682\) −8.53088e7 4.23075e6i −0.268931 0.0133372i
\(683\) −3.38255e8 −1.06165 −0.530825 0.847481i \(-0.678118\pi\)
−0.530825 + 0.847481i \(0.678118\pi\)
\(684\) −2.44412e8 −0.763756
\(685\) 4.17849e8i 1.30001i
\(686\) 2.45342e8 0.759974
\(687\) −1.34204e8 −0.413900
\(688\) 1.21950e8i 0.374471i
\(689\) −8.20403e7 −0.250824
\(690\) 8.41320e8 2.56103
\(691\) −2.07869e8 −0.630022 −0.315011 0.949088i \(-0.602008\pi\)
−0.315011 + 0.949088i \(0.602008\pi\)
\(692\) 8.86111e7 0.267405
\(693\) 1.35428e8i 0.406919i
\(694\) 2.96461e8i 0.886931i
\(695\) 4.63707e8i 1.38130i
\(696\) −2.10431e8 −0.624139
\(697\) 1.64729e8i 0.486488i
\(698\) −8.53927e7 −0.251104
\(699\) 2.27164e8i 0.665133i
\(700\) −2.08833e8 −0.608841
\(701\) −1.65521e8 −0.480506 −0.240253 0.970710i \(-0.577230\pi\)
−0.240253 + 0.970710i \(0.577230\pi\)
\(702\) 1.01904e8 0.294565
\(703\) 2.19636e8i 0.632176i
\(704\) 1.20201e8i 0.344499i
\(705\) 1.92808e7i 0.0550248i
\(706\) 1.15971e8i 0.329561i
\(707\) −5.87809e8 −1.66333
\(708\) 1.42323e7i 0.0401027i
\(709\) 3.45695e8i 0.969963i −0.874525 0.484981i \(-0.838826\pi\)
0.874525 0.484981i \(-0.161174\pi\)
\(710\) −8.88452e7 −0.248233
\(711\) 2.16723e6i 0.00602971i
\(712\) 1.53764e8i 0.426005i
\(713\) −5.56752e8 2.76112e7i −1.53601 0.0761757i
\(714\) 3.92536e8 1.07841
\(715\) −3.63938e8 −0.995657
\(716\) 4.66700e7i 0.127145i
\(717\) 7.71503e8 2.09305
\(718\) −3.78504e8 −1.02258
\(719\) 3.94733e8i 1.06198i −0.847378 0.530991i \(-0.821820\pi\)
0.847378 0.530991i \(-0.178180\pi\)
\(720\) −2.19780e8 −0.588832
\(721\) −3.30768e8 −0.882505
\(722\) −2.98617e8 −0.793420
\(723\) 7.47535e8 1.97796
\(724\) 2.71173e8i 0.714546i
\(725\) 2.08087e8i 0.546048i
\(726\) 3.57856e8i 0.935187i
\(727\) 1.47049e8 0.382701 0.191351 0.981522i \(-0.438713\pi\)
0.191351 + 0.981522i \(0.438713\pi\)
\(728\) 7.03264e8i 1.82274i
\(729\) 4.96547e8 1.28167
\(730\) 3.59162e8i 0.923255i
\(731\) 4.58784e8 1.17451
\(732\) −2.89006e8 −0.736842
\(733\) 2.61208e8 0.663247 0.331624 0.943412i \(-0.392404\pi\)
0.331624 + 0.943412i \(0.392404\pi\)
\(734\) 1.14829e8i 0.290378i
\(735\) 6.55262e7i 0.165026i
\(736\) 5.08851e8i 1.27631i
\(737\) 2.01680e8i 0.503802i
\(738\) −1.60143e8 −0.398417
\(739\) 1.08837e8i 0.269677i −0.990868 0.134838i \(-0.956948\pi\)
0.990868 0.134838i \(-0.0430515\pi\)
\(740\) 1.25722e8i 0.310252i
\(741\) −1.51882e9 −3.73295
\(742\) 4.11465e7i 0.100721i
\(743\) 1.97010e7i 0.0480310i −0.999712 0.0240155i \(-0.992355\pi\)
0.999712 0.0240155i \(-0.00764510\pi\)
\(744\) 6.47958e8 + 3.21344e7i 1.57336 + 0.0780282i
\(745\) 2.12441e8 0.513771
\(746\) 1.06827e8 0.257316
\(747\) 6.12278e8i 1.46888i
\(748\) 7.28939e7 0.174175
\(749\) 2.35735e8 0.561020
\(750\) 2.65698e8i 0.629804i
\(751\) −2.87905e8 −0.679719 −0.339859 0.940476i \(-0.610380\pi\)
−0.339859 + 0.940476i \(0.610380\pi\)
\(752\) 3.41838e6 0.00803834
\(753\) −2.00878e7 −0.0470486
\(754\) −2.20393e8 −0.514143
\(755\) 9.51188e8i 2.21017i
\(756\) 4.33288e7i 0.100279i
\(757\) 5.62246e8i 1.29610i 0.761597 + 0.648051i \(0.224416\pi\)
−0.761597 + 0.648051i \(0.775584\pi\)
\(758\) −5.21779e8 −1.19806
\(759\) 3.61275e8i 0.826251i
\(760\) 1.04741e9 2.38602
\(761\) 2.09388e8i 0.475114i 0.971374 + 0.237557i \(0.0763467\pi\)
−0.971374 + 0.237557i \(0.923653\pi\)
\(762\) 3.51328e8 0.794049
\(763\) 9.91651e6 0.0223247
\(764\) −6.19199e7 −0.138851
\(765\) 8.26826e8i 1.84684i
\(766\) 6.54117e8i 1.45536i
\(767\) 4.73947e7i 0.105037i
\(768\) 6.93094e8i 1.53006i
\(769\) 3.14781e8 0.692197 0.346098 0.938198i \(-0.387506\pi\)
0.346098 + 0.938198i \(0.387506\pi\)
\(770\) 1.82529e8i 0.399816i
\(771\) 1.26502e8i 0.276015i
\(772\) −3.25733e8 −0.707963
\(773\) 3.58451e8i 0.776052i −0.921648 0.388026i \(-0.873157\pi\)
0.921648 0.388026i \(-0.126843\pi\)
\(774\) 4.46010e8i 0.961882i
\(775\) −3.17765e7 + 6.40742e8i −0.0682655 + 1.37650i
\(776\) 5.94260e8 1.27172
\(777\) −2.90720e8 −0.619743
\(778\) 4.73091e8i 1.00463i
\(779\) 3.19671e8 0.676224
\(780\) 8.69387e8 1.83202
\(781\) 3.81513e7i 0.0800860i
\(782\) −5.61153e8 −1.17344
\(783\) 4.31741e7 0.0899369
\(784\) 1.16174e7 0.0241080
\(785\) 6.57632e8 1.35948
\(786\) 3.34352e8i 0.688552i
\(787\) 4.48722e8i 0.920561i 0.887773 + 0.460281i \(0.152251\pi\)
−0.887773 + 0.460281i \(0.847749\pi\)
\(788\) 1.46959e8i 0.300344i
\(789\) −5.55963e8 −1.13192
\(790\) 2.92099e6i 0.00592446i
\(791\) −6.64020e8 −1.34169
\(792\) 2.25318e8i 0.453544i
\(793\) −9.62418e8 −1.92994
\(794\) 2.81272e7 0.0561908
\(795\) −1.61732e8 −0.321880
\(796\) 3.71804e7i 0.0737182i
\(797\) 1.71891e8i 0.339530i −0.985485 0.169765i \(-0.945699\pi\)
0.985485 0.169765i \(-0.0543009\pi\)
\(798\) 7.61749e8i 1.49901i
\(799\) 1.28601e7i 0.0252119i
\(800\) −5.85614e8 −1.14378
\(801\) 2.35552e8i 0.458341i
\(802\) 5.07358e8i 0.983538i
\(803\) 1.54229e8 0.297865
\(804\) 4.81779e8i 0.927000i
\(805\) 1.19124e9i 2.28356i
\(806\) 6.78634e8 + 3.36557e7i 1.29608 + 0.0642767i
\(807\) 9.81249e8 1.86706
\(808\) −9.77965e8 −1.85391
\(809\) 7.94596e8i 1.50072i −0.661027 0.750362i \(-0.729879\pi\)
0.661027 0.750362i \(-0.270121\pi\)
\(810\) −4.95259e8 −0.931917
\(811\) 1.93998e8 0.363693 0.181846 0.983327i \(-0.441793\pi\)
0.181846 + 0.983327i \(0.441793\pi\)
\(812\) 9.37089e7i 0.175030i
\(813\) −2.57461e7 −0.0479115
\(814\) 6.36808e7 0.118069
\(815\) −4.75076e8 −0.877588
\(816\) 2.73550e8 0.503461
\(817\) 8.90310e8i 1.63258i
\(818\) 6.36647e7i 0.116316i
\(819\) 1.07733e9i 1.96109i
\(820\) −1.82982e8 −0.331870
\(821\) 2.18486e8i 0.394815i −0.980321 0.197408i \(-0.936748\pi\)
0.980321 0.197408i \(-0.0632523\pi\)
\(822\) 5.05596e8 0.910307
\(823\) 4.25819e8i 0.763882i 0.924187 + 0.381941i \(0.124744\pi\)
−0.924187 + 0.381941i \(0.875256\pi\)
\(824\) −5.50313e8 −0.983623
\(825\) −4.15775e8 −0.740452
\(826\) 2.37703e7 0.0421789
\(827\) 1.03592e9i 1.83151i 0.401738 + 0.915755i \(0.368406\pi\)
−0.401738 + 0.915755i \(0.631594\pi\)
\(828\) 4.62483e8i 0.814713i
\(829\) 8.23718e8i 1.44582i 0.690941 + 0.722911i \(0.257196\pi\)
−0.690941 + 0.722911i \(0.742804\pi\)
\(830\) 8.25227e8i 1.44324i
\(831\) −1.06462e9 −1.85520
\(832\) 9.56199e8i 1.66027i
\(833\) 4.37054e7i 0.0756136i
\(834\) 5.61083e8 0.967228
\(835\) 1.02953e9i 1.76840i
\(836\) 1.41457e8i 0.242106i
\(837\) −1.32942e8 6.59302e6i −0.226717 0.0112437i
\(838\) −1.37807e8 −0.234174
\(839\) −2.05710e8 −0.348314 −0.174157 0.984718i \(-0.555720\pi\)
−0.174157 + 0.984718i \(0.555720\pi\)
\(840\) 1.38639e9i 2.33910i
\(841\) 5.01449e8 0.843022
\(842\) −1.45777e8 −0.244204
\(843\) 1.45911e9i 2.43560i
\(844\) 3.47256e8 0.577593
\(845\) 1.96469e9 3.25629
\(846\) −1.25021e7 −0.0206476
\(847\) 5.06696e8 0.833868
\(848\) 2.86741e7i 0.0470221i
\(849\) 1.02220e9i 1.67037i
\(850\) 6.45806e8i 1.05159i
\(851\) 4.15601e8 0.674354
\(852\) 9.11371e7i 0.147359i
\(853\) 1.02787e9 1.65611 0.828055 0.560646i \(-0.189447\pi\)
0.828055 + 0.560646i \(0.189447\pi\)
\(854\) 4.82691e8i 0.774988i
\(855\) −1.60453e9 −2.56713
\(856\) 3.92203e8 0.625301
\(857\) 4.23199e8 0.672360 0.336180 0.941798i \(-0.390865\pi\)
0.336180 + 0.941798i \(0.390865\pi\)
\(858\) 4.40363e8i 0.697187i
\(859\) 2.00776e8i 0.316762i 0.987378 + 0.158381i \(0.0506274\pi\)
−0.987378 + 0.158381i \(0.949373\pi\)
\(860\) 5.09621e8i 0.801221i
\(861\) 4.23130e8i 0.662925i
\(862\) 6.46680e7 0.100964
\(863\) 9.98067e7i 0.155284i −0.996981 0.0776421i \(-0.975261\pi\)
0.996981 0.0776421i \(-0.0247391\pi\)
\(864\) 1.21504e8i 0.188386i
\(865\) 5.81717e8 0.898801
\(866\) 8.72736e8i 1.34378i
\(867\) 7.24768e7i 0.111209i
\(868\) 1.43101e7 2.88548e8i 0.0218818 0.441224i
\(869\) −1.25431e6 −0.00191138
\(870\) −4.34475e8 −0.659793
\(871\) 1.60437e9i 2.42801i
\(872\) 1.64985e7 0.0248826
\(873\) −9.10349e8 −1.36825
\(874\) 1.08896e9i 1.63110i
\(875\) −3.76208e8 −0.561570
\(876\) −3.68427e8 −0.548074
\(877\) 4.25671e8 0.631067 0.315534 0.948914i \(-0.397817\pi\)
0.315534 + 0.948914i \(0.397817\pi\)
\(878\) −3.33554e8 −0.492813
\(879\) 1.68868e9i 2.48645i
\(880\) 1.27201e8i 0.186656i
\(881\) 6.54693e8i 0.957436i 0.877969 + 0.478718i \(0.158898\pi\)
−0.877969 + 0.478718i \(0.841102\pi\)
\(882\) −4.24885e7 −0.0619249
\(883\) 5.11690e8i 0.743233i 0.928386 + 0.371616i \(0.121196\pi\)
−0.928386 + 0.371616i \(0.878804\pi\)
\(884\) −5.79873e8 −0.839414
\(885\) 9.34324e7i 0.134793i
\(886\) 2.78612e8 0.400589
\(887\) −2.55940e8 −0.366747 −0.183373 0.983043i \(-0.558702\pi\)
−0.183373 + 0.983043i \(0.558702\pi\)
\(888\) −4.83684e8 −0.690753
\(889\) 4.97453e8i 0.708022i
\(890\) 3.17476e8i 0.450340i
\(891\) 2.12671e8i 0.300660i
\(892\) 5.77340e6i 0.00813461i
\(893\) 2.49562e7 0.0350448
\(894\) 2.57053e8i 0.359757i
\(895\) 3.06381e8i 0.427359i
\(896\) 9.52295e7 0.132388
\(897\) 2.87395e9i 3.98201i
\(898\) 3.84820e8i 0.531409i
\(899\) 2.87518e8 + 1.42590e7i 0.395719 + 0.0196250i
\(900\) 5.32251e8 0.730111
\(901\) 1.07873e8 0.147482
\(902\) 9.26846e7i 0.126295i
\(903\) 1.17845e9 1.60047
\(904\) −1.10476e9 −1.49542
\(905\) 1.78020e9i 2.40173i
\(906\) −1.15093e9 −1.54762
\(907\) −1.12142e9 −1.50296 −0.751478 0.659758i \(-0.770659\pi\)
−0.751478 + 0.659758i \(0.770659\pi\)
\(908\) 5.14712e8 0.687554
\(909\) 1.49815e9 1.99463
\(910\) 1.45203e9i 1.92686i
\(911\) 1.23872e8i 0.163839i −0.996639 0.0819196i \(-0.973895\pi\)
0.996639 0.0819196i \(-0.0261051\pi\)
\(912\) 5.30846e8i 0.699817i
\(913\) −3.54364e8 −0.465626
\(914\) 4.39645e8i 0.575789i
\(915\) −1.89728e9 −2.47667
\(916\) 9.94316e7i 0.129371i
\(917\) −4.73417e8 −0.613954
\(918\) −1.33992e8 −0.173202
\(919\) 2.92250e8 0.376538 0.188269 0.982118i \(-0.439712\pi\)
0.188269 + 0.982118i \(0.439712\pi\)
\(920\) 1.98193e9i 2.54521i
\(921\) 3.60892e8i 0.461953i
\(922\) 1.50632e8i 0.192187i
\(923\) 3.03495e8i 0.385964i
\(924\) 1.87238e8 0.237344
\(925\) 4.78297e8i 0.604327i
\(926\) 6.13300e8i 0.772396i
\(927\) 8.43027e8 1.05828
\(928\) 2.62781e8i 0.328814i
\(929\) 4.46017e8i 0.556294i 0.960538 + 0.278147i \(0.0897203\pi\)
−0.960538 + 0.278147i \(0.910280\pi\)
\(930\) 1.33784e9 + 6.63478e7i 1.66324 + 0.0824855i
\(931\) 8.48140e7 0.105104
\(932\) −1.68306e8 −0.207898
\(933\) 5.31363e8i 0.654254i
\(934\) 5.40616e8 0.663512
\(935\) 4.78536e8 0.585437
\(936\) 1.79241e9i 2.18579i
\(937\) 4.58660e8 0.557535 0.278768 0.960359i \(-0.410074\pi\)
0.278768 + 0.960359i \(0.410074\pi\)
\(938\) 8.04654e8 0.974991
\(939\) −3.49230e8 −0.421808
\(940\) −1.42851e7 −0.0171989
\(941\) 5.57846e8i 0.669492i 0.942308 + 0.334746i \(0.108651\pi\)
−0.942308 + 0.334746i \(0.891349\pi\)
\(942\) 7.95732e8i 0.951950i
\(943\) 6.04889e8i 0.721341i
\(944\) 1.65650e7 0.0196914
\(945\) 2.84446e8i 0.337058i
\(946\) −2.58134e8 −0.304910
\(947\) 9.67253e8i 1.13891i −0.822022 0.569456i \(-0.807154\pi\)
0.822022 0.569456i \(-0.192846\pi\)
\(948\) 2.99634e6 0.00351695
\(949\) −1.22690e9 −1.43552
\(950\) 1.25324e9 1.46172
\(951\) 4.89315e8i 0.568914i
\(952\) 9.24710e8i 1.07175i
\(953\) 9.15856e8i 1.05815i −0.848574 0.529077i \(-0.822538\pi\)
0.848574 0.529077i \(-0.177462\pi\)
\(954\) 1.04870e8i 0.120783i
\(955\) −4.06494e8 −0.466706
\(956\) 5.71605e8i 0.654218i
\(957\) 1.86570e8i 0.212866i
\(958\) 8.80386e7 0.100133
\(959\) 7.15884e8i 0.811684i
\(960\) 1.88502e9i 2.13060i
\(961\) −8.83149e8 8.78126e7i −0.995093 0.0989434i
\(962\) −5.06582e8 −0.569016
\(963\) −6.00817e8 −0.672765
\(964\) 5.53847e8i 0.618243i
\(965\) −2.13839e9 −2.37960
\(966\) −1.44140e9 −1.59902
\(967\) 3.49409e8i 0.386415i 0.981158 + 0.193208i \(0.0618891\pi\)
−0.981158 + 0.193208i \(0.938111\pi\)
\(968\) 8.43014e8 0.929413
\(969\) 1.99707e9 2.19494
\(970\) 1.22697e9 1.34437
\(971\) 3.96326e8 0.432907 0.216454 0.976293i \(-0.430551\pi\)
0.216454 + 0.976293i \(0.430551\pi\)
\(972\) 6.03677e8i 0.657364i
\(973\) 7.94450e8i 0.862438i
\(974\) 5.61327e8i 0.607490i
\(975\) 3.30750e9 3.56851
\(976\) 3.36376e8i 0.361806i
\(977\) −1.02422e9 −1.09827 −0.549134 0.835734i \(-0.685042\pi\)
−0.549134 + 0.835734i \(0.685042\pi\)
\(978\) 5.74840e8i 0.614512i
\(979\) −1.36329e8 −0.145291
\(980\) −4.85483e7 −0.0515817
\(981\) −2.52742e7 −0.0267713
\(982\) 5.50774e8i 0.581620i
\(983\) 1.81002e9i 1.90556i 0.303666 + 0.952779i \(0.401789\pi\)
−0.303666 + 0.952779i \(0.598211\pi\)
\(984\) 7.03981e8i 0.738883i
\(985\) 9.64764e8i 1.00951i
\(986\) 2.89791e8 0.302311
\(987\) 3.30330e7i 0.0343556i
\(988\) 1.12529e9i 1.16680i
\(989\) −1.68467e9 −1.74151
\(990\) 4.65212e8i 0.479453i
\(991\) 7.59937e8i 0.780831i 0.920639 + 0.390415i \(0.127669\pi\)
−0.920639 + 0.390415i \(0.872331\pi\)
\(992\) 4.01288e7 8.09156e8i 0.0411075 0.828891i
\(993\) −1.33106e9 −1.35941
\(994\) 1.52215e8 0.154988
\(995\) 2.44083e8i 0.247781i
\(996\) 8.46515e8 0.856755
\(997\) −7.52427e8 −0.759240 −0.379620 0.925143i \(-0.623945\pi\)
−0.379620 + 0.925143i \(0.623945\pi\)
\(998\) 1.22335e9i 1.23072i
\(999\) 9.92374e7 0.0995357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.7.b.c.30.3 12
3.2 odd 2 279.7.d.f.154.10 12
4.3 odd 2 496.7.e.c.433.11 12
31.30 odd 2 inner 31.7.b.c.30.4 yes 12
93.92 even 2 279.7.d.f.154.9 12
124.123 even 2 496.7.e.c.433.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.7.b.c.30.3 12 1.1 even 1 trivial
31.7.b.c.30.4 yes 12 31.30 odd 2 inner
279.7.d.f.154.9 12 93.92 even 2
279.7.d.f.154.10 12 3.2 odd 2
496.7.e.c.433.2 12 124.123 even 2
496.7.e.c.433.11 12 4.3 odd 2