Properties

Label 31.7.b.c.30.12
Level $31$
Weight $7$
Character 31.30
Analytic conductor $7.132$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [31,7,Mod(30,31)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("31.30"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13167659222\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 7208 x^{10} + 19859688 x^{8} + 26566749360 x^{6} + 17884354852944 x^{4} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 30.12
Root \(-37.0208i\) of defining polynomial
Character \(\chi\) \(=\) 31.30
Dual form 31.7.b.c.30.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.4661 q^{2} +37.0208i q^{3} +117.337 q^{4} -79.2253 q^{5} +498.527i q^{6} +281.109 q^{7} +718.240 q^{8} -641.539 q^{9} -1066.86 q^{10} +871.860i q^{11} +4343.90i q^{12} -1472.34i q^{13} +3785.45 q^{14} -2932.99i q^{15} +2162.36 q^{16} -9057.43i q^{17} -8639.05 q^{18} +11694.6 q^{19} -9296.05 q^{20} +10406.9i q^{21} +11740.6i q^{22} -2258.34i q^{23} +26589.8i q^{24} -9348.34 q^{25} -19826.7i q^{26} +3237.86i q^{27} +32984.4 q^{28} -35365.9i q^{29} -39496.0i q^{30} +(-12692.3 + 26952.0i) q^{31} -16848.7 q^{32} -32276.9 q^{33} -121969. i q^{34} -22271.0 q^{35} -75276.2 q^{36} +14322.6i q^{37} +157482. q^{38} +54507.2 q^{39} -56902.8 q^{40} -29502.1 q^{41} +140141. i q^{42} +74210.9i q^{43} +102301. i q^{44} +50826.2 q^{45} -30411.1i q^{46} -68983.7 q^{47} +80052.4i q^{48} -38626.6 q^{49} -125886. q^{50} +335313. q^{51} -172760. i q^{52} +233111. i q^{53} +43601.5i q^{54} -69073.4i q^{55} +201904. q^{56} +432945. i q^{57} -476242. i q^{58} +248597. q^{59} -344147. i q^{60} -82420.2i q^{61} +(-170916. + 362939. i) q^{62} -180343. q^{63} -365278. q^{64} +116647. i q^{65} -434646. q^{66} -152766. q^{67} -1.06277e6i q^{68} +83605.5 q^{69} -299904. q^{70} +180795. q^{71} -460779. q^{72} -430086. i q^{73} +192869. i q^{74} -346083. i q^{75} +1.37221e6 q^{76} +245088. i q^{77} +734001. q^{78} +601085. i q^{79} -171314. q^{80} -587550. q^{81} -397279. q^{82} -973523. i q^{83} +1.22111e6i q^{84} +717578. i q^{85} +999334. i q^{86} +1.30928e6 q^{87} +626205. i q^{88} -172788. i q^{89} +684432. q^{90} -413888. i q^{91} -264986. i q^{92} +(-997784. - 469878. i) q^{93} -928944. q^{94} -926512. q^{95} -623752. i q^{96} +1.15730e6 q^{97} -520151. q^{98} -559332. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 122 q^{4} - 146 q^{5} + 6 q^{7} + 1142 q^{8} - 5668 q^{9} - 3004 q^{10} - 1312 q^{14} - 1102 q^{16} - 16382 q^{18} + 10430 q^{19} - 8052 q^{20} + 29618 q^{25} + 136504 q^{28} + 90076 q^{31}+ \cdots + 408810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 13.4661 1.68327 0.841633 0.540049i \(-0.181594\pi\)
0.841633 + 0.540049i \(0.181594\pi\)
\(3\) 37.0208i 1.37114i 0.728006 + 0.685570i \(0.240447\pi\)
−0.728006 + 0.685570i \(0.759553\pi\)
\(4\) 117.337 1.83339
\(5\) −79.2253 −0.633803 −0.316901 0.948458i \(-0.602642\pi\)
−0.316901 + 0.948458i \(0.602642\pi\)
\(6\) 498.527i 2.30800i
\(7\) 281.109 0.819560 0.409780 0.912184i \(-0.365605\pi\)
0.409780 + 0.912184i \(0.365605\pi\)
\(8\) 718.240 1.40281
\(9\) −641.539 −0.880027
\(10\) −1066.86 −1.06686
\(11\) 871.860i 0.655041i 0.944844 + 0.327521i \(0.106213\pi\)
−0.944844 + 0.327521i \(0.893787\pi\)
\(12\) 4343.90i 2.51383i
\(13\) 1472.34i 0.670159i −0.942190 0.335080i \(-0.891237\pi\)
0.942190 0.335080i \(-0.108763\pi\)
\(14\) 3785.45 1.37954
\(15\) 2932.99i 0.869033i
\(16\) 2162.36 0.527921
\(17\) 9057.43i 1.84356i −0.387709 0.921782i \(-0.626733\pi\)
0.387709 0.921782i \(-0.373267\pi\)
\(18\) −8639.05 −1.48132
\(19\) 11694.6 1.70501 0.852503 0.522722i \(-0.175084\pi\)
0.852503 + 0.522722i \(0.175084\pi\)
\(20\) −9296.05 −1.16201
\(21\) 10406.9i 1.12373i
\(22\) 11740.6i 1.10261i
\(23\) 2258.34i 0.185612i −0.995684 0.0928059i \(-0.970416\pi\)
0.995684 0.0928059i \(-0.0295836\pi\)
\(24\) 26589.8i 1.92345i
\(25\) −9348.34 −0.598294
\(26\) 19826.7i 1.12806i
\(27\) 3237.86i 0.164500i
\(28\) 32984.4 1.50257
\(29\) 35365.9i 1.45008i −0.688708 0.725039i \(-0.741822\pi\)
0.688708 0.725039i \(-0.258178\pi\)
\(30\) 39496.0i 1.46281i
\(31\) −12692.3 + 26952.0i −0.426044 + 0.904702i
\(32\) −16848.7 −0.514181
\(33\) −32276.9 −0.898154
\(34\) 121969.i 3.10321i
\(35\) −22271.0 −0.519440
\(36\) −75276.2 −1.61343
\(37\) 14322.6i 0.282758i 0.989956 + 0.141379i \(0.0451537\pi\)
−0.989956 + 0.141379i \(0.954846\pi\)
\(38\) 157482. 2.86998
\(39\) 54507.2 0.918883
\(40\) −56902.8 −0.889106
\(41\) −29502.1 −0.428056 −0.214028 0.976828i \(-0.568658\pi\)
−0.214028 + 0.976828i \(0.568658\pi\)
\(42\) 140141.i 1.89154i
\(43\) 74210.9i 0.933388i 0.884419 + 0.466694i \(0.154555\pi\)
−0.884419 + 0.466694i \(0.845445\pi\)
\(44\) 102301.i 1.20094i
\(45\) 50826.2 0.557763
\(46\) 30411.1i 0.312434i
\(47\) −68983.7 −0.664436 −0.332218 0.943203i \(-0.607797\pi\)
−0.332218 + 0.943203i \(0.607797\pi\)
\(48\) 80052.4i 0.723854i
\(49\) −38626.6 −0.328321
\(50\) −125886. −1.00709
\(51\) 335313. 2.52779
\(52\) 172760.i 1.22866i
\(53\) 233111.i 1.56580i 0.622150 + 0.782898i \(0.286260\pi\)
−0.622150 + 0.782898i \(0.713740\pi\)
\(54\) 43601.5i 0.276898i
\(55\) 69073.4i 0.415167i
\(56\) 201904. 1.14969
\(57\) 432945.i 2.33780i
\(58\) 476242.i 2.44087i
\(59\) 248597. 1.21043 0.605216 0.796062i \(-0.293087\pi\)
0.605216 + 0.796062i \(0.293087\pi\)
\(60\) 344147.i 1.59327i
\(61\) 82420.2i 0.363115i −0.983380 0.181557i \(-0.941886\pi\)
0.983380 0.181557i \(-0.0581138\pi\)
\(62\) −170916. + 362939.i −0.717146 + 1.52286i
\(63\) −180343. −0.721235
\(64\) −365278. −1.39342
\(65\) 116647.i 0.424749i
\(66\) −434646. −1.51183
\(67\) −152766. −0.507929 −0.253965 0.967214i \(-0.581735\pi\)
−0.253965 + 0.967214i \(0.581735\pi\)
\(68\) 1.06277e6i 3.37997i
\(69\) 83605.5 0.254500
\(70\) −299904. −0.874356
\(71\) 180795. 0.505140 0.252570 0.967579i \(-0.418724\pi\)
0.252570 + 0.967579i \(0.418724\pi\)
\(72\) −460779. −1.23451
\(73\) 430086.i 1.10557i −0.833323 0.552786i \(-0.813565\pi\)
0.833323 0.552786i \(-0.186435\pi\)
\(74\) 192869.i 0.475958i
\(75\) 346083.i 0.820345i
\(76\) 1.37221e6 3.12594
\(77\) 245088.i 0.536846i
\(78\) 734001. 1.54672
\(79\) 601085.i 1.21914i 0.792731 + 0.609572i \(0.208659\pi\)
−0.792731 + 0.609572i \(0.791341\pi\)
\(80\) −171314. −0.334598
\(81\) −587550. −1.10558
\(82\) −397279. −0.720533
\(83\) 973523.i 1.70260i −0.524681 0.851299i \(-0.675815\pi\)
0.524681 0.851299i \(-0.324185\pi\)
\(84\) 1.22111e6i 2.06024i
\(85\) 717578.i 1.16846i
\(86\) 999334.i 1.57114i
\(87\) 1.30928e6 1.98826
\(88\) 626205.i 0.918900i
\(89\) 172788.i 0.245101i −0.992462 0.122550i \(-0.960893\pi\)
0.992462 0.122550i \(-0.0391073\pi\)
\(90\) 684432. 0.938864
\(91\) 413888.i 0.549236i
\(92\) 264986.i 0.340298i
\(93\) −997784. 469878.i −1.24047 0.584167i
\(94\) −928944. −1.11842
\(95\) −926512. −1.08064
\(96\) 623752.i 0.705015i
\(97\) 1.15730e6 1.26803 0.634015 0.773321i \(-0.281406\pi\)
0.634015 + 0.773321i \(0.281406\pi\)
\(98\) −520151. −0.552651
\(99\) 559332.i 0.576454i
\(100\) −1.09690e6 −1.09690
\(101\) −1.64413e6 −1.59577 −0.797887 0.602806i \(-0.794049\pi\)
−0.797887 + 0.602806i \(0.794049\pi\)
\(102\) 4.51537e6 4.25494
\(103\) −724173. −0.662721 −0.331360 0.943504i \(-0.607508\pi\)
−0.331360 + 0.943504i \(0.607508\pi\)
\(104\) 1.05749e6i 0.940108i
\(105\) 824489.i 0.712225i
\(106\) 3.13911e6i 2.63565i
\(107\) −1.80317e6 −1.47193 −0.735963 0.677022i \(-0.763270\pi\)
−0.735963 + 0.677022i \(0.763270\pi\)
\(108\) 379920.i 0.301593i
\(109\) 18284.2 0.0141188 0.00705938 0.999975i \(-0.497753\pi\)
0.00705938 + 0.999975i \(0.497753\pi\)
\(110\) 930152.i 0.698837i
\(111\) −530232. −0.387701
\(112\) 607860. 0.432663
\(113\) 1.76280e6 1.22171 0.610853 0.791744i \(-0.290827\pi\)
0.610853 + 0.791744i \(0.290827\pi\)
\(114\) 5.83009e6i 3.93515i
\(115\) 178918.i 0.117641i
\(116\) 4.14972e6i 2.65855i
\(117\) 944564.i 0.589758i
\(118\) 3.34764e6 2.03748
\(119\) 2.54613e6i 1.51091i
\(120\) 2.10659e6i 1.21909i
\(121\) 1.01142e6 0.570921
\(122\) 1.10988e6i 0.611219i
\(123\) 1.09219e6i 0.586925i
\(124\) −1.48927e6 + 3.16246e6i −0.781104 + 1.65867i
\(125\) 1.97852e6 1.01300
\(126\) −2.42852e6 −1.21403
\(127\) 1.63403e6i 0.797715i 0.917013 + 0.398857i \(0.130593\pi\)
−0.917013 + 0.398857i \(0.869407\pi\)
\(128\) −3.84057e6 −1.83132
\(129\) −2.74735e6 −1.27981
\(130\) 1.57078e6i 0.714966i
\(131\) 1.06827e6 0.475190 0.237595 0.971364i \(-0.423641\pi\)
0.237595 + 0.971364i \(0.423641\pi\)
\(132\) −3.78727e6 −1.64666
\(133\) 3.28747e6 1.39736
\(134\) −2.05717e6 −0.854980
\(135\) 256521.i 0.104261i
\(136\) 6.50541e6i 2.58617i
\(137\) 151915.i 0.0590798i 0.999564 + 0.0295399i \(0.00940420\pi\)
−0.999564 + 0.0295399i \(0.990596\pi\)
\(138\) 1.12584e6 0.428391
\(139\) 708344.i 0.263755i 0.991266 + 0.131877i \(0.0421005\pi\)
−0.991266 + 0.131877i \(0.957900\pi\)
\(140\) −2.61320e6 −0.952334
\(141\) 2.55383e6i 0.911035i
\(142\) 2.43461e6 0.850286
\(143\) 1.28367e6 0.438982
\(144\) −1.38724e6 −0.464584
\(145\) 2.80188e6i 0.919063i
\(146\) 5.79160e6i 1.86097i
\(147\) 1.42999e6i 0.450174i
\(148\) 1.68056e6i 0.518405i
\(149\) 1.32685e6 0.401108 0.200554 0.979683i \(-0.435726\pi\)
0.200554 + 0.979683i \(0.435726\pi\)
\(150\) 4.66040e6i 1.38086i
\(151\) 2.16558e6i 0.628989i 0.949259 + 0.314494i \(0.101835\pi\)
−0.949259 + 0.314494i \(0.898165\pi\)
\(152\) 8.39956e6 2.39180
\(153\) 5.81070e6i 1.62239i
\(154\) 3.30039e6i 0.903655i
\(155\) 1.00555e6 2.13528e6i 0.270028 0.573403i
\(156\) 6.39570e6 1.68467
\(157\) −1.59984e6 −0.413407 −0.206703 0.978404i \(-0.566273\pi\)
−0.206703 + 0.978404i \(0.566273\pi\)
\(158\) 8.09430e6i 2.05214i
\(159\) −8.62996e6 −2.14693
\(160\) 1.33484e6 0.325889
\(161\) 634840.i 0.152120i
\(162\) −7.91203e6 −1.86099
\(163\) 98835.9 0.0228219 0.0114109 0.999935i \(-0.496368\pi\)
0.0114109 + 0.999935i \(0.496368\pi\)
\(164\) −3.46168e6 −0.784792
\(165\) 2.55715e6 0.569252
\(166\) 1.31096e7i 2.86593i
\(167\) 1.44983e6i 0.311292i 0.987813 + 0.155646i \(0.0497460\pi\)
−0.987813 + 0.155646i \(0.950254\pi\)
\(168\) 7.47464e6i 1.57639i
\(169\) 2.65902e6 0.550886
\(170\) 9.66300e6i 1.96682i
\(171\) −7.50257e6 −1.50045
\(172\) 8.70767e6i 1.71126i
\(173\) 4.34117e6 0.838434 0.419217 0.907886i \(-0.362305\pi\)
0.419217 + 0.907886i \(0.362305\pi\)
\(174\) 1.76309e7 3.34677
\(175\) −2.62791e6 −0.490338
\(176\) 1.88528e6i 0.345810i
\(177\) 9.20326e6i 1.65967i
\(178\) 2.32679e6i 0.412570i
\(179\) 2.62033e6i 0.456874i 0.973559 + 0.228437i \(0.0733614\pi\)
−0.973559 + 0.228437i \(0.926639\pi\)
\(180\) 5.96378e6 1.02260
\(181\) 994173.i 0.167659i −0.996480 0.0838293i \(-0.973285\pi\)
0.996480 0.0838293i \(-0.0267151\pi\)
\(182\) 5.57348e6i 0.924511i
\(183\) 3.05126e6 0.497881
\(184\) 1.62203e6i 0.260379i
\(185\) 1.13471e6i 0.179213i
\(186\) −1.34363e7 6.32745e6i −2.08805 0.983308i
\(187\) 7.89681e6 1.20761
\(188\) −8.09433e6 −1.21817
\(189\) 910193.i 0.134818i
\(190\) −1.24765e7 −1.81900
\(191\) −9.22097e6 −1.32336 −0.661678 0.749788i \(-0.730155\pi\)
−0.661678 + 0.749788i \(0.730155\pi\)
\(192\) 1.35229e7i 1.91058i
\(193\) 6.85415e6 0.953414 0.476707 0.879062i \(-0.341830\pi\)
0.476707 + 0.879062i \(0.341830\pi\)
\(194\) 1.55843e7 2.13443
\(195\) −4.31835e6 −0.582390
\(196\) −4.53232e6 −0.601939
\(197\) 1.00221e7i 1.31088i −0.755248 0.655439i \(-0.772484\pi\)
0.755248 0.655439i \(-0.227516\pi\)
\(198\) 7.53205e6i 0.970325i
\(199\) 1.38162e7i 1.75319i −0.481227 0.876596i \(-0.659809\pi\)
0.481227 0.876596i \(-0.340191\pi\)
\(200\) −6.71435e6 −0.839294
\(201\) 5.65553e6i 0.696442i
\(202\) −2.21401e7 −2.68611
\(203\) 9.94169e6i 1.18843i
\(204\) 3.93446e7 4.63441
\(205\) 2.33731e6 0.271303
\(206\) −9.75181e6 −1.11554
\(207\) 1.44881e6i 0.163343i
\(208\) 3.18373e6i 0.353791i
\(209\) 1.01961e7i 1.11685i
\(210\) 1.11027e7i 1.19886i
\(211\) 510177. 0.0543092 0.0271546 0.999631i \(-0.491355\pi\)
0.0271546 + 0.999631i \(0.491355\pi\)
\(212\) 2.73525e7i 2.87071i
\(213\) 6.69318e6i 0.692618i
\(214\) −2.42818e7 −2.47764
\(215\) 5.87938e6i 0.591584i
\(216\) 2.32556e6i 0.230763i
\(217\) −3.56792e6 + 7.57645e6i −0.349169 + 0.741458i
\(218\) 246217. 0.0237656
\(219\) 1.59221e7 1.51589
\(220\) 8.10485e6i 0.761162i
\(221\) −1.33356e7 −1.23548
\(222\) −7.14018e6 −0.652605
\(223\) 8.29587e6i 0.748078i 0.927413 + 0.374039i \(0.122027\pi\)
−0.927413 + 0.374039i \(0.877973\pi\)
\(224\) −4.73632e6 −0.421403
\(225\) 5.99733e6 0.526515
\(226\) 2.37380e7 2.05646
\(227\) 1.38617e7 1.18505 0.592527 0.805551i \(-0.298130\pi\)
0.592527 + 0.805551i \(0.298130\pi\)
\(228\) 5.08003e7i 4.28610i
\(229\) 1.92385e7i 1.60201i 0.598659 + 0.801004i \(0.295700\pi\)
−0.598659 + 0.801004i \(0.704300\pi\)
\(230\) 2.40933e6i 0.198022i
\(231\) −9.07335e6 −0.736091
\(232\) 2.54012e7i 2.03419i
\(233\) 1.03937e6 0.0821676 0.0410838 0.999156i \(-0.486919\pi\)
0.0410838 + 0.999156i \(0.486919\pi\)
\(234\) 1.27196e7i 0.992720i
\(235\) 5.46526e6 0.421121
\(236\) 2.91696e7 2.21919
\(237\) −2.22527e7 −1.67162
\(238\) 3.42865e7i 2.54327i
\(239\) 8.58950e6i 0.629179i 0.949228 + 0.314589i \(0.101867\pi\)
−0.949228 + 0.314589i \(0.898133\pi\)
\(240\) 6.34218e6i 0.458780i
\(241\) 2.20696e7i 1.57668i 0.615239 + 0.788341i \(0.289059\pi\)
−0.615239 + 0.788341i \(0.710941\pi\)
\(242\) 1.36199e7 0.961012
\(243\) 1.93912e7i 1.35140i
\(244\) 9.67092e6i 0.665730i
\(245\) 3.06021e6 0.208091
\(246\) 1.47076e7i 0.987951i
\(247\) 1.72185e7i 1.14263i
\(248\) −9.11611e6 + 1.93580e7i −0.597660 + 1.26913i
\(249\) 3.60406e7 2.33450
\(250\) 2.66430e7 1.70515
\(251\) 3.11207e7i 1.96801i −0.178132 0.984007i \(-0.557005\pi\)
0.178132 0.984007i \(-0.442995\pi\)
\(252\) −2.11608e7 −1.32230
\(253\) 1.96896e6 0.121583
\(254\) 2.20040e7i 1.34277i
\(255\) −2.65653e7 −1.60212
\(256\) −2.83398e7 −1.68918
\(257\) −1.57258e7 −0.926429 −0.463214 0.886246i \(-0.653304\pi\)
−0.463214 + 0.886246i \(0.653304\pi\)
\(258\) −3.69961e7 −2.15426
\(259\) 4.02620e6i 0.231737i
\(260\) 1.36869e7i 0.778729i
\(261\) 2.26886e7i 1.27611i
\(262\) 1.43855e7 0.799871
\(263\) 1.91504e7i 1.05271i 0.850263 + 0.526357i \(0.176443\pi\)
−0.850263 + 0.526357i \(0.823557\pi\)
\(264\) −2.31826e7 −1.25994
\(265\) 1.84683e7i 0.992406i
\(266\) 4.42695e7 2.35212
\(267\) 6.39676e6 0.336067
\(268\) −1.79251e7 −0.931231
\(269\) 1.82164e6i 0.0935848i 0.998905 + 0.0467924i \(0.0148999\pi\)
−0.998905 + 0.0467924i \(0.985100\pi\)
\(270\) 3.45434e6i 0.175499i
\(271\) 2.30717e7i 1.15923i 0.814889 + 0.579617i \(0.196798\pi\)
−0.814889 + 0.579617i \(0.803202\pi\)
\(272\) 1.95855e7i 0.973256i
\(273\) 1.53225e7 0.753080
\(274\) 2.04571e6i 0.0994470i
\(275\) 8.15045e6i 0.391907i
\(276\) 9.81000e6 0.466597
\(277\) 3.51879e6i 0.165559i −0.996568 0.0827796i \(-0.973620\pi\)
0.996568 0.0827796i \(-0.0263798\pi\)
\(278\) 9.53866e6i 0.443969i
\(279\) 8.14260e6 1.72908e7i 0.374930 0.796162i
\(280\) −1.59959e7 −0.728677
\(281\) −4.05218e6 −0.182629 −0.0913146 0.995822i \(-0.529107\pi\)
−0.0913146 + 0.995822i \(0.529107\pi\)
\(282\) 3.43903e7i 1.53352i
\(283\) 1.19218e7 0.525996 0.262998 0.964796i \(-0.415289\pi\)
0.262998 + 0.964796i \(0.415289\pi\)
\(284\) 2.12139e7 0.926117
\(285\) 3.43002e7i 1.48171i
\(286\) 1.72861e7 0.738924
\(287\) −8.29330e6 −0.350818
\(288\) 1.08091e7 0.452493
\(289\) −5.78995e7 −2.39873
\(290\) 3.77305e7i 1.54703i
\(291\) 4.28440e7i 1.73865i
\(292\) 5.04649e7i 2.02694i
\(293\) −3.24505e6 −0.129009 −0.0645043 0.997917i \(-0.520547\pi\)
−0.0645043 + 0.997917i \(0.520547\pi\)
\(294\) 1.92564e7i 0.757762i
\(295\) −1.96952e7 −0.767175
\(296\) 1.02870e7i 0.396657i
\(297\) −2.82296e6 −0.107755
\(298\) 1.78675e7 0.675172
\(299\) −3.32504e6 −0.124390
\(300\) 4.06083e7i 1.50401i
\(301\) 2.08614e7i 0.764968i
\(302\) 2.91619e7i 1.05876i
\(303\) 6.08669e7i 2.18803i
\(304\) 2.52881e7 0.900108
\(305\) 6.52977e6i 0.230143i
\(306\) 7.82476e7i 2.73091i
\(307\) 3.69785e7 1.27801 0.639004 0.769203i \(-0.279347\pi\)
0.639004 + 0.769203i \(0.279347\pi\)
\(308\) 2.87578e7i 0.984246i
\(309\) 2.68095e7i 0.908683i
\(310\) 1.35409e7 2.87540e7i 0.454529 0.965190i
\(311\) −3.70510e7 −1.23174 −0.615869 0.787848i \(-0.711195\pi\)
−0.615869 + 0.787848i \(0.711195\pi\)
\(312\) 3.91493e7 1.28902
\(313\) 5.13011e7i 1.67299i 0.547973 + 0.836496i \(0.315400\pi\)
−0.547973 + 0.836496i \(0.684600\pi\)
\(314\) −2.15436e7 −0.695874
\(315\) 1.42877e7 0.457121
\(316\) 7.05294e7i 2.23516i
\(317\) 1.81320e7 0.569204 0.284602 0.958646i \(-0.408139\pi\)
0.284602 + 0.958646i \(0.408139\pi\)
\(318\) −1.16212e8 −3.61385
\(319\) 3.08341e7 0.949860
\(320\) 2.89393e7 0.883156
\(321\) 6.67549e7i 2.01822i
\(322\) 8.54884e6i 0.256059i
\(323\) 1.05923e8i 3.14329i
\(324\) −6.89413e7 −2.02696
\(325\) 1.37639e7i 0.400952i
\(326\) 1.33094e6 0.0384153
\(327\) 676896.i 0.0193588i
\(328\) −2.11896e7 −0.600482
\(329\) −1.93920e7 −0.544546
\(330\) 3.44350e7 0.958203
\(331\) 3.03116e7i 0.835843i 0.908483 + 0.417921i \(0.137241\pi\)
−0.908483 + 0.417921i \(0.862759\pi\)
\(332\) 1.14230e8i 3.12152i
\(333\) 9.18848e6i 0.248835i
\(334\) 1.95236e7i 0.523988i
\(335\) 1.21030e7 0.321927
\(336\) 2.25035e7i 0.593242i
\(337\) 2.12669e7i 0.555667i −0.960629 0.277834i \(-0.910384\pi\)
0.960629 0.277834i \(-0.0896164\pi\)
\(338\) 3.58068e7 0.927289
\(339\) 6.52601e7i 1.67513i
\(340\) 8.41983e7i 2.14223i
\(341\) −2.34984e7 1.10659e7i −0.592617 0.279077i
\(342\) −1.01031e8 −2.52566
\(343\) −4.39305e7 −1.08864
\(344\) 5.33012e7i 1.30937i
\(345\) −6.62368e6 −0.161303
\(346\) 5.84588e7 1.41131
\(347\) 3.57102e6i 0.0854681i 0.999086 + 0.0427341i \(0.0136068\pi\)
−0.999086 + 0.0427341i \(0.986393\pi\)
\(348\) 1.53626e8 3.64525
\(349\) 6.94250e7 1.63320 0.816600 0.577204i \(-0.195856\pi\)
0.816600 + 0.577204i \(0.195856\pi\)
\(350\) −3.53877e7 −0.825370
\(351\) 4.76724e6 0.110242
\(352\) 1.46897e7i 0.336810i
\(353\) 3.55636e7i 0.808504i −0.914648 0.404252i \(-0.867532\pi\)
0.914648 0.404252i \(-0.132468\pi\)
\(354\) 1.23932e8i 2.79367i
\(355\) −1.43236e7 −0.320159
\(356\) 2.02744e7i 0.449364i
\(357\) 9.42597e7 2.07167
\(358\) 3.52856e7i 0.769040i
\(359\) −3.71713e7 −0.803387 −0.401693 0.915774i \(-0.631578\pi\)
−0.401693 + 0.915774i \(0.631578\pi\)
\(360\) 3.65054e7 0.782437
\(361\) 8.97187e7 1.90705
\(362\) 1.33877e7i 0.282214i
\(363\) 3.74436e7i 0.782813i
\(364\) 4.85643e7i 1.00696i
\(365\) 3.40737e7i 0.700714i
\(366\) 4.10887e7 0.838067
\(367\) 317655.i 0.00642624i −0.999995 0.00321312i \(-0.998977\pi\)
0.999995 0.00321312i \(-0.00102277\pi\)
\(368\) 4.88335e6i 0.0979884i
\(369\) 1.89267e7 0.376701
\(370\) 1.52801e7i 0.301663i
\(371\) 6.55297e7i 1.28327i
\(372\) −1.17077e8 5.51340e7i −2.27427 1.07100i
\(373\) −9.81348e7 −1.89102 −0.945511 0.325590i \(-0.894437\pi\)
−0.945511 + 0.325590i \(0.894437\pi\)
\(374\) 1.06339e8 2.03273
\(375\) 7.32465e7i 1.38897i
\(376\) −4.95469e7 −0.932079
\(377\) −5.20707e7 −0.971783
\(378\) 1.22568e7i 0.226935i
\(379\) −3.41768e7 −0.627789 −0.313895 0.949458i \(-0.601634\pi\)
−0.313895 + 0.949458i \(0.601634\pi\)
\(380\) −1.08714e8 −1.98123
\(381\) −6.04929e7 −1.09378
\(382\) −1.24171e8 −2.22756
\(383\) 4.31721e7i 0.768435i 0.923243 + 0.384218i \(0.125529\pi\)
−0.923243 + 0.384218i \(0.874471\pi\)
\(384\) 1.42181e8i 2.51100i
\(385\) 1.94172e7i 0.340254i
\(386\) 9.22989e7 1.60485
\(387\) 4.76092e7i 0.821406i
\(388\) 1.35793e8 2.32479
\(389\) 6.64150e7i 1.12828i −0.825679 0.564140i \(-0.809208\pi\)
0.825679 0.564140i \(-0.190792\pi\)
\(390\) −5.81515e7 −0.980318
\(391\) −2.04548e7 −0.342187
\(392\) −2.77432e7 −0.460572
\(393\) 3.95482e7i 0.651552i
\(394\) 1.34960e8i 2.20656i
\(395\) 4.76212e7i 0.772697i
\(396\) 6.56303e7i 1.05686i
\(397\) −1.04736e7 −0.167388 −0.0836939 0.996492i \(-0.526672\pi\)
−0.0836939 + 0.996492i \(0.526672\pi\)
\(398\) 1.86051e8i 2.95109i
\(399\) 1.21705e8i 1.91597i
\(400\) −2.02145e7 −0.315852
\(401\) 1.99007e7i 0.308627i 0.988022 + 0.154314i \(0.0493166\pi\)
−0.988022 + 0.154314i \(0.950683\pi\)
\(402\) 7.61581e7i 1.17230i
\(403\) 3.96825e7 + 1.86874e7i 0.606295 + 0.285518i
\(404\) −1.92917e8 −2.92567
\(405\) 4.65489e7 0.700720
\(406\) 1.33876e8i 2.00044i
\(407\) −1.24873e7 −0.185218
\(408\) 2.40835e8 3.54601
\(409\) 5.67061e7i 0.828819i 0.910090 + 0.414410i \(0.136012\pi\)
−0.910090 + 0.414410i \(0.863988\pi\)
\(410\) 3.14745e7 0.456676
\(411\) −5.62401e6 −0.0810067
\(412\) −8.49721e7 −1.21502
\(413\) 6.98830e7 0.992022
\(414\) 1.95099e7i 0.274950i
\(415\) 7.71277e7i 1.07911i
\(416\) 2.48070e7i 0.344583i
\(417\) −2.62235e7 −0.361645
\(418\) 1.37302e8i 1.87996i
\(419\) 1.09740e8 1.49184 0.745918 0.666038i \(-0.232011\pi\)
0.745918 + 0.666038i \(0.232011\pi\)
\(420\) 9.67429e7i 1.30578i
\(421\) 4.48395e7 0.600917 0.300459 0.953795i \(-0.402860\pi\)
0.300459 + 0.953795i \(0.402860\pi\)
\(422\) 6.87011e6 0.0914169
\(423\) 4.42558e7 0.584721
\(424\) 1.67430e8i 2.19652i
\(425\) 8.46720e7i 1.10299i
\(426\) 9.01313e7i 1.16586i
\(427\) 2.31691e7i 0.297595i
\(428\) −2.11578e8 −2.69861
\(429\) 4.75226e7i 0.601906i
\(430\) 7.91726e7i 0.995794i
\(431\) 7.06269e7 0.882141 0.441071 0.897472i \(-0.354599\pi\)
0.441071 + 0.897472i \(0.354599\pi\)
\(432\) 7.00144e6i 0.0868432i
\(433\) 1.10210e8i 1.35756i −0.734341 0.678780i \(-0.762509\pi\)
0.734341 0.678780i \(-0.237491\pi\)
\(434\) −4.80461e7 + 1.02026e8i −0.587745 + 1.24807i
\(435\) −1.03728e8 −1.26016
\(436\) 2.14541e6 0.0258851
\(437\) 2.64105e7i 0.316469i
\(438\) 2.14409e8 2.55165
\(439\) 8.57473e7 1.01351 0.506754 0.862091i \(-0.330845\pi\)
0.506754 + 0.862091i \(0.330845\pi\)
\(440\) 4.96113e7i 0.582401i
\(441\) 2.47805e7 0.288931
\(442\) −1.79579e8 −2.07965
\(443\) −5.49974e7 −0.632602 −0.316301 0.948659i \(-0.602441\pi\)
−0.316301 + 0.948659i \(0.602441\pi\)
\(444\) −6.22157e7 −0.710806
\(445\) 1.36892e7i 0.155345i
\(446\) 1.11713e8i 1.25922i
\(447\) 4.91209e7i 0.549976i
\(448\) −1.02683e8 −1.14200
\(449\) 3.78986e7i 0.418682i −0.977843 0.209341i \(-0.932868\pi\)
0.977843 0.209341i \(-0.0671319\pi\)
\(450\) 8.07609e7 0.886265
\(451\) 2.57217e7i 0.280394i
\(452\) 2.06841e8 2.23986
\(453\) −8.01714e7 −0.862432
\(454\) 1.86663e8 1.99476
\(455\) 3.27905e7i 0.348107i
\(456\) 3.10958e8i 3.27950i
\(457\) 7.79215e7i 0.816411i −0.912890 0.408206i \(-0.866155\pi\)
0.912890 0.408206i \(-0.133845\pi\)
\(458\) 2.59068e8i 2.69661i
\(459\) 2.93267e7 0.303267
\(460\) 2.09936e7i 0.215682i
\(461\) 1.69250e8i 1.72753i −0.503894 0.863765i \(-0.668100\pi\)
0.503894 0.863765i \(-0.331900\pi\)
\(462\) −1.22183e8 −1.23904
\(463\) 9.40006e7i 0.947082i −0.880772 0.473541i \(-0.842976\pi\)
0.880772 0.473541i \(-0.157024\pi\)
\(464\) 7.64740e7i 0.765526i
\(465\) 7.90498e7 + 3.72263e7i 0.786216 + 0.370246i
\(466\) 1.39962e7 0.138310
\(467\) 3.28395e7 0.322437 0.161219 0.986919i \(-0.448458\pi\)
0.161219 + 0.986919i \(0.448458\pi\)
\(468\) 1.10832e8i 1.08125i
\(469\) −4.29440e7 −0.416279
\(470\) 7.35959e7 0.708860
\(471\) 5.92273e7i 0.566839i
\(472\) 1.78552e8 1.69801
\(473\) −6.47015e7 −0.611408
\(474\) −2.99657e8 −2.81378
\(475\) −1.09325e8 −1.02009
\(476\) 2.98754e8i 2.77009i
\(477\) 1.49550e8i 1.37794i
\(478\) 1.15667e8i 1.05908i
\(479\) −2.36154e7 −0.214877 −0.107438 0.994212i \(-0.534265\pi\)
−0.107438 + 0.994212i \(0.534265\pi\)
\(480\) 4.94170e7i 0.446840i
\(481\) 2.10877e7 0.189493
\(482\) 2.97193e8i 2.65397i
\(483\) 2.35023e7 0.208578
\(484\) 1.18677e8 1.04672
\(485\) −9.16872e7 −0.803680
\(486\) 2.61124e8i 2.27477i
\(487\) 9.78087e7i 0.846819i −0.905938 0.423410i \(-0.860833\pi\)
0.905938 0.423410i \(-0.139167\pi\)
\(488\) 5.91975e7i 0.509382i
\(489\) 3.65898e6i 0.0312920i
\(490\) 4.12091e7 0.350272
\(491\) 9.95424e7i 0.840937i 0.907307 + 0.420469i \(0.138134\pi\)
−0.907307 + 0.420469i \(0.861866\pi\)
\(492\) 1.28154e8i 1.07606i
\(493\) −3.20324e8 −2.67331
\(494\) 2.31866e8i 1.92334i
\(495\) 4.43133e7i 0.365358i
\(496\) −2.74453e7 + 5.82800e7i −0.224918 + 0.477611i
\(497\) 5.08232e7 0.413993
\(498\) 4.85328e8 3.92959
\(499\) 5.67673e7i 0.456875i −0.973559 0.228437i \(-0.926638\pi\)
0.973559 0.228437i \(-0.0733616\pi\)
\(500\) 2.32153e8 1.85723
\(501\) −5.36740e7 −0.426826
\(502\) 4.19075e8i 3.31269i
\(503\) 2.38069e7 0.187068 0.0935338 0.995616i \(-0.470184\pi\)
0.0935338 + 0.995616i \(0.470184\pi\)
\(504\) −1.29529e8 −1.01176
\(505\) 1.30257e8 1.01141
\(506\) 2.65142e7 0.204657
\(507\) 9.84392e7i 0.755343i
\(508\) 1.91731e8i 1.46252i
\(509\) 6.75845e7i 0.512500i −0.966611 0.256250i \(-0.917513\pi\)
0.966611 0.256250i \(-0.0824870\pi\)
\(510\) −3.57732e8 −2.69679
\(511\) 1.20901e8i 0.906083i
\(512\) −1.35831e8 −1.01202
\(513\) 3.78656e7i 0.280474i
\(514\) −2.11765e8 −1.55943
\(515\) 5.73729e7 0.420034
\(516\) −3.22365e8 −2.34638
\(517\) 6.01442e7i 0.435233i
\(518\) 5.42174e7i 0.390076i
\(519\) 1.60714e8i 1.14961i
\(520\) 8.37803e7i 0.595843i
\(521\) −2.66667e8 −1.88563 −0.942813 0.333321i \(-0.891831\pi\)
−0.942813 + 0.333321i \(0.891831\pi\)
\(522\) 3.05528e8i 2.14803i
\(523\) 6.93321e7i 0.484651i −0.970195 0.242326i \(-0.922090\pi\)
0.970195 0.242326i \(-0.0779102\pi\)
\(524\) 1.25347e8 0.871206
\(525\) 9.72872e7i 0.672323i
\(526\) 2.57882e8i 1.77200i
\(527\) 2.44116e8 + 1.14959e8i 1.66788 + 0.785440i
\(528\) −6.97945e7 −0.474154
\(529\) 1.42936e8 0.965548
\(530\) 2.48697e8i 1.67048i
\(531\) −1.59485e8 −1.06521
\(532\) 3.85741e8 2.56189
\(533\) 4.34371e7i 0.286866i
\(534\) 8.61396e7 0.565691
\(535\) 1.42857e8 0.932911
\(536\) −1.09723e8 −0.712529
\(537\) −9.70065e7 −0.626438
\(538\) 2.45304e7i 0.157528i
\(539\) 3.36770e7i 0.215064i
\(540\) 3.00993e7i 0.191151i
\(541\) −1.38080e8 −0.872048 −0.436024 0.899935i \(-0.643614\pi\)
−0.436024 + 0.899935i \(0.643614\pi\)
\(542\) 3.10686e8i 1.95130i
\(543\) 3.68051e7 0.229884
\(544\) 1.52606e8i 0.947926i
\(545\) −1.44857e6 −0.00894851
\(546\) 2.06335e8 1.26763
\(547\) 1.62204e8 0.991061 0.495530 0.868591i \(-0.334974\pi\)
0.495530 + 0.868591i \(0.334974\pi\)
\(548\) 1.78252e7i 0.108316i
\(549\) 5.28758e7i 0.319551i
\(550\) 1.09755e8i 0.659684i
\(551\) 4.13592e8i 2.47239i
\(552\) 6.00488e7 0.357016
\(553\) 1.68971e8i 0.999162i
\(554\) 4.73844e7i 0.278680i
\(555\) 4.20078e7 0.245726
\(556\) 8.31148e7i 0.483564i
\(557\) 1.89356e8i 1.09576i −0.836558 0.547878i \(-0.815436\pi\)
0.836558 0.547878i \(-0.184564\pi\)
\(558\) 1.09649e8 2.32840e8i 0.631108 1.34015i
\(559\) 1.09264e8 0.625519
\(560\) −4.81579e7 −0.274223
\(561\) 2.92346e8i 1.65580i
\(562\) −5.45672e7 −0.307414
\(563\) −1.03763e8 −0.581459 −0.290729 0.956805i \(-0.593898\pi\)
−0.290729 + 0.956805i \(0.593898\pi\)
\(564\) 2.99659e8i 1.67028i
\(565\) −1.39658e8 −0.774320
\(566\) 1.60541e8 0.885392
\(567\) −1.65166e8 −0.906090
\(568\) 1.29854e8 0.708617
\(569\) 1.02000e8i 0.553686i 0.960915 + 0.276843i \(0.0892882\pi\)
−0.960915 + 0.276843i \(0.910712\pi\)
\(570\) 4.61891e8i 2.49411i
\(571\) 9.68561e7i 0.520258i 0.965574 + 0.260129i \(0.0837651\pi\)
−0.965574 + 0.260129i \(0.916235\pi\)
\(572\) 1.50622e8 0.804824
\(573\) 3.41368e8i 1.81451i
\(574\) −1.11679e8 −0.590520
\(575\) 2.11117e7i 0.111050i
\(576\) 2.34340e8 1.22625
\(577\) 8.81237e7 0.458739 0.229369 0.973339i \(-0.426334\pi\)
0.229369 + 0.973339i \(0.426334\pi\)
\(578\) −7.79682e8 −4.03770
\(579\) 2.53746e8i 1.30727i
\(580\) 3.28763e8i 1.68500i
\(581\) 2.73666e8i 1.39538i
\(582\) 5.76943e8i 2.92661i
\(583\) −2.03240e8 −1.02566
\(584\) 3.08905e8i 1.55091i
\(585\) 7.48334e7i 0.373790i
\(586\) −4.36983e7 −0.217156
\(587\) 3.61838e8i 1.78896i 0.447112 + 0.894478i \(0.352453\pi\)
−0.447112 + 0.894478i \(0.647547\pi\)
\(588\) 1.67790e8i 0.825343i
\(589\) −1.48432e8 + 3.15194e8i −0.726408 + 1.54252i
\(590\) −2.65218e8 −1.29136
\(591\) 3.71028e8 1.79740
\(592\) 3.09706e7i 0.149274i
\(593\) −2.88359e8 −1.38283 −0.691417 0.722456i \(-0.743013\pi\)
−0.691417 + 0.722456i \(0.743013\pi\)
\(594\) −3.80144e7 −0.181380
\(595\) 2.01718e8i 0.957620i
\(596\) 1.55688e8 0.735386
\(597\) 5.11487e8 2.40387
\(598\) −4.47755e7 −0.209381
\(599\) −4.83307e7 −0.224876 −0.112438 0.993659i \(-0.535866\pi\)
−0.112438 + 0.993659i \(0.535866\pi\)
\(600\) 2.48571e8i 1.15079i
\(601\) 1.46400e8i 0.674402i 0.941433 + 0.337201i \(0.109480\pi\)
−0.941433 + 0.337201i \(0.890520\pi\)
\(602\) 2.80922e8i 1.28765i
\(603\) 9.80056e7 0.446991
\(604\) 2.54102e8i 1.15318i
\(605\) −8.01302e7 −0.361851
\(606\) 8.19642e8i 3.68304i
\(607\) 1.18744e8 0.530942 0.265471 0.964119i \(-0.414473\pi\)
0.265471 + 0.964119i \(0.414473\pi\)
\(608\) −1.97039e8 −0.876682
\(609\) 3.68049e8 1.62950
\(610\) 8.79307e7i 0.387392i
\(611\) 1.01568e8i 0.445278i
\(612\) 6.81808e8i 2.97446i
\(613\) 1.77223e8i 0.769377i −0.923047 0.384688i \(-0.874309\pi\)
0.923047 0.384688i \(-0.125691\pi\)
\(614\) 4.97957e8 2.15123
\(615\) 8.65291e7i 0.371995i
\(616\) 1.76032e8i 0.753094i
\(617\) 2.72434e8 1.15986 0.579930 0.814666i \(-0.303080\pi\)
0.579930 + 0.814666i \(0.303080\pi\)
\(618\) 3.61020e8i 1.52956i
\(619\) 1.26366e8i 0.532791i −0.963864 0.266395i \(-0.914167\pi\)
0.963864 0.266395i \(-0.0858327\pi\)
\(620\) 1.17988e8 2.50547e8i 0.495066 1.05127i
\(621\) 7.31219e6 0.0305332
\(622\) −4.98933e8 −2.07334
\(623\) 4.85724e7i 0.200875i
\(624\) 1.17864e8 0.485097
\(625\) −1.06812e7 −0.0437502
\(626\) 6.90828e8i 2.81609i
\(627\) −3.77467e8 −1.53136
\(628\) −1.87720e8 −0.757934
\(629\) 1.29726e8 0.521283
\(630\) 1.92400e8 0.769456
\(631\) 2.64442e7i 0.105255i 0.998614 + 0.0526274i \(0.0167596\pi\)
−0.998614 + 0.0526274i \(0.983240\pi\)
\(632\) 4.31724e8i 1.71023i
\(633\) 1.88872e7i 0.0744655i
\(634\) 2.44168e8 0.958121
\(635\) 1.29456e8i 0.505594i
\(636\) −1.01261e9 −3.93615
\(637\) 5.68715e7i 0.220027i
\(638\) 4.15217e8 1.59887
\(639\) −1.15987e8 −0.444537
\(640\) 3.04270e8 1.16070
\(641\) 1.54497e8i 0.586607i 0.956019 + 0.293303i \(0.0947546\pi\)
−0.956019 + 0.293303i \(0.905245\pi\)
\(642\) 8.98930e8i 3.39720i
\(643\) 4.60112e8i 1.73074i −0.501136 0.865368i \(-0.667084\pi\)
0.501136 0.865368i \(-0.332916\pi\)
\(644\) 7.44901e7i 0.278895i
\(645\) 2.17659e8 0.811145
\(646\) 1.42638e9i 5.29099i
\(647\) 2.25487e8i 0.832547i 0.909239 + 0.416274i \(0.136664\pi\)
−0.909239 + 0.416274i \(0.863336\pi\)
\(648\) −4.22002e8 −1.55092
\(649\) 2.16742e8i 0.792882i
\(650\) 1.85347e8i 0.674910i
\(651\) −2.80486e8 1.32087e8i −1.01664 0.478760i
\(652\) 1.15971e7 0.0418414
\(653\) 3.15330e8 1.13247 0.566235 0.824244i \(-0.308400\pi\)
0.566235 + 0.824244i \(0.308400\pi\)
\(654\) 9.11517e6i 0.0325860i
\(655\) −8.46340e7 −0.301176
\(656\) −6.37942e7 −0.225980
\(657\) 2.75917e8i 0.972932i
\(658\) −2.61135e8 −0.916615
\(659\) −4.05029e7 −0.141524 −0.0707619 0.997493i \(-0.522543\pi\)
−0.0707619 + 0.997493i \(0.522543\pi\)
\(660\) 3.00048e8 1.04366
\(661\) 4.74397e7 0.164262 0.0821311 0.996622i \(-0.473827\pi\)
0.0821311 + 0.996622i \(0.473827\pi\)
\(662\) 4.08180e8i 1.40695i
\(663\) 4.93695e8i 1.69402i
\(664\) 6.99223e8i 2.38843i
\(665\) −2.60451e8 −0.885648
\(666\) 1.23733e8i 0.418855i
\(667\) −7.98683e7 −0.269152
\(668\) 1.70119e8i 0.570719i
\(669\) −3.07120e8 −1.02572
\(670\) 1.62980e8 0.541889
\(671\) 7.18588e7 0.237855
\(672\) 1.75342e8i 0.577802i
\(673\) 4.53411e8i 1.48746i −0.668478 0.743732i \(-0.733054\pi\)
0.668478 0.743732i \(-0.266946\pi\)
\(674\) 2.86383e8i 0.935336i
\(675\) 3.02687e7i 0.0984197i
\(676\) 3.12001e8 1.00999
\(677\) 1.31924e8i 0.425167i 0.977143 + 0.212583i \(0.0681877\pi\)
−0.977143 + 0.212583i \(0.931812\pi\)
\(678\) 8.78801e8i 2.81969i
\(679\) 3.25327e8 1.03923
\(680\) 5.15393e8i 1.63912i
\(681\) 5.13170e8i 1.62488i
\(682\) −3.16432e8 1.49015e8i −0.997533 0.469760i
\(683\) 1.74520e8 0.547751 0.273876 0.961765i \(-0.411694\pi\)
0.273876 + 0.961765i \(0.411694\pi\)
\(684\) −8.80327e8 −2.75091
\(685\) 1.20355e7i 0.0374449i
\(686\) −5.91574e8 −1.83247
\(687\) −7.12224e8 −2.19658
\(688\) 1.60471e8i 0.492755i
\(689\) 3.43219e8 1.04933
\(690\) −8.91953e7 −0.271516
\(691\) −1.22138e8 −0.370184 −0.185092 0.982721i \(-0.559258\pi\)
−0.185092 + 0.982721i \(0.559258\pi\)
\(692\) 5.09379e8 1.53717
\(693\) 1.57234e8i 0.472439i
\(694\) 4.80879e7i 0.143866i
\(695\) 5.61188e7i 0.167168i
\(696\) 9.40374e8 2.78916
\(697\) 2.67213e8i 0.789149i
\(698\) 9.34886e8 2.74911
\(699\) 3.84781e7i 0.112663i
\(700\) −3.08350e8 −0.898980
\(701\) −2.91548e8 −0.846363 −0.423181 0.906045i \(-0.639087\pi\)
−0.423181 + 0.906045i \(0.639087\pi\)
\(702\) 6.41962e7 0.185566
\(703\) 1.67497e8i 0.482105i
\(704\) 3.18471e8i 0.912751i
\(705\) 2.02328e8i 0.577417i
\(706\) 4.78905e8i 1.36093i
\(707\) −4.62180e8 −1.30783
\(708\) 1.07988e9i 3.04282i
\(709\) 1.42479e8i 0.399771i −0.979819 0.199886i \(-0.935943\pi\)
0.979819 0.199886i \(-0.0640571\pi\)
\(710\) −1.92883e8 −0.538913
\(711\) 3.85620e8i 1.07288i
\(712\) 1.24103e8i 0.343830i
\(713\) 6.08667e7 + 2.86635e7i 0.167923 + 0.0790789i
\(714\) 1.26931e9 3.48718
\(715\) −1.01700e8 −0.278228
\(716\) 3.07460e8i 0.837626i
\(717\) −3.17990e8 −0.862692
\(718\) −5.00554e8 −1.35231
\(719\) 6.09122e8i 1.63877i −0.573246 0.819384i \(-0.694316\pi\)
0.573246 0.819384i \(-0.305684\pi\)
\(720\) 1.09905e8 0.294455
\(721\) −2.03572e8 −0.543140
\(722\) 1.20816e9 3.21007
\(723\) −8.17035e8 −2.16185
\(724\) 1.16653e8i 0.307383i
\(725\) 3.30613e8i 0.867573i
\(726\) 5.04221e8i 1.31768i
\(727\) 6.85888e8 1.78505 0.892524 0.451000i \(-0.148933\pi\)
0.892524 + 0.451000i \(0.148933\pi\)
\(728\) 2.97271e8i 0.770475i
\(729\) 2.89553e8 0.747386
\(730\) 4.58841e8i 1.17949i
\(731\) 6.72160e8 1.72076
\(732\) 3.58025e8 0.912809
\(733\) 3.55965e8 0.903849 0.451924 0.892056i \(-0.350738\pi\)
0.451924 + 0.892056i \(0.350738\pi\)
\(734\) 4.27758e6i 0.0108171i
\(735\) 1.13291e8i 0.285321i
\(736\) 3.80501e7i 0.0954381i
\(737\) 1.33191e8i 0.332715i
\(738\) 2.54870e8 0.634088
\(739\) 3.43102e8i 0.850138i 0.905161 + 0.425069i \(0.139750\pi\)
−0.905161 + 0.425069i \(0.860250\pi\)
\(740\) 1.33143e8i 0.328567i
\(741\) 6.37442e8 1.56670
\(742\) 8.82432e8i 2.16008i
\(743\) 4.66125e8i 1.13641i 0.822886 + 0.568207i \(0.192363\pi\)
−0.822886 + 0.568207i \(0.807637\pi\)
\(744\) −7.16648e8 3.37485e8i −1.74015 0.819476i
\(745\) −1.05120e8 −0.254223
\(746\) −1.32150e9 −3.18309
\(747\) 6.24553e8i 1.49833i
\(748\) 9.26586e8 2.21402
\(749\) −5.06889e8 −1.20633
\(750\) 9.86347e8i 2.33801i
\(751\) −6.58688e8 −1.55511 −0.777553 0.628817i \(-0.783539\pi\)
−0.777553 + 0.628817i \(0.783539\pi\)
\(752\) −1.49168e8 −0.350770
\(753\) 1.15211e9 2.69842
\(754\) −7.01191e8 −1.63577
\(755\) 1.71569e8i 0.398655i
\(756\) 1.06799e8i 0.247174i
\(757\) 8.19859e8i 1.88996i −0.327134 0.944978i \(-0.606083\pi\)
0.327134 0.944978i \(-0.393917\pi\)
\(758\) −4.60229e8 −1.05674
\(759\) 7.28923e7i 0.166708i
\(760\) −6.65458e8 −1.51593
\(761\) 3.30476e8i 0.749869i 0.927051 + 0.374935i \(0.122335\pi\)
−0.927051 + 0.374935i \(0.877665\pi\)
\(762\) −8.14606e8 −1.84112
\(763\) 5.13986e6 0.0115712
\(764\) −1.08196e9 −2.42622
\(765\) 4.60355e8i 1.02827i
\(766\) 5.81362e8i 1.29348i
\(767\) 3.66020e8i 0.811182i
\(768\) 1.04916e9i 2.31611i
\(769\) 6.02370e8 1.32460 0.662299 0.749240i \(-0.269581\pi\)
0.662299 + 0.749240i \(0.269581\pi\)
\(770\) 2.61474e8i 0.572739i
\(771\) 5.82180e8i 1.27026i
\(772\) 8.04244e8 1.74798
\(773\) 4.69335e7i 0.101612i 0.998709 + 0.0508059i \(0.0161790\pi\)
−0.998709 + 0.0508059i \(0.983821\pi\)
\(774\) 6.41112e8i 1.38265i
\(775\) 1.18652e8 2.51956e8i 0.254900 0.541278i
\(776\) 8.31216e8 1.77881
\(777\) −1.49053e8 −0.317745
\(778\) 8.94353e8i 1.89920i
\(779\) −3.45016e8 −0.729838
\(780\) −5.06701e8 −1.06775
\(781\) 1.57628e8i 0.330888i
\(782\) −2.75446e8 −0.575993
\(783\) 1.14510e8 0.238538
\(784\) −8.35247e7 −0.173327
\(785\) 1.26748e8 0.262018
\(786\) 5.32561e8i 1.09674i
\(787\) 9.16247e7i 0.187970i −0.995574 0.0939850i \(-0.970039\pi\)
0.995574 0.0939850i \(-0.0299606\pi\)
\(788\) 1.17597e9i 2.40335i
\(789\) −7.08963e8 −1.44342
\(790\) 6.41273e8i 1.30065i
\(791\) 4.95538e8 1.00126
\(792\) 4.01735e8i 0.808656i
\(793\) −1.21351e8 −0.243345
\(794\) −1.41039e8 −0.281758
\(795\) 6.83712e8 1.36073
\(796\) 1.62115e9i 3.21428i
\(797\) 3.87232e7i 0.0764885i −0.999268 0.0382443i \(-0.987824\pi\)
0.999268 0.0382443i \(-0.0121765\pi\)
\(798\) 1.63889e9i 3.22509i
\(799\) 6.24815e8i 1.22493i
\(800\) 1.57507e8 0.307631
\(801\) 1.10850e8i 0.215695i
\(802\) 2.67985e8i 0.519502i
\(803\) 3.74975e8 0.724195
\(804\) 6.63602e8i 1.27685i
\(805\) 5.02954e7i 0.0964142i
\(806\) 5.34370e8 + 2.51646e8i 1.02056 + 0.480602i
\(807\) −6.74385e7 −0.128318
\(808\) −1.18088e9 −2.23857
\(809\) 6.09625e8i 1.15138i −0.817669 0.575688i \(-0.804734\pi\)
0.817669 0.575688i \(-0.195266\pi\)
\(810\) 6.26834e8 1.17950
\(811\) −5.59001e8 −1.04797 −0.523987 0.851726i \(-0.675556\pi\)
−0.523987 + 0.851726i \(0.675556\pi\)
\(812\) 1.16653e9i 2.17884i
\(813\) −8.54132e8 −1.58947
\(814\) −1.68155e8 −0.311772
\(815\) −7.83031e6 −0.0144646
\(816\) 7.25069e8 1.33447
\(817\) 8.67870e8i 1.59143i
\(818\) 7.63612e8i 1.39512i
\(819\) 2.65526e8i 0.483342i
\(820\) 2.74252e8 0.497404
\(821\) 5.51307e7i 0.0996241i −0.998759 0.0498121i \(-0.984138\pi\)
0.998759 0.0498121i \(-0.0158622\pi\)
\(822\) −7.57337e7 −0.136356
\(823\) 5.26309e8i 0.944150i −0.881558 0.472075i \(-0.843505\pi\)
0.881558 0.472075i \(-0.156495\pi\)
\(824\) −5.20130e8 −0.929673
\(825\) 3.01736e8 0.537360
\(826\) 9.41053e8 1.66984
\(827\) 2.63685e8i 0.466196i −0.972453 0.233098i \(-0.925114\pi\)
0.972453 0.233098i \(-0.0748864\pi\)
\(828\) 1.69999e8i 0.299472i
\(829\) 9.18588e8i 1.61234i 0.591682 + 0.806171i \(0.298464\pi\)
−0.591682 + 0.806171i \(0.701536\pi\)
\(830\) 1.03861e9i 1.81643i
\(831\) 1.30268e8 0.227005
\(832\) 5.37813e8i 0.933817i
\(833\) 3.49858e8i 0.605280i
\(834\) −3.53129e8 −0.608744
\(835\) 1.14863e8i 0.197298i
\(836\) 1.19638e9i 2.04762i
\(837\) −8.72668e7 4.10959e7i −0.148824 0.0700845i
\(838\) 1.47777e9 2.51116
\(839\) −9.01102e8 −1.52577 −0.762884 0.646536i \(-0.776217\pi\)
−0.762884 + 0.646536i \(0.776217\pi\)
\(840\) 5.92181e8i 0.999118i
\(841\) −6.55926e8 −1.10272
\(842\) 6.03815e8 1.01150
\(843\) 1.50015e8i 0.250410i
\(844\) 5.98625e7 0.0995698
\(845\) −2.10662e8 −0.349153
\(846\) 5.95954e8 0.984242
\(847\) 2.84320e8 0.467904
\(848\) 5.04071e8i 0.826617i
\(849\) 4.41355e8i 0.721215i
\(850\) 1.14020e9i 1.85663i
\(851\) 3.23452e7 0.0524833
\(852\) 7.85356e8i 1.26984i
\(853\) 4.06635e8 0.655175 0.327588 0.944821i \(-0.393764\pi\)
0.327588 + 0.944821i \(0.393764\pi\)
\(854\) 3.11998e8i 0.500931i
\(855\) 5.94394e8 0.950990
\(856\) −1.29511e9 −2.06484
\(857\) −2.18408e8 −0.346998 −0.173499 0.984834i \(-0.555507\pi\)
−0.173499 + 0.984834i \(0.555507\pi\)
\(858\) 6.39946e8i 1.01317i
\(859\) 6.47929e8i 1.02223i 0.859513 + 0.511114i \(0.170767\pi\)
−0.859513 + 0.511114i \(0.829233\pi\)
\(860\) 6.89868e8i 1.08460i
\(861\) 3.07025e8i 0.481021i
\(862\) 9.51071e8 1.48488
\(863\) 9.84008e8i 1.53097i −0.643455 0.765484i \(-0.722499\pi\)
0.643455 0.765484i \(-0.277501\pi\)
\(864\) 5.45537e7i 0.0845830i
\(865\) −3.43931e8 −0.531402
\(866\) 1.48411e9i 2.28514i
\(867\) 2.14348e9i 3.28899i
\(868\) −4.18648e8 + 8.88996e8i −0.640162 + 1.35938i
\(869\) −5.24062e8 −0.798589
\(870\) −1.39681e9 −2.12119
\(871\) 2.24924e8i 0.340393i
\(872\) 1.31324e7 0.0198060
\(873\) −7.42451e8 −1.11590
\(874\) 3.55647e8i 0.532702i
\(875\) 5.56181e8 0.830217
\(876\) 1.86825e9 2.77922
\(877\) −7.18675e8 −1.06545 −0.532726 0.846288i \(-0.678832\pi\)
−0.532726 + 0.846288i \(0.678832\pi\)
\(878\) 1.15468e9 1.70600
\(879\) 1.20134e8i 0.176889i
\(880\) 1.49362e8i 0.219175i
\(881\) 3.72631e8i 0.544944i 0.962164 + 0.272472i \(0.0878411\pi\)
−0.962164 + 0.272472i \(0.912159\pi\)
\(882\) 3.33697e8 0.486348
\(883\) 1.14811e8i 0.166764i −0.996518 0.0833821i \(-0.973428\pi\)
0.996518 0.0833821i \(-0.0265722\pi\)
\(884\) −1.56476e9 −2.26512
\(885\) 7.29132e8i 1.05190i
\(886\) −7.40602e8 −1.06484
\(887\) −5.26691e8 −0.754719 −0.377360 0.926067i \(-0.623168\pi\)
−0.377360 + 0.926067i \(0.623168\pi\)
\(888\) −3.80834e8 −0.543872
\(889\) 4.59340e8i 0.653775i
\(890\) 1.84341e8i 0.261488i
\(891\) 5.12262e8i 0.724200i
\(892\) 9.73410e8i 1.37152i
\(893\) −8.06740e8 −1.13287
\(894\) 6.61468e8i 0.925756i
\(895\) 2.07596e8i 0.289568i
\(896\) −1.07962e9 −1.50088
\(897\) 1.23096e8i 0.170556i
\(898\) 5.10348e8i 0.704753i
\(899\) 9.53182e8 + 4.48874e8i 1.31189 + 0.617797i
\(900\) 7.03707e8 0.965305
\(901\) 2.11139e9 2.88665
\(902\) 3.46371e8i 0.471979i
\(903\) −7.72305e8 −1.04888
\(904\) 1.26611e9 1.71382
\(905\) 7.87637e7i 0.106263i
\(906\) −1.07960e9 −1.45170
\(907\) 3.14153e8 0.421037 0.210518 0.977590i \(-0.432485\pi\)
0.210518 + 0.977590i \(0.432485\pi\)
\(908\) 1.62648e9 2.17266
\(909\) 1.05477e9 1.40432
\(910\) 4.41561e8i 0.585958i
\(911\) 3.98182e8i 0.526655i 0.964706 + 0.263328i \(0.0848200\pi\)
−0.964706 + 0.263328i \(0.915180\pi\)
\(912\) 9.36184e8i 1.23417i
\(913\) 8.48776e8 1.11527
\(914\) 1.04930e9i 1.37424i
\(915\) −2.41737e8 −0.315559
\(916\) 2.25738e9i 2.93710i
\(917\) 3.00300e8 0.389447
\(918\) 3.94917e8 0.510480
\(919\) 2.46305e8 0.317342 0.158671 0.987332i \(-0.449279\pi\)
0.158671 + 0.987332i \(0.449279\pi\)
\(920\) 1.28506e8i 0.165029i
\(921\) 1.36897e9i 1.75233i
\(922\) 2.27914e9i 2.90790i
\(923\) 2.66192e8i 0.338524i
\(924\) −1.06464e9 −1.34954
\(925\) 1.33892e8i 0.169173i
\(926\) 1.26582e9i 1.59419i
\(927\) 4.64585e8 0.583212
\(928\) 5.95870e8i 0.745602i
\(929\) 2.93178e8i 0.365666i −0.983144 0.182833i \(-0.941473\pi\)
0.983144 0.182833i \(-0.0585268\pi\)
\(930\) 1.06450e9 + 5.01294e8i 1.32341 + 0.623223i
\(931\) −4.51724e8 −0.559789
\(932\) 1.21956e8 0.150645
\(933\) 1.37166e9i 1.68889i
\(934\) 4.42221e8 0.542748
\(935\) −6.25627e8 −0.765387
\(936\) 6.78424e8i 0.827320i
\(937\) −1.37821e9 −1.67531 −0.837655 0.546199i \(-0.816074\pi\)
−0.837655 + 0.546199i \(0.816074\pi\)
\(938\) −5.78290e8 −0.700708
\(939\) −1.89921e9 −2.29391
\(940\) 6.41276e8 0.772079
\(941\) 2.38576e8i 0.286324i −0.989699 0.143162i \(-0.954273\pi\)
0.989699 0.143162i \(-0.0457270\pi\)
\(942\) 7.97563e8i 0.954140i
\(943\) 6.66257e7i 0.0794523i
\(944\) 5.37557e8 0.639012
\(945\) 7.21104e7i 0.0854481i
\(946\) −8.71279e8 −1.02916
\(947\) 1.60709e8i 0.189230i −0.995514 0.0946150i \(-0.969838\pi\)
0.995514 0.0946150i \(-0.0301620\pi\)
\(948\) −2.61106e9 −3.06472
\(949\) −6.33233e8 −0.740909
\(950\) −1.47219e9 −1.71709
\(951\) 6.71261e8i 0.780458i
\(952\) 1.82873e9i 2.11953i
\(953\) 1.43500e9i 1.65796i 0.559276 + 0.828981i \(0.311079\pi\)
−0.559276 + 0.828981i \(0.688921\pi\)
\(954\) 2.01386e9i 2.31945i
\(955\) 7.30534e8 0.838746
\(956\) 1.00786e9i 1.15353i
\(957\) 1.14150e9i 1.30239i
\(958\) −3.18009e8 −0.361695
\(959\) 4.27047e7i 0.0484194i
\(960\) 1.07135e9i 1.21093i
\(961\) −5.65316e8 6.84165e8i −0.636973 0.770886i
\(962\) 2.83969e8 0.318967
\(963\) 1.15681e9 1.29533
\(964\) 2.58958e9i 2.89067i
\(965\) −5.43022e8 −0.604277
\(966\) 3.16485e8 0.351093
\(967\) 4.43002e8i 0.489921i 0.969533 + 0.244960i \(0.0787750\pi\)
−0.969533 + 0.244960i \(0.921225\pi\)
\(968\) 7.26443e8 0.800895
\(969\) 3.92137e9 4.30989
\(970\) −1.23467e9 −1.35281
\(971\) 4.46135e8 0.487313 0.243657 0.969862i \(-0.421653\pi\)
0.243657 + 0.969862i \(0.421653\pi\)
\(972\) 2.27530e9i 2.47765i
\(973\) 1.99122e8i 0.216163i
\(974\) 1.31711e9i 1.42542i
\(975\) −5.09552e8 −0.549762
\(976\) 1.78222e8i 0.191696i
\(977\) 9.10448e8 0.976273 0.488136 0.872767i \(-0.337677\pi\)
0.488136 + 0.872767i \(0.337677\pi\)
\(978\) 4.92724e7i 0.0526728i
\(979\) 1.50647e8 0.160551
\(980\) 3.59075e8 0.381510
\(981\) −1.17300e7 −0.0124249
\(982\) 1.34045e9i 1.41552i
\(983\) 1.04694e9i 1.10221i −0.834437 0.551103i \(-0.814207\pi\)
0.834437 0.551103i \(-0.185793\pi\)
\(984\) 7.84454e8i 0.823346i
\(985\) 7.94008e8i 0.830838i
\(986\) −4.31353e9 −4.49989
\(987\) 7.17906e8i 0.746649i
\(988\) 2.02036e9i 2.09488i
\(989\) 1.67593e8 0.173248
\(990\) 5.96729e8i 0.614995i
\(991\) 1.76900e9i 1.81764i 0.417191 + 0.908819i \(0.363015\pi\)
−0.417191 + 0.908819i \(0.636985\pi\)
\(992\) 2.13848e8 4.54106e8i 0.219064 0.465181i
\(993\) −1.12216e9 −1.14606
\(994\) 6.84392e8 0.696860
\(995\) 1.09459e9i 1.11118i
\(996\) 4.22889e9 4.28004
\(997\) −8.93969e8 −0.902063 −0.451031 0.892508i \(-0.648944\pi\)
−0.451031 + 0.892508i \(0.648944\pi\)
\(998\) 7.64437e8i 0.769042i
\(999\) −4.63745e7 −0.0465139
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 31.7.b.c.30.12 yes 12
3.2 odd 2 279.7.d.f.154.1 12
4.3 odd 2 496.7.e.c.433.3 12
31.30 odd 2 inner 31.7.b.c.30.11 12
93.92 even 2 279.7.d.f.154.2 12
124.123 even 2 496.7.e.c.433.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.7.b.c.30.11 12 31.30 odd 2 inner
31.7.b.c.30.12 yes 12 1.1 even 1 trivial
279.7.d.f.154.1 12 3.2 odd 2
279.7.d.f.154.2 12 93.92 even 2
496.7.e.c.433.3 12 4.3 odd 2
496.7.e.c.433.10 12 124.123 even 2