Newspace parameters
Level: | \( N \) | \(=\) | \( 31 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 31.g (of order \(15\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.97189841420\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −2.97541 | − | 9.15736i | 10.1218 | − | 2.15146i | −49.1157 | + | 35.6846i | −52.7703 | + | 91.4008i | −49.8183 | − | 86.2879i | −103.002 | − | 45.8594i | 223.645 | + | 162.488i | −124.169 | + | 55.2835i | 994.003 | + | 211.282i |
7.2 | −2.83153 | − | 8.71456i | 17.2314 | − | 3.66266i | −42.0374 | + | 30.5420i | 48.0550 | − | 83.2337i | −80.7098 | − | 139.793i | 22.3398 | + | 9.94630i | 147.972 | + | 107.508i | 61.5161 | − | 27.3887i | −861.414 | − | 183.099i |
7.3 | −2.62800 | − | 8.08816i | −19.6320 | + | 4.17290i | −32.6234 | + | 23.7023i | 0.998763 | − | 1.72991i | 85.3440 | + | 147.820i | 87.1112 | + | 38.7844i | 57.2761 | + | 41.6135i | 146.010 | − | 65.0077i | −16.6165 | − | 3.53195i |
7.4 | −1.17874 | − | 3.62778i | 16.0292 | − | 3.40711i | 14.1172 | − | 10.2567i | −4.26994 | + | 7.39576i | −31.2545 | − | 54.1343i | 158.296 | + | 70.4781i | −152.601 | − | 110.871i | 23.3355 | − | 10.3896i | 31.8633 | + | 6.77275i |
7.5 | −1.17413 | − | 3.61362i | −7.49492 | + | 1.59309i | 14.2089 | − | 10.3234i | 10.2511 | − | 17.7555i | 14.5569 | + | 25.2133i | −136.752 | − | 60.8857i | −152.354 | − | 110.691i | −168.356 | + | 74.9568i | −76.1977 | − | 16.1963i |
7.6 | 0.227851 | + | 0.701253i | 26.6118 | − | 5.65650i | 25.4487 | − | 18.4896i | −9.46798 | + | 16.3990i | 10.0302 | + | 17.3727i | −184.391 | − | 82.0963i | 37.8530 | + | 27.5018i | 454.198 | − | 202.222i | −13.6572 | − | 2.90292i |
7.7 | 0.326144 | + | 1.00377i | −7.10263 | + | 1.50971i | 24.9874 | − | 18.1544i | −45.3815 | + | 78.6031i | −3.83188 | − | 6.63701i | 143.301 | + | 63.8015i | 53.6957 | + | 39.0122i | −173.823 | + | 77.3912i | −93.7002 | − | 19.9166i |
7.8 | 0.694022 | + | 2.13598i | −29.5682 | + | 6.28491i | 21.8078 | − | 15.8443i | 21.0196 | − | 36.4070i | −33.9454 | − | 58.7951i | 70.5928 | + | 31.4300i | 107.121 | + | 77.8282i | 612.785 | − | 272.829i | 92.3528 | + | 19.6302i |
7.9 | 1.40673 | + | 4.32947i | 6.21041 | − | 1.32006i | 9.12310 | − | 6.62832i | 40.0688 | − | 69.4012i | 14.4516 | + | 25.0308i | 37.9018 | + | 16.8750i | 159.383 | + | 115.798i | −185.165 | + | 82.4407i | 356.837 | + | 75.8480i |
7.10 | 2.05355 | + | 6.32019i | −11.3150 | + | 2.40508i | −9.83914 | + | 7.14855i | −26.3143 | + | 45.5776i | −38.4365 | − | 66.5739i | −171.077 | − | 76.1684i | 106.655 | + | 77.4896i | −99.7469 | + | 44.4102i | −342.097 | − | 72.7149i |
7.11 | 2.71446 | + | 8.35426i | 18.8567 | − | 4.00812i | −36.5368 | + | 26.5455i | −18.0992 | + | 31.3488i | 84.6707 | + | 146.654i | 61.3399 | + | 27.3103i | −93.5364 | − | 67.9581i | 117.519 | − | 52.3229i | −311.025 | − | 66.1105i |
7.12 | 3.17407 | + | 9.76877i | −14.6416 | + | 3.11217i | −59.4656 | + | 43.2043i | 16.0051 | − | 27.7216i | −76.8754 | − | 133.152i | 37.1329 | + | 16.5326i | −344.886 | − | 250.575i | −17.3008 | + | 7.70280i | 321.607 | + | 68.3596i |
9.1 | −2.97541 | + | 9.15736i | 10.1218 | + | 2.15146i | −49.1157 | − | 35.6846i | −52.7703 | − | 91.4008i | −49.8183 | + | 86.2879i | −103.002 | + | 45.8594i | 223.645 | − | 162.488i | −124.169 | − | 55.2835i | 994.003 | − | 211.282i |
9.2 | −2.83153 | + | 8.71456i | 17.2314 | + | 3.66266i | −42.0374 | − | 30.5420i | 48.0550 | + | 83.2337i | −80.7098 | + | 139.793i | 22.3398 | − | 9.94630i | 147.972 | − | 107.508i | 61.5161 | + | 27.3887i | −861.414 | + | 183.099i |
9.3 | −2.62800 | + | 8.08816i | −19.6320 | − | 4.17290i | −32.6234 | − | 23.7023i | 0.998763 | + | 1.72991i | 85.3440 | − | 147.820i | 87.1112 | − | 38.7844i | 57.2761 | − | 41.6135i | 146.010 | + | 65.0077i | −16.6165 | + | 3.53195i |
9.4 | −1.17874 | + | 3.62778i | 16.0292 | + | 3.40711i | 14.1172 | + | 10.2567i | −4.26994 | − | 7.39576i | −31.2545 | + | 54.1343i | 158.296 | − | 70.4781i | −152.601 | + | 110.871i | 23.3355 | + | 10.3896i | 31.8633 | − | 6.77275i |
9.5 | −1.17413 | + | 3.61362i | −7.49492 | − | 1.59309i | 14.2089 | + | 10.3234i | 10.2511 | + | 17.7555i | 14.5569 | − | 25.2133i | −136.752 | + | 60.8857i | −152.354 | + | 110.691i | −168.356 | − | 74.9568i | −76.1977 | + | 16.1963i |
9.6 | 0.227851 | − | 0.701253i | 26.6118 | + | 5.65650i | 25.4487 | + | 18.4896i | −9.46798 | − | 16.3990i | 10.0302 | − | 17.3727i | −184.391 | + | 82.0963i | 37.8530 | − | 27.5018i | 454.198 | + | 202.222i | −13.6572 | + | 2.90292i |
9.7 | 0.326144 | − | 1.00377i | −7.10263 | − | 1.50971i | 24.9874 | + | 18.1544i | −45.3815 | − | 78.6031i | −3.83188 | + | 6.63701i | 143.301 | − | 63.8015i | 53.6957 | − | 39.0122i | −173.823 | − | 77.3912i | −93.7002 | + | 19.9166i |
9.8 | 0.694022 | − | 2.13598i | −29.5682 | − | 6.28491i | 21.8078 | + | 15.8443i | 21.0196 | + | 36.4070i | −33.9454 | + | 58.7951i | 70.5928 | − | 31.4300i | 107.121 | − | 77.8282i | 612.785 | + | 272.829i | 92.3528 | − | 19.6302i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.g | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 31.6.g.a | ✓ | 96 |
31.g | even | 15 | 1 | inner | 31.6.g.a | ✓ | 96 |
31.g | even | 15 | 1 | 961.6.a.j | 48 | ||
31.h | odd | 30 | 1 | 961.6.a.k | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.6.g.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
31.6.g.a | ✓ | 96 | 31.g | even | 15 | 1 | inner |
961.6.a.j | 48 | 31.g | even | 15 | 1 | ||
961.6.a.k | 48 | 31.h | odd | 30 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{6}^{\mathrm{new}}(31, [\chi])\).