Newspace parameters
Level: | \( N \) | \(=\) | \( 31 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 31.h (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.20446885560\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −6.23929 | + | 4.53311i | −12.8658 | − | 1.35225i | 13.4354 | − | 41.3498i | −16.0694 | + | 27.8330i | 86.4033 | − | 49.8850i | −1.96773 | + | 0.418254i | 65.4850 | + | 201.542i | 84.4701 | + | 17.9547i | −25.9084 | − | 246.502i |
3.2 | −5.87290 | + | 4.26691i | 13.9923 | + | 1.47065i | 11.3402 | − | 34.9014i | 14.4955 | − | 25.1070i | −88.4507 | + | 51.0671i | 44.8663 | − | 9.53663i | 46.4297 | + | 142.896i | 114.393 | + | 24.3149i | 21.9985 | + | 209.302i |
3.3 | −3.52193 | + | 2.55883i | 2.65826 | + | 0.279395i | 0.912109 | − | 2.80718i | −6.17859 | + | 10.7016i | −10.0771 | + | 5.81804i | −46.4227 | + | 9.86745i | −17.5534 | − | 54.0239i | −72.2417 | − | 15.3554i | −5.62312 | − | 53.5004i |
3.4 | −2.99168 | + | 2.17358i | −8.61730 | − | 0.905715i | −0.718579 | + | 2.21156i | 15.9893 | − | 27.6944i | 27.7489 | − | 16.0208i | 48.5707 | − | 10.3240i | −20.9408 | − | 64.4491i | −5.79241 | − | 1.23122i | 12.3610 | + | 117.607i |
3.5 | 0.105341 | − | 0.0765347i | 13.2039 | + | 1.38779i | −4.93903 | + | 15.2008i | 0.860842 | − | 1.49102i | 1.49713 | − | 0.864368i | 6.58473 | − | 1.39963i | 1.28689 | + | 3.96065i | 93.1878 | + | 19.8077i | −0.0234330 | − | 0.222950i |
3.6 | 0.957995 | − | 0.696024i | −4.87678 | − | 0.512570i | −4.51097 | + | 13.8833i | −19.9028 | + | 34.4727i | −5.02869 | + | 2.90332i | 75.9020 | − | 16.1335i | 11.1964 | + | 34.4590i | −55.7097 | − | 11.8415i | 4.92703 | + | 46.8775i |
3.7 | 1.59715 | − | 1.16040i | −12.1013 | − | 1.27190i | −3.73990 | + | 11.5102i | 1.48190 | − | 2.56672i | −20.8036 | + | 12.0109i | −87.7529 | + | 18.6524i | 17.1442 | + | 52.7645i | 65.5938 | + | 13.9424i | −0.611606 | − | 5.81905i |
3.8 | 3.51941 | − | 2.55700i | 0.0842863 | + | 0.00885885i | 0.903727 | − | 2.78139i | 21.4739 | − | 37.1939i | 0.319290 | − | 0.184342i | 33.2459 | − | 7.06663i | 17.5773 | + | 54.0974i | −79.2229 | − | 16.8394i | −19.5294 | − | 185.810i |
3.9 | 4.95024 | − | 3.59656i | 7.69999 | + | 0.809302i | 6.62534 | − | 20.3907i | −7.33404 | + | 12.7029i | 41.0275 | − | 23.6872i | −30.9988 | + | 6.58900i | −10.2862 | − | 31.6576i | −20.5951 | − | 4.37762i | 9.38158 | + | 89.2598i |
3.10 | 6.18665 | − | 4.49486i | −15.7819 | − | 1.65875i | 13.1266 | − | 40.3994i | −2.57606 | + | 4.46187i | −105.093 | + | 60.6755i | 54.5218 | − | 11.5890i | −62.5710 | − | 192.574i | 167.088 | + | 35.5156i | 4.11831 | + | 39.1831i |
11.1 | −2.06958 | − | 6.36951i | 1.99917 | − | 1.80007i | −23.3433 | + | 16.9599i | −16.3958 | − | 28.3984i | −15.6030 | − | 9.00839i | 2.86136 | + | 27.2240i | 69.6453 | + | 50.6002i | −7.71034 | + | 73.3590i | −146.952 | + | 163.206i |
11.2 | −1.81716 | − | 5.59264i | −8.09014 | + | 7.28440i | −15.0313 | + | 10.9209i | 13.9166 | + | 24.1043i | 55.4401 | + | 32.0083i | 0.302758 | + | 2.88055i | 12.2726 | + | 8.91656i | 3.92116 | − | 37.3073i | 109.518 | − | 121.632i |
11.3 | −1.20822 | − | 3.71853i | 11.2749 | − | 10.1519i | 0.576617 | − | 0.418937i | 8.94674 | + | 15.4962i | −51.3729 | − | 29.6601i | 4.13118 | + | 39.3055i | −52.8652 | − | 38.4088i | 15.5941 | − | 148.368i | 46.8134 | − | 51.9916i |
11.4 | −0.848371 | − | 2.61102i | 1.78506 | − | 1.60727i | 6.84659 | − | 4.97434i | 0.623819 | + | 1.08049i | −5.71100 | − | 3.29725i | −7.64750 | − | 72.7611i | −54.3336 | − | 39.4757i | −7.86370 | + | 74.8181i | 2.29194 | − | 2.54546i |
11.5 | −0.287645 | − | 0.885280i | −10.3597 | + | 9.32794i | 12.2433 | − | 8.89527i | −21.4191 | − | 37.0990i | 11.2378 | + | 6.48813i | −3.76934 | − | 35.8629i | −23.4456 | − | 17.0342i | 11.8467 | − | 112.714i | −26.6819 | + | 29.6333i |
11.6 | 0.0742929 | + | 0.228650i | −5.53397 | + | 4.98281i | 12.8975 | − | 9.37059i | 11.1159 | + | 19.2533i | −1.55045 | − | 0.895155i | 8.89648 | + | 84.6444i | 6.21280 | + | 4.51386i | −2.67036 | + | 25.4068i | −3.57644 | + | 3.97204i |
11.7 | 0.774721 | + | 2.38435i | 7.54548 | − | 6.79398i | 7.85936 | − | 5.71016i | −19.1726 | − | 33.2079i | 22.0448 | + | 12.7276i | 3.49477 | + | 33.2505i | 52.1557 | + | 37.8934i | 2.30929 | − | 21.9714i | 64.3257 | − | 71.4409i |
11.8 | 0.970390 | + | 2.98655i | 3.96725 | − | 3.57213i | 4.96643 | − | 3.60832i | 13.2322 | + | 22.9188i | 14.5181 | + | 8.38205i | −5.15690 | − | 49.0646i | 56.2440 | + | 40.8637i | −5.48783 | + | 52.2132i | −55.6079 | + | 61.7588i |
11.9 | 1.83141 | + | 5.63649i | −6.35706 | + | 5.72392i | −15.4717 | + | 11.2408i | −1.99371 | − | 3.45321i | −43.9052 | − | 25.3487i | 0.0475085 | + | 0.452013i | −14.9788 | − | 10.8827i | −0.817885 | + | 7.78165i | 15.8127 | − | 17.5618i |
11.10 | 2.38919 | + | 7.35316i | 10.8941 | − | 9.80911i | −35.4165 | + | 25.7316i | 7.71154 | + | 13.3568i | 98.1560 | + | 56.6704i | 2.44380 | + | 23.2512i | −173.745 | − | 126.233i | 13.9964 | − | 133.167i | −79.7902 | + | 88.6160i |
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.h | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 31.5.h.a | ✓ | 80 |
31.h | odd | 30 | 1 | inner | 31.5.h.a | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.5.h.a | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
31.5.h.a | ✓ | 80 | 31.h | odd | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(31, [\chi])\).