Newspace parameters
Level: | \( N \) | \(=\) | \( 31 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 31.f (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.20446885560\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15.1 | −5.57132 | + | 4.04780i | 3.06627 | − | 4.22036i | 9.71064 | − | 29.8863i | 23.0787 | 35.9246i | −5.48427 | + | 16.8789i | 32.8237 | + | 101.021i | 16.6209 | + | 51.1540i | −128.579 | + | 93.4180i | ||||
15.2 | −3.99299 | + | 2.90108i | −6.95155 | + | 9.56799i | 2.58345 | − | 7.95104i | −0.0618873 | − | 58.3719i | 5.65199 | − | 17.3950i | −11.6521 | − | 35.8615i | −18.1920 | − | 55.9892i | 0.247115 | − | 0.179540i | |||
15.3 | −3.66939 | + | 2.66597i | 7.06689 | − | 9.72674i | 1.41276 | − | 4.34804i | −44.3313 | 54.5313i | 17.8399 | − | 54.9055i | −16.0176 | − | 49.2970i | −19.6382 | − | 60.4400i | 162.669 | − | 118.186i | ||||
15.4 | −1.19136 | + | 0.865573i | 0.644517 | − | 0.887101i | −4.27415 | + | 13.1545i | −1.23246 | 1.61473i | −23.4764 | + | 72.2530i | −13.5751 | − | 41.7797i | 24.6588 | + | 75.8921i | 1.46831 | − | 1.06679i | ||||
15.5 | 0.129011 | − | 0.0937321i | 4.21329 | − | 5.79909i | −4.93641 | + | 15.1927i | 33.7795 | − | 1.14307i | 24.9042 | − | 76.6471i | 1.57564 | + | 4.84932i | 9.15268 | + | 28.1691i | 4.35793 | − | 3.16622i | |||
15.6 | 1.65757 | − | 1.20430i | −5.47296 | + | 7.53288i | −3.64705 | + | 11.2245i | −37.3945 | 19.0774i | 8.17809 | − | 25.1696i | 17.6025 | + | 54.1751i | −1.76066 | − | 5.41876i | −61.9842 | + | 45.0341i | ||||
15.7 | 3.01837 | − | 2.19297i | 9.74278 | − | 13.4098i | −0.642851 | + | 1.97849i | −9.66586 | − | 61.8414i | −17.5449 | + | 53.9977i | 20.8451 | + | 64.1545i | −59.8702 | − | 184.262i | −29.1751 | + | 21.1970i | |||
15.8 | 3.11734 | − | 2.26488i | −8.18387 | + | 11.2641i | −0.356154 | + | 1.09613i | 40.0060 | 53.6495i | −8.49904 | + | 26.1574i | 20.4238 | + | 62.8580i | −34.8745 | − | 107.333i | 124.712 | − | 90.6087i | ||||
15.9 | 5.19375 | − | 3.77348i | 0.773818 | − | 1.06507i | 7.79160 | − | 23.9801i | −1.32406 | − | 8.45169i | 3.10021 | − | 9.54147i | −18.2794 | − | 56.2581i | 24.4948 | + | 75.3872i | −6.87683 | + | 4.99631i | |||
23.1 | −2.30154 | + | 7.08340i | 0.135338 | − | 0.0439738i | −31.9333 | − | 23.2009i | −18.1577 | 1.05986i | 10.5920 | + | 7.69552i | 141.429 | − | 102.754i | −65.5140 | + | 47.5987i | 41.7905 | − | 128.618i | ||||
23.2 | −1.60665 | + | 4.94476i | −15.6281 | + | 5.07789i | −8.92504 | − | 6.48442i | 30.2396 | − | 85.4357i | −52.6343 | − | 38.2411i | −20.8969 | + | 15.1825i | 152.923 | − | 111.105i | −48.5844 | + | 149.527i | |||
23.3 | −1.33487 | + | 4.10831i | 7.83134 | − | 2.54456i | −2.15208 | − | 1.56358i | 21.7607 | 35.5702i | 7.98302 | + | 5.80000i | −46.6194 | + | 33.8710i | −10.6753 | + | 7.75606i | −29.0478 | + | 89.3999i | ||||
23.4 | −0.697431 | + | 2.14647i | −5.17987 | + | 1.68304i | 8.82334 | + | 6.41053i | −35.2158 | − | 12.2923i | −13.1009 | − | 9.51835i | −49.1281 | + | 35.6936i | −41.5319 | + | 30.1747i | 24.5606 | − | 75.5898i | |||
23.5 | 0.300296 | − | 0.924216i | 13.0181 | − | 4.22985i | 12.1803 | + | 8.84949i | −23.3923 | − | 13.3018i | 2.85368 | + | 2.07332i | 24.4155 | − | 17.7389i | 86.0501 | − | 62.5190i | −7.02461 | + | 21.6195i | |||
23.6 | 0.416650 | − | 1.28232i | −7.95500 | + | 2.58474i | 11.4735 | + | 8.33601i | 20.3736 | 11.2778i | 51.5849 | + | 37.4786i | 32.9227 | − | 23.9197i | −8.92916 | + | 6.48742i | 8.48864 | − | 26.1253i | ||||
23.7 | 1.17020 | − | 3.60149i | 4.81539 | − | 1.56461i | 1.34288 | + | 0.975660i | 26.3902 | − | 19.1735i | −57.3808 | − | 41.6896i | 54.1031 | − | 39.3082i | −44.7904 | + | 32.5422i | 30.8817 | − | 95.0441i | |||
23.8 | 1.73579 | − | 5.34220i | −11.2256 | + | 3.64741i | −12.5819 | − | 9.14128i | −23.2172 | 66.3004i | −34.4697 | − | 25.0437i | 2.03552 | − | 1.47889i | 47.1794 | − | 34.2779i | −40.3002 | + | 124.031i | ||||
23.9 | 2.12658 | − | 6.54494i | 6.78918 | − | 2.20594i | −25.3696 | − | 18.4321i | −2.63517 | − | 49.1258i | 43.4024 | + | 31.5337i | −85.5079 | + | 62.1251i | −24.3036 | + | 17.6576i | −5.60390 | + | 17.2470i | |||
27.1 | −2.30154 | − | 7.08340i | 0.135338 | + | 0.0439738i | −31.9333 | + | 23.2009i | −18.1577 | − | 1.05986i | 10.5920 | − | 7.69552i | 141.429 | + | 102.754i | −65.5140 | − | 47.5987i | 41.7905 | + | 128.618i | |||
27.2 | −1.60665 | − | 4.94476i | −15.6281 | − | 5.07789i | −8.92504 | + | 6.48442i | 30.2396 | 85.4357i | −52.6343 | + | 38.2411i | −20.8969 | − | 15.1825i | 152.923 | + | 111.105i | −48.5844 | − | 149.527i | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.f | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 31.5.f.a | ✓ | 36 |
31.f | odd | 10 | 1 | inner | 31.5.f.a | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
31.5.f.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
31.5.f.a | ✓ | 36 | 31.f | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(31, [\chi])\).