Properties

Label 31.25.b.a
Level $31$
Weight $25$
Character orbit 31.b
Self dual yes
Analytic conductor $113.140$
Analytic rank $0$
Dimension $1$
CM discriminant -31
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [31,25,Mod(30,31)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(31, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 25, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("31.30");
 
S:= CuspForms(chi, 25);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 31 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 31.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.139817200\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 1217 q^{2} - 15296127 q^{4} + 368217506 q^{5} - 25142615998 q^{7} - 39033258431 q^{8} + 282429536481 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 1217 q^{2} - 15296127 q^{4} + 368217506 q^{5} - 25142615998 q^{7} - 39033258431 q^{8} + 282429536481 q^{9} + 448120704802 q^{10} - 30598563669566 q^{14} + 209122951131905 q^{16} + 343716745897377 q^{18} - 40\!\cdots\!78 q^{19}+ \cdots + 53\!\cdots\!51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
30.1
0
1217.00 0 −1.52961e7 3.68218e8 0 −2.51426e10 −3.90333e10 2.82430e11 4.48121e11
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 CM by \(\Q(\sqrt{-31}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 31.25.b.a 1
31.b odd 2 1 CM 31.25.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.25.b.a 1 1.a even 1 1 trivial
31.25.b.a 1 31.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1217 \) acting on \(S_{25}^{\mathrm{new}}(31, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1217 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 368217506 \) Copy content Toggle raw display
$7$ \( T + 25142615998 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 4078801295506078 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 78\!\cdots\!61 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T + 11\!\cdots\!38 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 16\!\cdots\!18 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 74\!\cdots\!62 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 10\!\cdots\!22 \) Copy content Toggle raw display
$71$ \( T + 20\!\cdots\!18 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 11\!\cdots\!82 \) Copy content Toggle raw display
show more
show less