Properties

Label 31.2.g.a.9.2
Level 31
Weight 2
Character 31.9
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 9.2
Root \(-0.176392i\)
Character \(\chi\) = 31.9
Dual form 31.2.g.a.7.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.380762 - 1.17187i) q^{2}\) \(+(-2.02963 - 0.431412i) q^{3}\) \(+(0.389745 + 0.283166i) q^{4}\) \(+(0.772811 + 1.33855i) q^{5}\) \(+(-1.27836 + 2.21419i) q^{6}\) \(+(-3.47491 + 1.54713i) q^{7}\) \(+(2.47393 - 1.79742i) q^{8}\) \(+(1.19265 + 0.531003i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.380762 - 1.17187i) q^{2}\) \(+(-2.02963 - 0.431412i) q^{3}\) \(+(0.389745 + 0.283166i) q^{4}\) \(+(0.772811 + 1.33855i) q^{5}\) \(+(-1.27836 + 2.21419i) q^{6}\) \(+(-3.47491 + 1.54713i) q^{7}\) \(+(2.47393 - 1.79742i) q^{8}\) \(+(1.19265 + 0.531003i) q^{9}\) \(+(1.86286 - 0.395962i) q^{10}\) \(+(0.393186 - 3.74092i) q^{11}\) \(+(-0.668878 - 0.742864i) q^{12}\) \(+(-1.76320 + 1.95823i) q^{13}\) \(+(0.489913 + 4.66121i) q^{14}\) \(+(-0.991057 - 3.05016i) q^{15}\) \(+(-0.866611 - 2.66715i) q^{16}\) \(+(-0.394526 - 3.75366i) q^{17}\) \(+(1.07638 - 1.19544i) q^{18}\) \(+(4.08057 + 4.53193i) q^{19}\) \(+(-0.0778325 + 0.740527i) q^{20}\) \(+(7.72023 - 1.64099i) q^{21}\) \(+(-4.23414 - 1.88516i) q^{22}\) \(+(-0.736082 + 0.534795i) q^{23}\) \(+(-5.79659 + 2.58081i) q^{24}\) \(+(1.30553 - 2.26124i) q^{25}\) \(+(1.62343 + 2.81186i) q^{26}\) \(+(2.84451 + 2.06665i) q^{27}\) \(+(-1.79242 - 0.380991i) q^{28}\) \(+(-2.10397 + 6.47535i) q^{29}\) \(-3.95173 q^{30}\) \(+(-3.88819 - 3.98522i) q^{31}\) \(+2.66037 q^{32}\) \(+(-2.41190 + 7.42306i) q^{33}\) \(+(-4.54901 - 0.966922i) q^{34}\) \(+(-4.75635 - 3.45569i) q^{35}\) \(+(0.314468 + 0.544675i) q^{36}\) \(+(0.907032 - 1.57103i) q^{37}\) \(+(6.86454 - 3.05629i) q^{38}\) \(+(4.42345 - 3.21383i) q^{39}\) \(+(4.31781 + 1.92241i) q^{40}\) \(+(-0.329777 + 0.0700963i) q^{41}\) \(+(1.01656 - 9.67189i) q^{42}\) \(+(2.59890 + 2.88637i) q^{43}\) \(+(1.21255 - 1.34667i) q^{44}\) \(+(0.210922 + 2.00679i) q^{45}\) \(+(0.346435 + 1.06622i) q^{46}\) \(+(-0.367467 - 1.13095i) q^{47}\) \(+(0.608260 + 5.78721i) q^{48}\) \(+(4.99745 - 5.55023i) q^{49}\) \(+(-2.15277 - 2.39089i) q^{50}\) \(+(-0.818631 + 7.78876i) q^{51}\) \(+(-1.24171 + 0.263933i) q^{52}\) \(+(-2.14147 - 0.953442i) q^{53}\) \(+(3.50492 - 2.54647i) q^{54}\) \(+(5.31126 - 2.36473i) q^{55}\) \(+(-5.81584 + 10.0733i) q^{56}\) \(+(-6.32692 - 10.9586i) q^{57}\) \(+(6.78713 + 4.93114i) q^{58}\) \(+(-7.60885 - 1.61731i) q^{59}\) \(+(0.477443 - 1.46942i) q^{60}\) \(-2.72343 q^{61}\) \(+(-6.15062 + 3.03901i) q^{62}\) \(-4.96588 q^{63}\) \(+(2.74619 - 8.45191i) q^{64}\) \(+(-3.98381 - 0.846786i) q^{65}\) \(+(7.78047 + 5.65284i) q^{66}\) \(+(3.71059 + 6.42693i) q^{67}\) \(+(0.909147 - 1.57469i) q^{68}\) \(+(1.72469 - 0.767882i) q^{69}\) \(+(-5.86065 + 4.25801i) q^{70}\) \(+(-4.65742 - 2.07362i) q^{71}\) \(+(3.90497 - 0.830027i) q^{72}\) \(+(-0.563591 + 5.36221i) q^{73}\) \(+(-1.49567 - 1.66111i) q^{74}\) \(+(-3.62526 + 4.02626i) q^{75}\) \(+(0.307091 + 2.92178i) q^{76}\) \(+(4.42139 + 13.6076i) q^{77}\) \(+(-2.08189 - 6.40740i) q^{78}\) \(+(1.01782 + 9.68388i) q^{79}\) \(+(2.90039 - 3.22121i) q^{80}\) \(+(-7.50241 - 8.33227i) q^{81}\) \(+(-0.0434232 + 0.413145i) q^{82}\) \(+(8.21169 - 1.74545i) q^{83}\) \(+(3.47359 + 1.54654i) q^{84}\) \(+(4.71957 - 3.42897i) q^{85}\) \(+(4.37200 - 1.94654i) q^{86}\) \(+(7.06383 - 12.2349i) q^{87}\) \(+(-5.75127 - 9.96149i) q^{88}\) \(+(-4.12243 - 2.99512i) q^{89}\) \(+(2.43200 + 0.516937i) q^{90}\) \(+(3.09732 - 9.53258i) q^{91}\) \(-0.438320 q^{92}\) \(+(6.17231 + 9.76595i) q^{93}\) \(-1.46523 q^{94}\) \(+(-2.91270 + 8.96437i) q^{95}\) \(+(-5.39957 - 1.14771i) q^{96}\) \(+(-8.82979 - 6.41522i) q^{97}\) \(+(-4.60129 - 7.96966i) q^{98}\) \(+(2.45537 - 4.25283i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.380762 1.17187i 0.269240 0.828634i −0.721447 0.692470i \(-0.756523\pi\)
0.990686 0.136164i \(-0.0434774\pi\)
\(3\) −2.02963 0.431412i −1.17181 0.249076i −0.419418 0.907793i \(-0.637766\pi\)
−0.752390 + 0.658718i \(0.771099\pi\)
\(4\) 0.389745 + 0.283166i 0.194873 + 0.141583i
\(5\) 0.772811 + 1.33855i 0.345612 + 0.598617i 0.985465 0.169880i \(-0.0543381\pi\)
−0.639853 + 0.768497i \(0.721005\pi\)
\(6\) −1.27836 + 2.21419i −0.521890 + 0.903939i
\(7\) −3.47491 + 1.54713i −1.31339 + 0.584759i −0.939448 0.342692i \(-0.888661\pi\)
−0.373943 + 0.927452i \(0.621995\pi\)
\(8\) 2.47393 1.79742i 0.874666 0.635482i
\(9\) 1.19265 + 0.531003i 0.397551 + 0.177001i
\(10\) 1.86286 0.395962i 0.589087 0.125214i
\(11\) 0.393186 3.74092i 0.118550 1.12793i −0.759882 0.650061i \(-0.774743\pi\)
0.878432 0.477868i \(-0.158590\pi\)
\(12\) −0.668878 0.742864i −0.193088 0.214446i
\(13\) −1.76320 + 1.95823i −0.489024 + 0.543116i −0.936264 0.351298i \(-0.885740\pi\)
0.447240 + 0.894414i \(0.352407\pi\)
\(14\) 0.489913 + 4.66121i 0.130935 + 1.24576i
\(15\) −0.991057 3.05016i −0.255890 0.787548i
\(16\) −0.866611 2.66715i −0.216653 0.666789i
\(17\) −0.394526 3.75366i −0.0956866 0.910397i −0.932076 0.362262i \(-0.882005\pi\)
0.836390 0.548135i \(-0.184662\pi\)
\(18\) 1.07638 1.19544i 0.253705 0.281768i
\(19\) 4.08057 + 4.53193i 0.936147 + 1.03970i 0.999131 + 0.0416817i \(0.0132716\pi\)
−0.0629842 + 0.998015i \(0.520062\pi\)
\(20\) −0.0778325 + 0.740527i −0.0174039 + 0.165587i
\(21\) 7.72023 1.64099i 1.68469 0.358092i
\(22\) −4.23414 1.88516i −0.902722 0.401918i
\(23\) −0.736082 + 0.534795i −0.153484 + 0.111512i −0.661877 0.749613i \(-0.730240\pi\)
0.508393 + 0.861125i \(0.330240\pi\)
\(24\) −5.79659 + 2.58081i −1.18322 + 0.526805i
\(25\) 1.30553 2.26124i 0.261105 0.452247i
\(26\) 1.62343 + 2.81186i 0.318380 + 0.551450i
\(27\) 2.84451 + 2.06665i 0.547425 + 0.397728i
\(28\) −1.79242 0.380991i −0.338736 0.0720006i
\(29\) −2.10397 + 6.47535i −0.390697 + 1.20244i 0.541565 + 0.840659i \(0.317832\pi\)
−0.932262 + 0.361784i \(0.882168\pi\)
\(30\) −3.95173 −0.721485
\(31\) −3.88819 3.98522i −0.698339 0.715767i
\(32\) 2.66037 0.470292
\(33\) −2.41190 + 7.42306i −0.419858 + 1.29219i
\(34\) −4.54901 0.966922i −0.780149 0.165826i
\(35\) −4.75635 3.45569i −0.803970 0.584119i
\(36\) 0.314468 + 0.544675i 0.0524114 + 0.0907792i
\(37\) 0.907032 1.57103i 0.149115 0.258275i −0.781786 0.623547i \(-0.785691\pi\)
0.930901 + 0.365272i \(0.119024\pi\)
\(38\) 6.86454 3.05629i 1.11358 0.495796i
\(39\) 4.42345 3.21383i 0.708320 0.514624i
\(40\) 4.31781 + 1.92241i 0.682705 + 0.303960i
\(41\) −0.329777 + 0.0700963i −0.0515026 + 0.0109472i −0.233591 0.972335i \(-0.575048\pi\)
0.182088 + 0.983282i \(0.441714\pi\)
\(42\) 1.01656 9.67189i 0.156858 1.49241i
\(43\) 2.59890 + 2.88637i 0.396329 + 0.440167i 0.907972 0.419030i \(-0.137630\pi\)
−0.511644 + 0.859198i \(0.670963\pi\)
\(44\) 1.21255 1.34667i 0.182798 0.203018i
\(45\) 0.210922 + 2.00679i 0.0314424 + 0.299154i
\(46\) 0.346435 + 1.06622i 0.0510791 + 0.157205i
\(47\) −0.367467 1.13095i −0.0536005 0.164965i 0.920673 0.390335i \(-0.127641\pi\)
−0.974273 + 0.225370i \(0.927641\pi\)
\(48\) 0.608260 + 5.78721i 0.0877948 + 0.835311i
\(49\) 4.99745 5.55023i 0.713922 0.792890i
\(50\) −2.15277 2.39089i −0.304448 0.338123i
\(51\) −0.818631 + 7.78876i −0.114631 + 1.09064i
\(52\) −1.24171 + 0.263933i −0.172194 + 0.0366009i
\(53\) −2.14147 0.953442i −0.294153 0.130965i 0.254354 0.967111i \(-0.418137\pi\)
−0.548507 + 0.836146i \(0.684804\pi\)
\(54\) 3.50492 2.54647i 0.476959 0.346531i
\(55\) 5.31126 2.36473i 0.716170 0.318859i
\(56\) −5.81584 + 10.0733i −0.777175 + 1.34611i
\(57\) −6.32692 10.9586i −0.838022 1.45150i
\(58\) 6.78713 + 4.93114i 0.891194 + 0.647490i
\(59\) −7.60885 1.61731i −0.990587 0.210556i −0.316007 0.948757i \(-0.602342\pi\)
−0.674581 + 0.738201i \(0.735676\pi\)
\(60\) 0.477443 1.46942i 0.0616377 0.189701i
\(61\) −2.72343 −0.348700 −0.174350 0.984684i \(-0.555782\pi\)
−0.174350 + 0.984684i \(0.555782\pi\)
\(62\) −6.15062 + 3.03901i −0.781130 + 0.385954i
\(63\) −4.96588 −0.625642
\(64\) 2.74619 8.45191i 0.343274 1.05649i
\(65\) −3.98381 0.846786i −0.494131 0.105031i
\(66\) 7.78047 + 5.65284i 0.957709 + 0.695817i
\(67\) 3.71059 + 6.42693i 0.453321 + 0.785175i 0.998590 0.0530864i \(-0.0169059\pi\)
−0.545269 + 0.838261i \(0.683573\pi\)
\(68\) 0.909147 1.57469i 0.110250 0.190959i
\(69\) 1.72469 0.767882i 0.207628 0.0924421i
\(70\) −5.86065 + 4.25801i −0.700481 + 0.508929i
\(71\) −4.65742 2.07362i −0.552734 0.246093i 0.111311 0.993786i \(-0.464495\pi\)
−0.664045 + 0.747693i \(0.731162\pi\)
\(72\) 3.90497 0.830027i 0.460205 0.0978196i
\(73\) −0.563591 + 5.36221i −0.0659633 + 0.627599i 0.910736 + 0.412988i \(0.135515\pi\)
−0.976700 + 0.214611i \(0.931152\pi\)
\(74\) −1.49567 1.66111i −0.173868 0.193100i
\(75\) −3.62526 + 4.02626i −0.418609 + 0.464912i
\(76\) 0.307091 + 2.92178i 0.0352258 + 0.335151i
\(77\) 4.42139 + 13.6076i 0.503865 + 1.55074i
\(78\) −2.08189 6.40740i −0.235728 0.725495i
\(79\) 1.01782 + 9.68388i 0.114513 + 1.08952i 0.889308 + 0.457309i \(0.151187\pi\)
−0.774795 + 0.632213i \(0.782147\pi\)
\(80\) 2.90039 3.22121i 0.324273 0.360142i
\(81\) −7.50241 8.33227i −0.833601 0.925808i
\(82\) −0.0434232 + 0.413145i −0.00479530 + 0.0456242i
\(83\) 8.21169 1.74545i 0.901350 0.191588i 0.266147 0.963933i \(-0.414249\pi\)
0.635204 + 0.772345i \(0.280916\pi\)
\(84\) 3.47359 + 1.54654i 0.379000 + 0.168742i
\(85\) 4.71957 3.42897i 0.511909 0.371924i
\(86\) 4.37200 1.94654i 0.471445 0.209901i
\(87\) 7.06383 12.2349i 0.757322 1.31172i
\(88\) −5.75127 9.96149i −0.613087 1.06190i
\(89\) −4.12243 2.99512i −0.436976 0.317482i 0.347456 0.937696i \(-0.387046\pi\)
−0.784432 + 0.620214i \(0.787046\pi\)
\(90\) 2.43200 + 0.516937i 0.256355 + 0.0544899i
\(91\) 3.09732 9.53258i 0.324688 0.999285i
\(92\) −0.438320 −0.0456980
\(93\) 6.17231 + 9.76595i 0.640039 + 1.01268i
\(94\) −1.46523 −0.151127
\(95\) −2.91270 + 8.96437i −0.298837 + 0.919725i
\(96\) −5.39957 1.14771i −0.551092 0.117138i
\(97\) −8.82979 6.41522i −0.896530 0.651367i 0.0410427 0.999157i \(-0.486932\pi\)
−0.937572 + 0.347791i \(0.886932\pi\)
\(98\) −4.60129 7.96966i −0.464800 0.805057i
\(99\) 2.45537 4.25283i 0.246774 0.427426i
\(100\) 1.14913 0.511625i 0.114913 0.0511625i
\(101\) 0.322577 0.234366i 0.0320976 0.0233203i −0.571621 0.820518i \(-0.693685\pi\)
0.603718 + 0.797198i \(0.293685\pi\)
\(102\) 8.81567 + 3.92499i 0.872881 + 0.388632i
\(103\) −3.20520 + 0.681286i −0.315817 + 0.0671291i −0.363093 0.931753i \(-0.618279\pi\)
0.0472758 + 0.998882i \(0.484946\pi\)
\(104\) −0.842278 + 8.01374i −0.0825921 + 0.785812i
\(105\) 8.16282 + 9.06573i 0.796609 + 0.884724i
\(106\) −1.93269 + 2.14647i −0.187720 + 0.208484i
\(107\) −0.329980 3.13955i −0.0319004 0.303512i −0.998826 0.0484517i \(-0.984571\pi\)
0.966925 0.255060i \(-0.0820953\pi\)
\(108\) 0.523425 + 1.61094i 0.0503666 + 0.155013i
\(109\) 2.14959 + 6.61576i 0.205893 + 0.633675i 0.999676 + 0.0254724i \(0.00810899\pi\)
−0.793782 + 0.608202i \(0.791891\pi\)
\(110\) −0.748813 7.12448i −0.0713965 0.679292i
\(111\) −2.51870 + 2.79730i −0.239064 + 0.265508i
\(112\) 7.13782 + 7.92735i 0.674461 + 0.749064i
\(113\) 1.59372 15.1633i 0.149925 1.42644i −0.618140 0.786068i \(-0.712114\pi\)
0.768065 0.640372i \(-0.221220\pi\)
\(114\) −15.2510 + 3.24170i −1.42839 + 0.303613i
\(115\) −1.28470 0.571986i −0.119799 0.0533379i
\(116\) −2.65362 + 1.92796i −0.246382 + 0.179007i
\(117\) −3.14271 + 1.39923i −0.290544 + 0.129359i
\(118\) −4.79243 + 8.30073i −0.441179 + 0.764144i
\(119\) 7.17834 + 12.4332i 0.658037 + 1.13975i
\(120\) −7.93421 5.76454i −0.724291 0.526228i
\(121\) −3.08025 0.654727i −0.280023 0.0595207i
\(122\) −1.03698 + 3.19150i −0.0938838 + 0.288945i
\(123\) 0.699567 0.0630778
\(124\) −0.386920 2.65423i −0.0347464 0.238357i
\(125\) 11.7638 1.05219
\(126\) −1.89082 + 5.81935i −0.168448 + 0.518429i
\(127\) 19.7844 + 4.20530i 1.75558 + 0.373160i 0.969524 0.244996i \(-0.0787867\pi\)
0.786055 + 0.618156i \(0.212120\pi\)
\(128\) −4.55428 3.30888i −0.402545 0.292466i
\(129\) −4.02960 6.97946i −0.354786 0.614508i
\(130\) −2.50920 + 4.34607i −0.220072 + 0.381175i
\(131\) 11.5575 5.14574i 1.00979 0.449585i 0.165919 0.986139i \(-0.446941\pi\)
0.843866 + 0.536554i \(0.180274\pi\)
\(132\) −3.04199 + 2.21013i −0.264771 + 0.192367i
\(133\) −21.1911 9.43487i −1.83750 0.818107i
\(134\) 8.94435 1.90118i 0.772674 0.164237i
\(135\) −0.568051 + 5.40464i −0.0488900 + 0.465158i
\(136\) −7.72292 8.57717i −0.662235 0.735486i
\(137\) −6.60968 + 7.34079i −0.564703 + 0.627166i −0.956095 0.293058i \(-0.905327\pi\)
0.391392 + 0.920224i \(0.371994\pi\)
\(138\) −0.243157 2.31349i −0.0206989 0.196937i
\(139\) −4.78945 14.7404i −0.406236 1.25026i −0.919859 0.392249i \(-0.871697\pi\)
0.513623 0.858016i \(-0.328303\pi\)
\(140\) −0.875229 2.69368i −0.0739704 0.227657i
\(141\) 0.257919 + 2.45393i 0.0217207 + 0.206658i
\(142\) −4.20337 + 4.66831i −0.352739 + 0.391756i
\(143\) 6.63233 + 7.36594i 0.554623 + 0.615971i
\(144\) 0.382701 3.64116i 0.0318918 0.303430i
\(145\) −10.2935 + 2.18796i −0.854833 + 0.181700i
\(146\) 6.06919 + 2.70218i 0.502290 + 0.223634i
\(147\) −12.5374 + 9.10897i −1.03407 + 0.751295i
\(148\) 0.798373 0.355459i 0.0656259 0.0292185i
\(149\) 7.62162 13.2010i 0.624388 1.08147i −0.364271 0.931293i \(-0.618682\pi\)
0.988659 0.150178i \(-0.0479848\pi\)
\(150\) 3.33787 + 5.78136i 0.272536 + 0.472046i
\(151\) 0.211823 + 0.153899i 0.0172379 + 0.0125241i 0.596371 0.802709i \(-0.296609\pi\)
−0.579133 + 0.815233i \(0.696609\pi\)
\(152\) 18.2408 + 3.87720i 1.47952 + 0.314483i
\(153\) 1.52267 4.68631i 0.123101 0.378866i
\(154\) 17.6298 1.42065
\(155\) 2.32958 8.28435i 0.187117 0.665415i
\(156\) 2.63407 0.210894
\(157\) 4.92157 15.1470i 0.392784 1.20886i −0.537890 0.843015i \(-0.680778\pi\)
0.930674 0.365850i \(-0.119222\pi\)
\(158\) 11.7358 + 2.49451i 0.933647 + 0.198453i
\(159\) 3.93506 + 2.85899i 0.312071 + 0.226733i
\(160\) 2.05597 + 3.56104i 0.162538 + 0.281525i
\(161\) 1.73042 2.99717i 0.136376 0.236210i
\(162\) −12.6209 + 5.61920i −0.991594 + 0.441486i
\(163\) 0.107741 0.0782785i 0.00843894 0.00613125i −0.583558 0.812072i \(-0.698340\pi\)
0.591997 + 0.805940i \(0.298340\pi\)
\(164\) −0.148378 0.0660621i −0.0115864 0.00515859i
\(165\) −11.8001 + 2.50818i −0.918634 + 0.195262i
\(166\) 1.08127 10.2876i 0.0839228 0.798472i
\(167\) −2.64225 2.93451i −0.204463 0.227080i 0.632188 0.774815i \(-0.282157\pi\)
−0.836652 + 0.547735i \(0.815490\pi\)
\(168\) 16.1498 17.9361i 1.24598 1.38380i
\(169\) 0.633070 + 6.02326i 0.0486977 + 0.463328i
\(170\) −2.22125 6.83632i −0.170362 0.524322i
\(171\) 2.46023 + 7.57181i 0.188139 + 0.579031i
\(172\) 0.195585 + 1.86087i 0.0149132 + 0.141890i
\(173\) −9.67358 + 10.7436i −0.735469 + 0.816821i −0.988593 0.150613i \(-0.951875\pi\)
0.253124 + 0.967434i \(0.418542\pi\)
\(174\) −11.6480 12.9364i −0.883035 0.980709i
\(175\) −1.03816 + 9.87740i −0.0784772 + 0.746661i
\(176\) −10.3183 + 2.19323i −0.777775 + 0.165321i
\(177\) 14.7454 + 6.56509i 1.10833 + 0.493462i
\(178\) −5.07954 + 3.69050i −0.380727 + 0.276615i
\(179\) −16.1879 + 7.20733i −1.20994 + 0.538701i −0.909741 0.415175i \(-0.863720\pi\)
−0.300201 + 0.953876i \(0.597054\pi\)
\(180\) −0.486049 + 0.841862i −0.0362280 + 0.0627487i
\(181\) 6.02958 + 10.4435i 0.448175 + 0.776262i 0.998267 0.0588418i \(-0.0187408\pi\)
−0.550092 + 0.835104i \(0.685407\pi\)
\(182\) −9.99155 7.25929i −0.740623 0.538094i
\(183\) 5.52757 + 1.17492i 0.408609 + 0.0868526i
\(184\) −0.859766 + 2.64609i −0.0633828 + 0.195072i
\(185\) 2.80386 0.206144
\(186\) 13.7946 3.51462i 1.01147 0.257704i
\(187\) −14.1973 −1.03821
\(188\) 0.177028 0.544835i 0.0129111 0.0397362i
\(189\) −13.0818 2.78062i −0.951559 0.202260i
\(190\) 9.39599 + 6.82658i 0.681656 + 0.495252i
\(191\) −2.53576 4.39207i −0.183481 0.317799i 0.759583 0.650411i \(-0.225403\pi\)
−0.943064 + 0.332612i \(0.892070\pi\)
\(192\) −9.22001 + 15.9695i −0.665397 + 1.15250i
\(193\) −18.3090 + 8.15171i −1.31791 + 0.586773i −0.940664 0.339339i \(-0.889797\pi\)
−0.377250 + 0.926112i \(0.623130\pi\)
\(194\) −10.8798 + 7.90466i −0.781126 + 0.567521i
\(195\) 7.72036 + 3.43733i 0.552866 + 0.246152i
\(196\) 3.51937 0.748066i 0.251384 0.0534333i
\(197\) −2.26914 + 21.5894i −0.161670 + 1.53818i 0.549698 + 0.835364i \(0.314743\pi\)
−0.711367 + 0.702820i \(0.751924\pi\)
\(198\) −4.04883 4.49668i −0.287738 0.319565i
\(199\) 10.1477 11.2702i 0.719352 0.798921i −0.266978 0.963703i \(-0.586025\pi\)
0.986330 + 0.164781i \(0.0526919\pi\)
\(200\) −0.834602 7.94071i −0.0590153 0.561493i
\(201\) −4.75848 14.6451i −0.335637 1.03299i
\(202\) −0.151820 0.467255i −0.0106820 0.0328759i
\(203\) −2.70710 25.7564i −0.190001 1.80774i
\(204\) −2.52457 + 2.80382i −0.176755 + 0.196307i
\(205\) −0.348683 0.387252i −0.0243531 0.0270468i
\(206\) −0.422043 + 4.01547i −0.0294051 + 0.279771i
\(207\) −1.16187 + 0.246962i −0.0807553 + 0.0171651i
\(208\) 6.75092 + 3.00570i 0.468092 + 0.208408i
\(209\) 18.5580 13.4832i 1.28368 0.932651i
\(210\) 13.7319 6.11384i 0.947591 0.421895i
\(211\) −3.15220 + 5.45978i −0.217007 + 0.375867i −0.953891 0.300152i \(-0.902963\pi\)
0.736885 + 0.676018i \(0.236296\pi\)
\(212\) −0.564643 0.977990i −0.0387798 0.0671687i
\(213\) 8.55826 + 6.21794i 0.586403 + 0.426046i
\(214\) −3.80478 0.808730i −0.260089 0.0552837i
\(215\) −1.85509 + 5.70937i −0.126516 + 0.389376i
\(216\) 10.7517 0.731564
\(217\) 19.6767 + 7.83276i 1.33574 + 0.531722i
\(218\) 8.57126 0.580519
\(219\) 3.45720 10.6402i 0.233616 0.718996i
\(220\) 2.73965 + 0.582330i 0.184707 + 0.0392607i
\(221\) 8.04618 + 5.84589i 0.541245 + 0.393237i
\(222\) 2.31903 + 4.01668i 0.155643 + 0.269582i
\(223\) −3.69455 + 6.39915i −0.247406 + 0.428519i −0.962805 0.270196i \(-0.912911\pi\)
0.715400 + 0.698716i \(0.246245\pi\)
\(224\) −9.24454 + 4.11594i −0.617677 + 0.275007i
\(225\) 2.75776 2.00363i 0.183851 0.133575i
\(226\) −17.1625 7.64123i −1.14163 0.508287i
\(227\) −18.8193 + 4.00018i −1.24908 + 0.265501i −0.784556 0.620058i \(-0.787109\pi\)
−0.464528 + 0.885559i \(0.653776\pi\)
\(228\) 0.637207 6.06262i 0.0422000 0.401507i
\(229\) −4.07307 4.52360i −0.269156 0.298928i 0.593381 0.804921i \(-0.297793\pi\)
−0.862537 + 0.505994i \(0.831126\pi\)
\(230\) −1.15946 + 1.28771i −0.0764523 + 0.0849088i
\(231\) −3.10330 29.5260i −0.204182 1.94267i
\(232\) 6.43383 + 19.8013i 0.422401 + 1.30002i
\(233\) 5.41646 + 16.6702i 0.354844 + 1.09210i 0.956100 + 0.293042i \(0.0946675\pi\)
−0.601255 + 0.799057i \(0.705333\pi\)
\(234\) 0.443078 + 4.21561i 0.0289649 + 0.275583i
\(235\) 1.22984 1.36588i 0.0802262 0.0891002i
\(236\) −2.50754 2.78491i −0.163227 0.181282i
\(237\) 2.11195 20.0938i 0.137186 1.30523i
\(238\) 17.3033 3.67794i 1.12161 0.238405i
\(239\) −25.4989 11.3529i −1.64939 0.734355i −0.649721 0.760172i \(-0.725114\pi\)
−0.999667 + 0.0258176i \(0.991781\pi\)
\(240\) −7.27639 + 5.28660i −0.469689 + 0.341249i
\(241\) 20.7829 9.25315i 1.33875 0.596048i 0.392576 0.919720i \(-0.371584\pi\)
0.946169 + 0.323672i \(0.104917\pi\)
\(242\) −1.94010 + 3.36034i −0.124714 + 0.216011i
\(243\) 6.35849 + 11.0132i 0.407897 + 0.706499i
\(244\) −1.06144 0.771185i −0.0679520 0.0493701i
\(245\) 11.2913 + 2.40005i 0.721378 + 0.153334i
\(246\) 0.266369 0.819798i 0.0169830 0.0522684i
\(247\) −16.0694 −1.02247
\(248\) −16.7822 2.87048i −1.06567 0.182276i
\(249\) −17.4197 −1.10393
\(250\) 4.47921 13.7856i 0.283290 0.871878i
\(251\) 15.8797 + 3.37534i 1.00232 + 0.213050i 0.679709 0.733482i \(-0.262106\pi\)
0.322611 + 0.946532i \(0.395439\pi\)
\(252\) −1.93543 1.40617i −0.121921 0.0885805i
\(253\) 1.71121 + 2.96390i 0.107583 + 0.186339i
\(254\) 12.4612 21.5834i 0.781884 1.35426i
\(255\) −11.0583 + 4.92346i −0.692496 + 0.308319i
\(256\) 8.76759 6.37002i 0.547974 0.398126i
\(257\) 21.3332 + 9.49816i 1.33073 + 0.592479i 0.944070 0.329744i \(-0.106963\pi\)
0.386659 + 0.922223i \(0.373629\pi\)
\(258\) −9.71331 + 2.06463i −0.604724 + 0.128538i
\(259\) −0.721274 + 6.86246i −0.0448178 + 0.426412i
\(260\) −1.31289 1.45811i −0.0814220 0.0904283i
\(261\) −5.94774 + 6.60563i −0.368156 + 0.408878i
\(262\) −1.62945 15.5032i −0.100668 0.957789i
\(263\) −3.21203 9.88562i −0.198062 0.609574i −0.999927 0.0120680i \(-0.996159\pi\)
0.801865 0.597506i \(-0.203841\pi\)
\(264\) 7.37545 + 22.6993i 0.453928 + 1.39705i
\(265\) −0.378721 3.60329i −0.0232646 0.221348i
\(266\) −19.1252 + 21.2406i −1.17264 + 1.30235i
\(267\) 7.07488 + 7.85745i 0.432975 + 0.480868i
\(268\) −0.373707 + 3.55558i −0.0228278 + 0.217192i
\(269\) 4.32150 0.918563i 0.263487 0.0560058i −0.0742740 0.997238i \(-0.523664\pi\)
0.337761 + 0.941232i \(0.390331\pi\)
\(270\) 6.11722 + 2.72356i 0.372282 + 0.165751i
\(271\) −4.97777 + 3.61656i −0.302378 + 0.219691i −0.728619 0.684919i \(-0.759838\pi\)
0.426241 + 0.904610i \(0.359838\pi\)
\(272\) −9.66970 + 4.30523i −0.586312 + 0.261043i
\(273\) −10.3989 + 18.0114i −0.629369 + 1.09010i
\(274\) 6.08571 + 10.5408i 0.367651 + 0.636790i
\(275\) −7.94578 5.77295i −0.479149 0.348122i
\(276\) 0.889629 + 0.189096i 0.0535493 + 0.0113823i
\(277\) 6.81302 20.9683i 0.409355 1.25987i −0.507849 0.861446i \(-0.669559\pi\)
0.917204 0.398419i \(-0.130441\pi\)
\(278\) −19.0974 −1.14539
\(279\) −2.52109 6.81762i −0.150933 0.408160i
\(280\) −17.9782 −1.07440
\(281\) −9.50955 + 29.2674i −0.567292 + 1.74595i 0.0937474 + 0.995596i \(0.470115\pi\)
−0.661040 + 0.750351i \(0.729885\pi\)
\(282\) 2.97389 + 0.632119i 0.177092 + 0.0376421i
\(283\) 17.2687 + 12.5464i 1.02652 + 0.745807i 0.967608 0.252456i \(-0.0812383\pi\)
0.0589075 + 0.998263i \(0.481238\pi\)
\(284\) −1.22803 2.12701i −0.0728701 0.126215i
\(285\) 9.77904 16.9378i 0.579260 1.00331i
\(286\) 11.1572 4.96752i 0.659741 0.293736i
\(287\) 1.03750 0.753786i 0.0612415 0.0444946i
\(288\) 3.17290 + 1.41267i 0.186965 + 0.0832421i
\(289\) 2.69417 0.572664i 0.158481 0.0336861i
\(290\) −1.35540 + 12.8957i −0.0795917 + 0.757264i
\(291\) 15.1536 + 16.8298i 0.888321 + 0.986581i
\(292\) −1.73805 + 1.93030i −0.101712 + 0.112963i
\(293\) 0.188050 + 1.78917i 0.0109860 + 0.104525i 0.998641 0.0521218i \(-0.0165984\pi\)
−0.987655 + 0.156646i \(0.949932\pi\)
\(294\) 5.90071 + 18.1605i 0.344136 + 1.05914i
\(295\) −3.71535 11.4347i −0.216316 0.665753i
\(296\) −0.579852 5.51692i −0.0337032 0.320664i
\(297\) 8.84961 9.82848i 0.513506 0.570306i
\(298\) −12.5678 13.9580i −0.728034 0.808564i
\(299\) 0.250607 2.38437i 0.0144930 0.137892i
\(300\) −2.55303 + 0.542663i −0.147399 + 0.0313307i
\(301\) −13.4965 6.00904i −0.777926 0.346355i
\(302\) 0.261003 0.189630i 0.0150190 0.0109120i
\(303\) −0.755821 + 0.336513i −0.0434208 + 0.0193322i
\(304\) 8.55109 14.8109i 0.490439 0.849465i
\(305\) −2.10470 3.64545i −0.120515 0.208738i
\(306\) −4.91195 3.56874i −0.280797 0.204011i
\(307\) −26.1844 5.56567i −1.49442 0.317650i −0.613041 0.790051i \(-0.710054\pi\)
−0.881383 + 0.472402i \(0.843387\pi\)
\(308\) −2.13001 + 6.55551i −0.121369 + 0.373535i
\(309\) 6.79928 0.386798
\(310\) −8.82113 5.88433i −0.501006 0.334207i
\(311\) 4.18114 0.237090 0.118545 0.992949i \(-0.462177\pi\)
0.118545 + 0.992949i \(0.462177\pi\)
\(312\) 5.16673 15.9016i 0.292509 0.900249i
\(313\) 11.0950 + 2.35831i 0.627124 + 0.133299i 0.510501 0.859877i \(-0.329460\pi\)
0.116623 + 0.993176i \(0.462793\pi\)
\(314\) −15.8763 11.5348i −0.895953 0.650948i
\(315\) −3.83769 6.64708i −0.216229 0.374520i
\(316\) −2.34546 + 4.06246i −0.131943 + 0.228531i
\(317\) 23.6438 10.5269i 1.32797 0.591249i 0.384626 0.923073i \(-0.374331\pi\)
0.943341 + 0.331824i \(0.107664\pi\)
\(318\) 4.84867 3.52277i 0.271900 0.197547i
\(319\) 23.3965 + 10.4168i 1.30995 + 0.583229i
\(320\) 13.4356 2.85582i 0.751071 0.159645i
\(321\) −0.684701 + 6.51449i −0.0382163 + 0.363604i
\(322\) −2.85341 3.16903i −0.159014 0.176603i
\(323\) 15.4015 17.1050i 0.856960 0.951750i
\(324\) −0.564609 5.37189i −0.0313672 0.298439i
\(325\) 2.12612 + 6.54354i 0.117936 + 0.362970i
\(326\) −0.0507081 0.156064i −0.00280846 0.00864356i
\(327\) −1.50876 14.3549i −0.0834347 0.793828i
\(328\) −0.689854 + 0.766160i −0.0380908 + 0.0423041i
\(329\) 3.02663 + 3.36141i 0.166864 + 0.185321i
\(330\) −1.55377 + 14.7831i −0.0855321 + 0.813784i
\(331\) −0.749053 + 0.159216i −0.0411717 + 0.00875131i −0.228451 0.973555i \(-0.573366\pi\)
0.187280 + 0.982307i \(0.440033\pi\)
\(332\) 3.69472 + 1.64500i 0.202774 + 0.0902808i
\(333\) 1.91599 1.39205i 0.104996 0.0762839i
\(334\) −4.44493 + 1.97901i −0.243215 + 0.108287i
\(335\) −5.73517 + 9.93361i −0.313346 + 0.542731i
\(336\) −11.0672 19.1689i −0.603765 1.04575i
\(337\) −1.93706 1.40736i −0.105519 0.0766637i 0.533775 0.845627i \(-0.320773\pi\)
−0.639293 + 0.768963i \(0.720773\pi\)
\(338\) 7.29950 + 1.55156i 0.397041 + 0.0843936i
\(339\) −9.77628 + 30.0883i −0.530974 + 1.63417i
\(340\) 2.81040 0.152415
\(341\) −16.4372 + 12.9784i −0.890123 + 0.702822i
\(342\) 9.80991 0.530459
\(343\) −0.550776 + 1.69511i −0.0297391 + 0.0915276i
\(344\) 11.6175 + 2.46938i 0.626374 + 0.133140i
\(345\) 2.36071 + 1.71516i 0.127096 + 0.0923408i
\(346\) 8.90672 + 15.4269i 0.478828 + 0.829355i
\(347\) −2.82890 + 4.89980i −0.151863 + 0.263035i −0.931912 0.362683i \(-0.881861\pi\)
0.780049 + 0.625718i \(0.215194\pi\)
\(348\) 6.21761 2.76826i 0.333299 0.148394i
\(349\) −23.5162 + 17.0855i −1.25879 + 0.914566i −0.998698 0.0510167i \(-0.983754\pi\)
−0.260095 + 0.965583i \(0.583754\pi\)
\(350\) 11.1797 + 4.97752i 0.597580 + 0.266060i
\(351\) −9.06243 + 1.92628i −0.483717 + 0.102817i
\(352\) 1.04602 9.95223i 0.0557532 0.530456i
\(353\) −12.8976 14.3243i −0.686471 0.762404i 0.294690 0.955593i \(-0.404784\pi\)
−0.981162 + 0.193189i \(0.938117\pi\)
\(354\) 13.3079 14.7799i 0.707307 0.785544i
\(355\) −0.823670 7.83670i −0.0437159 0.415929i
\(356\) −0.758579 2.33467i −0.0402046 0.123737i
\(357\) −9.20553 28.3317i −0.487209 1.49947i
\(358\) 2.28227 + 21.7143i 0.120622 + 1.14764i
\(359\) 6.92167 7.68729i 0.365312 0.405720i −0.532265 0.846578i \(-0.678659\pi\)
0.897577 + 0.440858i \(0.145326\pi\)
\(360\) 4.12884 + 4.58554i 0.217609 + 0.241679i
\(361\) −1.90131 + 18.0898i −0.100069 + 0.952095i
\(362\) 14.5343 3.08935i 0.763904 0.162373i
\(363\) 5.96932 + 2.65771i 0.313308 + 0.139494i
\(364\) 3.90647 2.83822i 0.204755 0.148763i
\(365\) −7.61312 + 3.38958i −0.398489 + 0.177419i
\(366\) 3.48154 6.03020i 0.181983 0.315203i
\(367\) 0.0682819 + 0.118268i 0.00356428 + 0.00617352i 0.867802 0.496910i \(-0.165532\pi\)
−0.864238 + 0.503084i \(0.832199\pi\)
\(368\) 2.06428 + 1.49978i 0.107608 + 0.0781817i
\(369\) −0.430531 0.0915122i −0.0224125 0.00476393i
\(370\) 1.06760 3.28574i 0.0555020 0.170818i
\(371\) 8.91649 0.462921
\(372\) −0.359759 + 5.55402i −0.0186527 + 0.287963i
\(373\) −7.36393 −0.381290 −0.190645 0.981659i \(-0.561058\pi\)
−0.190645 + 0.981659i \(0.561058\pi\)
\(374\) −5.40578 + 16.6373i −0.279526 + 0.860294i
\(375\) −23.8762 5.07504i −1.23296 0.262074i
\(376\) −2.94187 2.13739i −0.151715 0.110228i
\(377\) −8.97053 15.5374i −0.462006 0.800218i
\(378\) −8.23955 + 14.2713i −0.423797 + 0.734038i
\(379\) −4.20974 + 1.87430i −0.216240 + 0.0962762i −0.511998 0.858987i \(-0.671094\pi\)
0.295758 + 0.955263i \(0.404428\pi\)
\(380\) −3.67362 + 2.66904i −0.188453 + 0.136919i
\(381\) −38.3408 17.0704i −1.96426 0.874544i
\(382\) −6.11243 + 1.29924i −0.312739 + 0.0664748i
\(383\) 3.37572 32.1179i 0.172491 1.64115i −0.475656 0.879631i \(-0.657789\pi\)
0.648147 0.761515i \(-0.275544\pi\)
\(384\) 7.81602 + 8.68057i 0.398860 + 0.442979i
\(385\) −14.7976 + 16.4344i −0.754155 + 0.837574i
\(386\) 2.58132 + 24.5596i 0.131386 + 1.25005i
\(387\) 1.56691 + 4.82246i 0.0796506 + 0.245139i
\(388\) −1.62479 5.00060i −0.0824864 0.253867i
\(389\) 3.68685 + 35.0781i 0.186931 + 1.77853i 0.538756 + 0.842462i \(0.318895\pi\)
−0.351825 + 0.936066i \(0.614439\pi\)
\(390\) 6.96770 7.73842i 0.352823 0.391850i
\(391\) 2.29784 + 2.55201i 0.116207 + 0.129061i
\(392\) 2.38727 22.7134i 0.120575 1.14720i
\(393\) −25.6774 + 5.45791i −1.29526 + 0.275315i
\(394\) 24.4359 + 10.8796i 1.23106 + 0.548105i
\(395\) −12.1758 + 8.84621i −0.612629 + 0.445101i
\(396\) 2.16123 0.962241i 0.108606 0.0483544i
\(397\) 2.01701 3.49356i 0.101231 0.175337i −0.810961 0.585100i \(-0.801055\pi\)
0.912192 + 0.409763i \(0.134389\pi\)
\(398\) −9.34326 16.1830i −0.468335 0.811181i
\(399\) 38.9398 + 28.2914i 1.94943 + 1.41634i
\(400\) −7.16245 1.52243i −0.358122 0.0761213i
\(401\) 7.68933 23.6653i 0.383987 1.18179i −0.553225 0.833032i \(-0.686603\pi\)
0.937212 0.348759i \(-0.113397\pi\)
\(402\) −18.9739 −0.946334
\(403\) 14.6597 0.587221i 0.730249 0.0292516i
\(404\) 0.192087 0.00955671
\(405\) 5.35520 16.4816i 0.266102 0.818978i
\(406\) −31.2137 6.63469i −1.54911 0.329274i
\(407\) −5.52044 4.01084i −0.273638 0.198810i
\(408\) 11.9744 + 20.7403i 0.592821 + 1.02680i
\(409\) −1.75361 + 3.03734i −0.0867105 + 0.150187i −0.906119 0.423023i \(-0.860969\pi\)
0.819408 + 0.573210i \(0.194302\pi\)
\(410\) −0.586572 + 0.261159i −0.0289687 + 0.0128977i
\(411\) 16.5821 12.0476i 0.817936 0.594265i
\(412\) −1.44213 0.642076i −0.0710485 0.0316328i
\(413\) 28.9422 6.15186i 1.42415 0.302713i
\(414\) −0.152988 + 1.45559i −0.00751896 + 0.0715381i
\(415\) 8.68246 + 9.64284i 0.426205 + 0.473349i
\(416\) −4.69077 + 5.20963i −0.229984 + 0.255423i
\(417\) 3.36163 + 31.9838i 0.164620 + 1.56625i
\(418\) −8.73429 26.8814i −0.427208 1.31481i
\(419\) 1.27325 + 3.91865i 0.0622022 + 0.191439i 0.977328 0.211729i \(-0.0679093\pi\)
−0.915126 + 0.403167i \(0.867909\pi\)
\(420\) 0.614309 + 5.84476i 0.0299752 + 0.285195i
\(421\) 18.4689 20.5118i 0.900121 0.999686i −0.0998679 0.995001i \(-0.531842\pi\)
0.999989 0.00468505i \(-0.00149130\pi\)
\(422\) 5.19788 + 5.77283i 0.253029 + 0.281017i
\(423\) 0.162276 1.54395i 0.00789012 0.0750695i
\(424\) −7.01157 + 1.49035i −0.340512 + 0.0723780i
\(425\) −9.00298 4.00839i −0.436709 0.194435i
\(426\) 10.5453 7.66158i 0.510919 0.371205i
\(427\) 9.46367 4.21350i 0.457979 0.203905i
\(428\) 0.760408 1.31706i 0.0367557 0.0636627i
\(429\) −10.2834 17.8114i −0.496488 0.859943i
\(430\) 5.98427 + 4.34783i 0.288587 + 0.209671i
\(431\) 14.5489 + 3.09247i 0.700796 + 0.148959i 0.544512 0.838753i \(-0.316715\pi\)
0.156284 + 0.987712i \(0.450048\pi\)
\(432\) 3.04701 9.37772i 0.146599 0.451186i
\(433\) 9.26195 0.445101 0.222550 0.974921i \(-0.428562\pi\)
0.222550 + 0.974921i \(0.428562\pi\)
\(434\) 16.6711 20.0761i 0.800238 0.963682i
\(435\) 21.8360 1.04696
\(436\) −1.03557 + 3.18715i −0.0495947 + 0.152637i
\(437\) −5.42728 1.15361i −0.259622 0.0551844i
\(438\) −11.1525 8.10275i −0.532886 0.387164i
\(439\) −8.85909 15.3444i −0.422821 0.732348i 0.573393 0.819281i \(-0.305627\pi\)
−0.996214 + 0.0869324i \(0.972294\pi\)
\(440\) 8.88929 15.3967i 0.423780 0.734009i
\(441\) 8.90741 3.96584i 0.424163 0.188849i
\(442\) 9.91428 7.20314i 0.471574 0.342619i
\(443\) −16.8551 7.50439i −0.800811 0.356544i −0.0348187 0.999394i \(-0.511085\pi\)
−0.765993 + 0.642850i \(0.777752\pi\)
\(444\) −1.77375 + 0.377023i −0.0841785 + 0.0178927i
\(445\) 0.823253 7.83273i 0.0390259 0.371307i
\(446\) 6.09220 + 6.76608i 0.288474 + 0.320383i
\(447\) −21.1642 + 23.5052i −1.00103 + 1.11176i
\(448\) 3.53342 + 33.6183i 0.166939 + 1.58831i
\(449\) 7.01784 + 21.5987i 0.331192 + 1.01931i 0.968567 + 0.248752i \(0.0800203\pi\)
−0.637375 + 0.770554i \(0.719980\pi\)
\(450\) −1.29793 3.99463i −0.0611852 0.188309i
\(451\) 0.132561 + 1.26123i 0.00624204 + 0.0593890i
\(452\) 4.91487 5.45852i 0.231176 0.256747i
\(453\) −0.363530 0.403740i −0.0170801 0.0189694i
\(454\) −2.47803 + 23.5769i −0.116300 + 1.10652i
\(455\) 15.1535 3.22097i 0.710405 0.151001i
\(456\) −35.3494 15.7386i −1.65539 0.737027i
\(457\) 13.0752 9.49970i 0.611633 0.444377i −0.238356 0.971178i \(-0.576608\pi\)
0.849989 + 0.526800i \(0.176608\pi\)
\(458\) −6.85192 + 3.05067i −0.320169 + 0.142549i
\(459\) 6.63529 11.4927i 0.309709 0.536432i
\(460\) −0.338739 0.586713i −0.0157938 0.0273556i
\(461\) −17.4252 12.6602i −0.811573 0.589642i 0.102713 0.994711i \(-0.467248\pi\)
−0.914286 + 0.405069i \(0.867248\pi\)
\(462\) −35.7821 7.60571i −1.66473 0.353850i
\(463\) −5.41083 + 16.6528i −0.251462 + 0.773922i 0.743044 + 0.669243i \(0.233381\pi\)
−0.994506 + 0.104679i \(0.966619\pi\)
\(464\) 19.0941 0.886421
\(465\) −8.30216 + 15.8092i −0.385003 + 0.733133i
\(466\) 21.5976 1.00049
\(467\) −3.64845 + 11.2288i −0.168830 + 0.519605i −0.999298 0.0374608i \(-0.988073\pi\)
0.830468 + 0.557066i \(0.188073\pi\)
\(468\) −1.62107 0.344569i −0.0749341 0.0159277i
\(469\) −22.8372 16.5922i −1.05453 0.766158i
\(470\) −1.13235 1.96129i −0.0522314 0.0904674i
\(471\) −16.5236 + 28.6197i −0.761366 + 1.31872i
\(472\) −21.7307 + 9.67514i −1.00024 + 0.445335i
\(473\) 11.8195 8.58739i 0.543463 0.394849i
\(474\) −22.7431 10.1259i −1.04463 0.465097i
\(475\) 15.5751 3.31058i 0.714632 0.151900i
\(476\) −0.722955 + 6.87846i −0.0331366 + 0.315274i
\(477\) −2.04774 2.27425i −0.0937597 0.104131i
\(478\) −23.0130 + 25.5586i −1.05259 + 1.16902i
\(479\) 1.65246 + 15.7221i 0.0755029 + 0.718362i 0.965147 + 0.261708i \(0.0842856\pi\)
−0.889644 + 0.456654i \(0.849048\pi\)
\(480\) −2.63658 8.11456i −0.120343 0.370377i
\(481\) 1.47715 + 4.54621i 0.0673525 + 0.207290i
\(482\) −2.93010 27.8780i −0.133462 1.26981i
\(483\) −4.80513 + 5.33664i −0.218641 + 0.242825i
\(484\) −1.01512 1.12740i −0.0461416 0.0512455i
\(485\) 1.76332 16.7769i 0.0800682 0.761798i
\(486\) 15.3271 3.25787i 0.695251 0.147780i
\(487\) 11.6857 + 5.20283i 0.529532 + 0.235763i 0.654046 0.756455i \(-0.273070\pi\)
−0.124514 + 0.992218i \(0.539737\pi\)
\(488\) −6.73758 + 4.89514i −0.304996 + 0.221593i
\(489\) −0.252445 + 0.112396i −0.0114160 + 0.00508271i
\(490\) 7.11185 12.3181i 0.321281 0.556475i
\(491\) 9.26410 + 16.0459i 0.418083 + 0.724141i 0.995747 0.0921341i \(-0.0293688\pi\)
−0.577664 + 0.816275i \(0.696036\pi\)
\(492\) 0.272653 + 0.198094i 0.0122921 + 0.00893076i
\(493\) 25.1364 + 5.34290i 1.13209 + 0.240632i
\(494\) −6.11864 + 18.8312i −0.275290 + 0.847257i
\(495\) 7.59016 0.341152
\(496\) −7.25967 + 13.8240i −0.325969 + 0.620717i
\(497\) 19.3922 0.869861
\(498\) −6.63277 + 20.4136i −0.297221 + 0.914754i
\(499\) −39.9938 8.50094i −1.79037 0.380554i −0.811387 0.584510i \(-0.801287\pi\)
−0.978980 + 0.203955i \(0.934620\pi\)
\(500\) 4.58489 + 3.33112i 0.205042 + 0.148972i
\(501\) 4.09681 + 7.09588i 0.183032 + 0.317021i
\(502\) 10.0018 17.3237i 0.446404 0.773195i
\(503\) 18.3413 8.16609i 0.817800 0.364108i 0.0451817 0.998979i \(-0.485613\pi\)
0.772618 + 0.634871i \(0.218947\pi\)
\(504\) −12.2852 + 8.92575i −0.547228 + 0.397585i
\(505\) 0.563001 + 0.250664i 0.0250532 + 0.0111544i
\(506\) 4.12485 0.876764i 0.183372 0.0389769i
\(507\) 1.31361 12.4981i 0.0583393 0.555061i
\(508\) 6.52007 + 7.24127i 0.289281 + 0.321279i
\(509\) −21.3528 + 23.7147i −0.946445 + 1.05113i 0.0521763 + 0.998638i \(0.483384\pi\)
−0.998621 + 0.0524956i \(0.983282\pi\)
\(510\) 1.55906 + 14.8335i 0.0690364 + 0.656837i
\(511\) −6.33760 19.5051i −0.280359 0.862855i
\(512\) −7.60561 23.4076i −0.336123 1.03448i
\(513\) 2.24127 + 21.3242i 0.0989544 + 0.941488i
\(514\) 19.2534 21.3831i 0.849233 0.943169i
\(515\) −3.38895 3.76381i −0.149335 0.165853i
\(516\) 0.405835 3.86126i 0.0178659 0.169982i
\(517\) −4.37526 + 0.929990i −0.192424 + 0.0409009i
\(518\) 7.76725 + 3.45820i 0.341273 + 0.151945i
\(519\) 24.2687 17.6323i 1.06528 0.773970i
\(520\) −11.3777 + 5.06568i −0.498945 + 0.222145i
\(521\) −1.05378 + 1.82520i −0.0461670 + 0.0799635i −0.888185 0.459485i \(-0.848034\pi\)
0.842019 + 0.539449i \(0.181367\pi\)
\(522\) 5.47624 + 9.48512i 0.239688 + 0.415152i
\(523\) −3.97047 2.88471i −0.173616 0.126140i 0.497584 0.867416i \(-0.334221\pi\)
−0.671200 + 0.741276i \(0.734221\pi\)
\(524\) 5.96159 + 1.26717i 0.260433 + 0.0553568i
\(525\) 6.36830 19.5996i 0.277935 0.855397i
\(526\) −12.8076 −0.558440
\(527\) −13.4252 + 16.1672i −0.584811 + 0.704255i
\(528\) 21.8886 0.952580
\(529\) −6.85158 + 21.0870i −0.297895 + 0.916826i
\(530\) −4.36677 0.928185i −0.189680 0.0403178i
\(531\) −8.21591 5.96921i −0.356540 0.259042i
\(532\) −5.58748 9.67780i −0.242248 0.419586i
\(533\) 0.444199 0.769375i 0.0192404 0.0333253i
\(534\) 11.9017 5.29898i 0.515038 0.229310i
\(535\) 3.94743 2.86798i 0.170662 0.123993i
\(536\) 20.7316 + 9.23030i 0.895469 + 0.398688i
\(537\) 35.9648 7.64456i 1.55200 0.329887i
\(538\) 0.569031 5.41397i 0.0245327 0.233413i
\(539\) −18.7980 20.8773i −0.809689 0.899251i
\(540\) −1.75181 + 1.94558i −0.0753858 + 0.0837245i
\(541\) 1.30002 + 12.3689i 0.0558923 + 0.531780i 0.986266 + 0.165167i \(0.0528162\pi\)
−0.930373 + 0.366613i \(0.880517\pi\)
\(542\) 2.34278 + 7.21033i 0.100631 + 0.309710i
\(543\) −7.73236 23.7978i −0.331827 1.02126i
\(544\) −1.04959 9.98614i −0.0450006 0.428152i
\(545\) −7.19428 + 7.99006i −0.308169 + 0.342257i
\(546\) 17.1474 + 19.0442i 0.733842 + 0.815014i
\(547\) 1.45974 13.8885i 0.0624140 0.593830i −0.917959 0.396676i \(-0.870164\pi\)
0.980373 0.197154i \(-0.0631697\pi\)
\(548\) −4.65476 + 0.989399i −0.198841 + 0.0422650i
\(549\) −3.24811 1.44615i −0.138626 0.0617202i
\(550\) −9.79058 + 7.11327i −0.417472 + 0.303311i
\(551\) −37.9313 + 16.8881i −1.61593 + 0.719456i
\(552\) 2.88656 4.99967i 0.122860 0.212800i
\(553\) −18.5190 32.0759i −0.787509 1.36401i
\(554\) −21.9779 15.9679i −0.933752 0.678411i
\(555\) −5.69080 1.20962i −0.241561 0.0513454i
\(556\) 2.30732 7.10121i 0.0978523 0.301159i
\(557\) −37.2207 −1.57709 −0.788546 0.614976i \(-0.789166\pi\)
−0.788546 + 0.614976i \(0.789166\pi\)
\(558\) −8.94927 + 0.358481i −0.378853 + 0.0151757i
\(559\) −10.2346 −0.432876
\(560\) −5.09496 + 15.6807i −0.215301 + 0.662629i
\(561\) 28.8152 + 6.12487i 1.21658 + 0.258592i
\(562\) 30.6766 + 22.2878i 1.29401 + 0.940156i
\(563\) 15.0134 + 26.0039i 0.632738 + 1.09593i 0.986990 + 0.160784i \(0.0514023\pi\)
−0.354252 + 0.935150i \(0.615264\pi\)
\(564\) −0.594349 + 1.02944i −0.0250266 + 0.0433474i
\(565\) 21.5284 9.58507i 0.905707 0.403247i
\(566\) 21.2780 15.4594i 0.894380 0.649805i
\(567\) 38.9613 + 17.3467i 1.63622 + 0.728492i
\(568\) −15.2493 + 3.24133i −0.639846 + 0.136003i
\(569\) 4.21995 40.1502i 0.176910 1.68318i −0.441449 0.897286i \(-0.645536\pi\)
0.618359 0.785896i \(-0.287798\pi\)
\(570\) −16.1253 17.9090i −0.675415 0.750125i
\(571\) 28.5060 31.6591i 1.19294 1.32489i 0.259677 0.965696i \(-0.416384\pi\)
0.933262 0.359197i \(-0.116949\pi\)
\(572\) 0.499129 + 4.74889i 0.0208696 + 0.198561i
\(573\) 3.25187 + 10.0082i 0.135849 + 0.418100i
\(574\) −0.488296 1.50282i −0.0203811 0.0627265i
\(575\) 0.248324 + 2.36264i 0.0103558 + 0.0985290i
\(576\) 7.76324 8.62195i 0.323468 0.359248i
\(577\) −4.37462 4.85851i −0.182118 0.202262i 0.645173 0.764037i \(-0.276785\pi\)
−0.827290 + 0.561775i \(0.810119\pi\)
\(578\) 0.354754 3.37526i 0.0147558 0.140392i
\(579\) 40.6774 8.64624i 1.69049 0.359325i
\(580\) −4.63142 2.06204i −0.192309 0.0856216i
\(581\) −25.8344 + 18.7698i −1.07179 + 0.778703i
\(582\) 25.4922 11.3499i 1.05669 0.470467i
\(583\) −4.40874 + 7.63617i −0.182591 + 0.316258i
\(584\) 8.24383 + 14.2787i 0.341132 + 0.590858i
\(585\) −4.30166 3.12534i −0.177852 0.129217i
\(586\) 2.16827 + 0.460880i 0.0895704 + 0.0190388i
\(587\) −6.60607 + 20.3314i −0.272662 + 0.839167i 0.717167 + 0.696902i \(0.245439\pi\)
−0.989829 + 0.142265i \(0.954561\pi\)
\(588\) −7.46576 −0.307883
\(589\) 2.19476 33.8830i 0.0904333 1.39612i
\(590\) −14.8146 −0.609907
\(591\) 13.9195 42.8397i 0.572570 1.76219i
\(592\) −4.97621 1.05773i −0.204521 0.0434723i
\(593\) −21.0268 15.2769i −0.863468 0.627347i 0.0653579 0.997862i \(-0.479181\pi\)
−0.928826 + 0.370515i \(0.879181\pi\)
\(594\) −8.14807 14.1129i −0.334319 0.579058i
\(595\) −11.0950 + 19.2171i −0.454851 + 0.787824i
\(596\) 6.70858 2.98685i 0.274794 0.122346i
\(597\) −25.4582 + 18.4965i −1.04193 + 0.757010i
\(598\) −2.69874 1.20156i −0.110360 0.0491353i
\(599\) 8.98718 1.91028i 0.367206 0.0780521i −0.0206131 0.999788i \(-0.506562\pi\)
0.387819 + 0.921735i \(0.373228\pi\)
\(600\) −1.73178 + 16.4768i −0.0706996 + 0.672661i
\(601\) 22.2948 + 24.7609i 0.909423 + 1.01002i 0.999900 + 0.0141185i \(0.00449419\pi\)
−0.0904769 + 0.995899i \(0.528839\pi\)
\(602\) −12.1807 + 13.5281i −0.496450 + 0.551364i
\(603\) 1.01272 + 9.63543i 0.0412413 + 0.392385i
\(604\) 0.0389782 + 0.119962i 0.00158600 + 0.00488120i
\(605\) −1.50407 4.62905i −0.0611491 0.188197i
\(606\) 0.106560 + 1.01385i 0.00432871 + 0.0411849i
\(607\) −32.5872 + 36.1917i −1.32267 + 1.46898i −0.548238 + 0.836322i \(0.684701\pi\)
−0.774434 + 0.632654i \(0.781965\pi\)
\(608\) 10.8558 + 12.0566i 0.440262 + 0.488961i
\(609\) −5.61717 + 53.4438i −0.227619 + 2.16565i
\(610\) −5.07336 + 1.07838i −0.205414 + 0.0436622i
\(611\) 2.86257 + 1.27450i 0.115807 + 0.0515608i
\(612\) 1.92046 1.39530i 0.0776300 0.0564015i
\(613\) 19.1059 8.50649i 0.771680 0.343574i 0.0171613 0.999853i \(-0.494537\pi\)
0.754519 + 0.656279i \(0.227870\pi\)
\(614\) −16.4923 + 28.5654i −0.665573 + 1.15281i
\(615\) 0.540633 + 0.936404i 0.0218004 + 0.0377594i
\(616\) 35.3968 + 25.7173i 1.42618 + 1.03618i
\(617\) −44.3922 9.43586i −1.78716 0.379873i −0.809016 0.587787i \(-0.799999\pi\)
−0.978147 + 0.207913i \(0.933333\pi\)
\(618\) 2.58891 7.96784i 0.104141 0.320514i
\(619\) −10.2462 −0.411832 −0.205916 0.978570i \(-0.566017\pi\)
−0.205916 + 0.978570i \(0.566017\pi\)
\(620\) 3.25379 2.56913i 0.130676 0.103179i
\(621\) −3.19902 −0.128372
\(622\) 1.59202 4.89973i 0.0638341 0.196461i
\(623\) 18.9589 + 4.02983i 0.759571 + 0.161452i
\(624\) −12.4052 9.01290i −0.496605 0.360805i
\(625\) 2.56358 + 4.44025i 0.102543 + 0.177610i
\(626\) 6.98816 12.1038i 0.279303 0.483767i
\(627\) −43.4827 + 19.3598i −1.73653 + 0.773154i
\(628\) 6.20729 4.50986i 0.247698 0.179963i
\(629\) −6.25495 2.78488i −0.249401 0.111041i
\(630\) −9.25073 + 1.96630i −0.368558 + 0.0783394i
\(631\) 1.11605 10.6185i 0.0444291 0.422715i −0.949589 0.313498i \(-0.898499\pi\)
0.994018 0.109217i \(-0.0348343\pi\)
\(632\) 19.9240 + 22.1278i 0.792533 + 0.880197i
\(633\) 8.75322 9.72144i 0.347909 0.386392i
\(634\) −3.33344 31.7156i −0.132388 1.25959i
\(635\) 9.66059 + 29.7322i 0.383369 + 1.17989i
\(636\) 0.724101 + 2.22855i 0.0287125 + 0.0883679i
\(637\) 2.05714 + 19.5724i 0.0815068 + 0.775485i
\(638\) 21.1156 23.4512i 0.835975 0.928444i
\(639\) −4.45358 4.94621i −0.176181 0.195669i
\(640\) 0.909495 8.65326i 0.0359509 0.342050i
\(641\) −23.3407 + 4.96121i −0.921900 + 0.195956i −0.644328 0.764749i \(-0.722863\pi\)
−0.277572 + 0.960705i \(0.589530\pi\)
\(642\) 7.37340 + 3.28285i 0.291005 + 0.129564i
\(643\) 6.42300 4.66658i 0.253298 0.184032i −0.453889 0.891058i \(-0.649964\pi\)
0.707187 + 0.707026i \(0.249964\pi\)
\(644\) 1.52312 0.678137i 0.0600194 0.0267224i
\(645\) 6.22823 10.7876i 0.245237 0.424762i
\(646\) −14.1805 24.5614i −0.557925 0.966355i
\(647\) −2.00443 1.45630i −0.0788023 0.0572532i 0.547687 0.836684i \(-0.315509\pi\)
−0.626489 + 0.779430i \(0.715509\pi\)
\(648\) −33.5370 7.12851i −1.31746 0.280034i
\(649\) −9.04192 + 27.8282i −0.354926 + 1.09235i
\(650\) 8.47769 0.332523
\(651\) −36.5574 24.3864i −1.43280 0.955778i
\(652\) 0.0641574 0.00251260
\(653\) 6.95104 21.3931i 0.272015 0.837177i −0.717978 0.696065i \(-0.754932\pi\)
0.989994 0.141112i \(-0.0450677\pi\)
\(654\) −17.3965 3.69774i −0.680257 0.144593i
\(655\) 15.8196 + 11.4936i 0.618123 + 0.449093i
\(656\) 0.472746 + 0.818821i 0.0184576 + 0.0319696i
\(657\) −3.51952 + 6.09598i −0.137309 + 0.237827i
\(658\) 5.09155 2.26690i 0.198489 0.0883731i
\(659\) 9.67555 7.02970i 0.376906 0.273838i −0.383163 0.923681i \(-0.625165\pi\)
0.760069 + 0.649843i \(0.225165\pi\)
\(660\) −5.30925 2.36383i −0.206662 0.0920120i
\(661\) −23.3151 + 4.95578i −0.906852 + 0.192757i −0.637650 0.770326i \(-0.720093\pi\)
−0.269202 + 0.963084i \(0.586760\pi\)
\(662\) −0.0986312 + 0.938413i −0.00383341 + 0.0364725i
\(663\) −13.8088 15.3362i −0.536289 0.595609i
\(664\) 17.1779 19.0779i 0.666630 0.740368i
\(665\) −3.74766 35.6567i −0.145328 1.38271i
\(666\) −0.901758 2.77533i −0.0349424 0.107542i
\(667\) −1.91429 5.89158i −0.0741216 0.228123i
\(668\) −0.198848 1.89191i −0.00769365 0.0732002i
\(669\) 10.2593 11.3941i 0.396646 0.440520i
\(670\) 9.45712 + 10.5032i 0.365360 + 0.405774i
\(671\) −1.07082 + 10.1881i −0.0413384 + 0.393309i
\(672\) 20.5387 4.36563i 0.792297 0.168408i
\(673\) 3.19204 + 1.42119i 0.123044 + 0.0547827i 0.467335 0.884080i \(-0.345214\pi\)
−0.344291 + 0.938863i \(0.611881\pi\)
\(674\) −2.38679 + 1.73411i −0.0919359 + 0.0667953i
\(675\) 8.38677 3.73403i 0.322807 0.143723i
\(676\) −1.45885 + 2.52680i −0.0561096 + 0.0971847i
\(677\) 9.62287 + 16.6673i 0.369837 + 0.640576i 0.989540 0.144260i \(-0.0460803\pi\)
−0.619703 + 0.784836i \(0.712747\pi\)
\(678\) 31.5370 + 22.9130i 1.21117 + 0.879967i
\(679\) 40.6079 + 8.63147i 1.55839 + 0.331245i
\(680\) 5.51260 16.9660i 0.211399 0.650618i
\(681\) 39.9221 1.52982
\(682\) 8.95034 + 24.2039i 0.342726 + 0.926814i
\(683\) −39.8738 −1.52573 −0.762865 0.646558i \(-0.776208\pi\)
−0.762865 + 0.646558i \(0.776208\pi\)
\(684\) −1.18522 + 3.64773i −0.0453180 + 0.139475i
\(685\) −14.9340 3.17433i −0.570601 0.121285i
\(686\) 1.77673 + 1.29087i 0.0678359 + 0.0492857i
\(687\) 6.31529 + 10.9384i 0.240944 + 0.417326i
\(688\) 5.44616 9.43303i 0.207633 0.359631i
\(689\) 5.64290 2.51238i 0.214977 0.0957140i
\(690\) 2.90880 2.11337i 0.110736 0.0804545i
\(691\) 35.0897 + 15.6229i 1.33487 + 0.594325i 0.945159 0.326611i \(-0.105907\pi\)
0.389716 + 0.920935i \(0.372573\pi\)
\(692\) −6.81246 + 1.44803i −0.258971 + 0.0550459i
\(693\) −1.95252 + 18.5770i −0.0741700 + 0.705680i
\(694\) 4.66477 + 5.18075i 0.177072 + 0.196659i
\(695\) 16.0294 17.8025i 0.608030 0.675286i
\(696\) −4.51580 42.9649i −0.171171 1.62858i
\(697\) 0.393224 + 1.21022i 0.0148944 + 0.0458403i
\(698\) 11.0678 + 34.0633i 0.418924 + 1.28932i
\(699\) −3.80173 36.1710i −0.143795 1.36811i
\(700\) −3.20156 + 3.55570i −0.121008 + 0.134393i
\(701\) −23.7043 26.3263i −0.895298 0.994329i 0.104702 0.994504i \(-0.466611\pi\)
−1.00000 0.000174860i \(0.999944\pi\)
\(702\) −1.19329 + 11.3534i −0.0450379 + 0.428507i
\(703\) 10.8210 2.30007i 0.408121 0.0867488i
\(704\) −30.5381 13.5965i −1.15095 0.512436i
\(705\) −3.08539 + 2.24166i −0.116202 + 0.0844260i
\(706\) −21.6970 + 9.66015i −0.816579 + 0.363564i
\(707\) −0.758331 + 1.31347i −0.0285200 + 0.0493980i
\(708\) 3.88795 + 6.73412i 0.146118 + 0.253084i
\(709\) 20.8801 + 15.1703i 0.784170 + 0.569733i 0.906228 0.422790i \(-0.138949\pi\)
−0.122057 + 0.992523i \(0.538949\pi\)
\(710\) −9.49718 2.01869i −0.356423 0.0757600i
\(711\) −3.92827 + 12.0900i −0.147322 + 0.453409i
\(712\) −15.5821 −0.583962
\(713\) 4.99330 + 0.854070i 0.187001 + 0.0319852i
\(714\) −36.7061 −1.37369
\(715\) −4.73414 + 14.5702i −0.177047 + 0.544894i
\(716\) −8.35004 1.77486i −0.312056 0.0663295i
\(717\) 46.8557 + 34.0426i 1.74986 + 1.27135i
\(718\) −6.37296 11.0383i −0.237837 0.411945i
\(719\) 19.5234 33.8155i 0.728099 1.26110i −0.229587 0.973288i \(-0.573738\pi\)
0.957686 0.287816i \(-0.0929291\pi\)
\(720\) 5.16963 2.30167i 0.192661 0.0857780i
\(721\) 10.0837 7.32625i 0.375537 0.272844i
\(722\) 20.4749 + 9.11599i 0.761995 + 0.339262i
\(723\) −46.1736 + 9.81450i −1.71721 + 0.365005i
\(724\) −0.607260 + 5.77769i −0.0225686 + 0.214726i
\(725\) 11.8955 + 13.2113i 0.441788 + 0.490656i
\(726\) 5.38737 5.98328i 0.199944 0.222060i
\(727\) −2.61150 24.8468i −0.0968552 0.921516i −0.929777 0.368124i \(-0.880000\pi\)
0.832921 0.553391i \(-0.186667\pi\)
\(728\) −9.47144 29.1501i −0.351035 1.08037i
\(729\) 2.24010 + 6.89433i 0.0829668 + 0.255345i
\(730\) 1.07334 + 10.2122i 0.0397262 + 0.377970i
\(731\) 9.80913 10.8941i 0.362804 0.402934i
\(732\) 1.82164 + 2.02314i 0.0673299 + 0.0747774i
\(733\) 1.77166 16.8562i 0.0654377 0.622598i −0.911827 0.410575i \(-0.865328\pi\)
0.977265 0.212023i \(-0.0680052\pi\)
\(734\) 0.164593 0.0349853i 0.00607524 0.00129133i
\(735\) −21.8819 9.74243i −0.807125 0.359355i
\(736\) −1.95825 + 1.42275i −0.0721821 + 0.0524434i
\(737\) 25.5016 11.3540i 0.939363 0.418231i
\(738\) −0.271170 + 0.469680i −0.00998190 + 0.0172892i
\(739\) −7.19107 12.4553i −0.264528 0.458175i 0.702912 0.711277i \(-0.251883\pi\)
−0.967440 + 0.253101i \(0.918549\pi\)
\(740\) 1.09279 + 0.793959i 0.0401718 + 0.0291865i
\(741\) 32.6151 + 6.93254i 1.19814 + 0.254673i
\(742\) 3.39506 10.4489i 0.124637 0.383592i
\(743\) −27.7705 −1.01880 −0.509400 0.860530i \(-0.670133\pi\)
−0.509400 + 0.860530i \(0.670133\pi\)
\(744\) 32.8233 + 13.0661i 1.20336 + 0.479025i
\(745\) 23.5603 0.863183
\(746\) −2.80390 + 8.62953i −0.102658 + 0.315950i
\(747\) 10.7205 + 2.27872i 0.392244 + 0.0833740i
\(748\) −5.53332 4.02019i −0.202318 0.146993i
\(749\) 6.00394 + 10.3991i 0.219379 + 0.379976i
\(750\) −15.0384 + 26.0473i −0.549126 + 0.951113i
\(751\) −39.8034 + 17.7216i −1.45245 + 0.646670i −0.972980 0.230891i \(-0.925836\pi\)
−0.479465 + 0.877561i \(0.659169\pi\)
\(752\) −2.69796 + 1.96018i −0.0983844 + 0.0714804i
\(753\) −30.7739 13.7014i −1.12146 0.499307i
\(754\) −21.6234 + 4.59620i −0.787478 + 0.167384i
\(755\) −0.0423013 + 0.402470i −0.00153950 + 0.0146474i
\(756\) −4.31118 4.78805i −0.156796 0.174140i
\(757\) 16.8735 18.7400i 0.613279 0.681115i −0.353879 0.935291i \(-0.615138\pi\)
0.967158 + 0.254176i \(0.0818042\pi\)
\(758\) 0.593514 + 5.64691i 0.0215574 + 0.205105i
\(759\) −2.19446 6.75385i −0.0796538 0.245149i
\(760\) 8.90688 + 27.4125i 0.323086 + 0.994358i
\(761\) 0.273439 + 2.60160i 0.00991216 + 0.0943079i 0.998359 0.0572569i \(-0.0182354\pi\)
−0.988447 + 0.151565i \(0.951569\pi\)
\(762\) −34.6029 + 38.4305i −1.25353 + 1.39219i