Properties

Label 31.2.g.a.28.2
Level 31
Weight 2
Character 31.28
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 28.2
Root \(2.52368i\)
Character \(\chi\) = 31.28
Dual form 31.2.g.a.10.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.284315 + 0.206567i) q^{2}\) \(+(0.302431 - 2.87744i) q^{3}\) \(+(-0.579869 + 1.78465i) q^{4}\) \(+(-1.48661 + 2.57489i) q^{5}\) \(+(0.508398 + 0.880572i) q^{6}\) \(+(1.05848 - 0.224987i) q^{7}\) \(+(-0.420982 - 1.29565i) q^{8}\) \(+(-5.25377 - 1.11672i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.284315 + 0.206567i) q^{2}\) \(+(0.302431 - 2.87744i) q^{3}\) \(+(-0.579869 + 1.78465i) q^{4}\) \(+(-1.48661 + 2.57489i) q^{5}\) \(+(0.508398 + 0.880572i) q^{6}\) \(+(1.05848 - 0.224987i) q^{7}\) \(+(-0.420982 - 1.29565i) q^{8}\) \(+(-5.25377 - 1.11672i) q^{9}\) \(+(-0.109221 - 1.03917i) q^{10}\) \(+(-1.62690 - 1.80686i) q^{11}\) \(+(4.95987 + 2.20827i) q^{12}\) \(+(2.62521 - 1.16882i) q^{13}\) \(+(-0.254466 + 0.282614i) q^{14}\) \(+(6.95951 + 5.05638i) q^{15}\) \(+(-2.64890 - 1.92454i) q^{16}\) \(+(-1.22101 + 1.35606i) q^{17}\) \(+(1.72440 - 0.767753i) q^{18}\) \(+(1.93514 + 0.861580i) q^{19}\) \(+(-3.73325 - 4.14619i) q^{20}\) \(+(-0.327269 - 3.11375i) q^{21}\) \(+(0.835790 + 0.177653i) q^{22}\) \(+(-0.136652 - 0.420572i) q^{23}\) \(+(-3.85547 + 0.819506i) q^{24}\) \(+(-1.92005 - 3.32562i) q^{25}\) \(+(-0.504947 + 0.874594i) q^{26}\) \(+(-2.11998 + 6.52462i) q^{27}\) \(+(-0.212256 + 2.01948i) q^{28}\) \(+(2.55579 - 1.85689i) q^{29}\) \(-3.02317 q^{30}\) \(+(1.15354 + 5.44696i) q^{31}\) \(+3.87532 q^{32}\) \(+(-5.69116 + 4.13487i) q^{33}\) \(+(0.0670322 - 0.637769i) q^{34}\) \(+(-0.994234 + 3.05994i) q^{35}\) \(+(5.03946 - 8.72860i) q^{36}\) \(+(-1.57338 - 2.72517i) q^{37}\) \(+(-0.728163 + 0.154776i) q^{38}\) \(+(-2.56926 - 7.90738i) q^{39}\) \(+(3.96200 + 0.842148i) q^{40}\) \(+(0.726079 + 6.90818i) q^{41}\) \(+(0.736246 + 0.817684i) q^{42}\) \(+(-7.68509 - 3.42162i) q^{43}\) \(+(4.16801 - 1.85572i) q^{44}\) \(+(10.6858 - 11.8677i) q^{45}\) \(+(0.125728 + 0.0913471i) q^{46}\) \(+(6.44144 + 4.67998i) q^{47}\) \(+(-6.33887 + 7.04003i) q^{48}\) \(+(-5.32506 + 2.37087i) q^{49}\) \(+(1.23286 + 0.548905i) q^{50}\) \(+(3.53273 + 3.92349i) q^{51}\) \(+(0.563659 + 5.36285i) q^{52}\) \(+(4.86824 + 1.03478i) q^{53}\) \(+(-0.745029 - 2.29296i) q^{54}\) \(+(7.07105 - 1.50300i) q^{55}\) \(+(-0.737104 - 1.27670i) q^{56}\) \(+(3.06439 - 5.30768i) q^{57}\) \(+(-0.343078 + 1.05588i) q^{58}\) \(+(1.25580 - 11.9481i) q^{59}\) \(+(-13.0595 + 9.48827i) q^{60}\) \(-14.4351 q^{61}\) \(+(-1.45313 - 1.31037i) q^{62}\) \(-5.81225 q^{63}\) \(+(4.19600 - 3.04857i) q^{64}\) \(+(-0.893094 + 8.49722i) q^{65}\) \(+(0.763955 - 2.35121i) q^{66}\) \(+(3.21879 - 5.57511i) q^{67}\) \(+(-1.71208 - 2.96541i) q^{68}\) \(+(-1.25150 + 0.266015i) q^{69}\) \(+(-0.349406 - 1.07536i) q^{70}\) \(+(-1.64121 - 0.348850i) q^{71}\) \(+(0.764860 + 7.27716i) q^{72}\) \(+(9.60883 + 10.6717i) q^{73}\) \(+(1.01026 + 0.449798i) q^{74}\) \(+(-10.1500 + 4.51905i) q^{75}\) \(+(-2.65975 + 2.95395i) q^{76}\) \(+(-2.12856 - 1.54649i) q^{77}\) \(+(2.36388 + 1.71746i) q^{78}\) \(+(-2.30692 + 2.56210i) q^{79}\) \(+(8.89339 - 3.95959i) q^{80}\) \(+(3.41274 + 1.51945i) q^{81}\) \(+(-1.63344 - 1.81412i) q^{82}\) \(+(-1.34357 - 12.7832i) q^{83}\) \(+(5.74674 + 1.22151i) q^{84}\) \(+(-1.67655 - 5.15991i) q^{85}\) \(+(2.89178 - 0.614667i) q^{86}\) \(+(-4.57015 - 7.91573i) q^{87}\) \(+(-1.65616 + 2.86855i) q^{88}\) \(+(0.698188 - 2.14880i) q^{89}\) \(+(-0.586639 + 5.58150i) q^{90}\) \(+(2.51576 - 1.82781i) q^{91}\) \(+0.829816 q^{92}\) \(+(16.0222 - 1.67190i) q^{93}\) \(-2.79812 q^{94}\) \(+(-5.09528 + 3.70194i) q^{95}\) \(+(1.17202 - 11.1510i) q^{96}\) \(+(1.05463 - 3.24582i) q^{97}\) \(+(1.02425 - 1.77405i) q^{98}\) \(+(6.52961 + 11.3096i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.284315 + 0.206567i −0.201041 + 0.146065i −0.683751 0.729715i \(-0.739653\pi\)
0.482710 + 0.875780i \(0.339653\pi\)
\(3\) 0.302431 2.87744i 0.174609 1.66129i −0.459597 0.888128i \(-0.652006\pi\)
0.634206 0.773164i \(-0.281327\pi\)
\(4\) −0.579869 + 1.78465i −0.289934 + 0.892327i
\(5\) −1.48661 + 2.57489i −0.664834 + 1.15153i 0.314496 + 0.949259i \(0.398165\pi\)
−0.979330 + 0.202268i \(0.935169\pi\)
\(6\) 0.508398 + 0.880572i 0.207553 + 0.359492i
\(7\) 1.05848 0.224987i 0.400067 0.0850369i −0.00348400 0.999994i \(-0.501109\pi\)
0.403551 + 0.914957i \(0.367776\pi\)
\(8\) −0.420982 1.29565i −0.148840 0.458081i
\(9\) −5.25377 1.11672i −1.75126 0.372241i
\(10\) −0.109221 1.03917i −0.0345386 0.328613i
\(11\) −1.62690 1.80686i −0.490530 0.544789i 0.446158 0.894954i \(-0.352792\pi\)
−0.936688 + 0.350165i \(0.886125\pi\)
\(12\) 4.95987 + 2.20827i 1.43179 + 0.637474i
\(13\) 2.62521 1.16882i 0.728103 0.324172i −0.00899389 0.999960i \(-0.502863\pi\)
0.737097 + 0.675787i \(0.236196\pi\)
\(14\) −0.254466 + 0.282614i −0.0680090 + 0.0755317i
\(15\) 6.95951 + 5.05638i 1.79694 + 1.30555i
\(16\) −2.64890 1.92454i −0.662226 0.481135i
\(17\) −1.22101 + 1.35606i −0.296137 + 0.328894i −0.872790 0.488095i \(-0.837692\pi\)
0.576653 + 0.816989i \(0.304359\pi\)
\(18\) 1.72440 0.767753i 0.406445 0.180961i
\(19\) 1.93514 + 0.861580i 0.443951 + 0.197660i 0.616523 0.787337i \(-0.288541\pi\)
−0.172571 + 0.984997i \(0.555208\pi\)
\(20\) −3.73325 4.14619i −0.834780 0.927117i
\(21\) −0.327269 3.11375i −0.0714159 0.679477i
\(22\) 0.835790 + 0.177653i 0.178191 + 0.0378757i
\(23\) −0.136652 0.420572i −0.0284939 0.0876953i 0.935798 0.352536i \(-0.114681\pi\)
−0.964292 + 0.264841i \(0.914681\pi\)
\(24\) −3.85547 + 0.819506i −0.786995 + 0.167281i
\(25\) −1.92005 3.32562i −0.384010 0.665124i
\(26\) −0.504947 + 0.874594i −0.0990283 + 0.171522i
\(27\) −2.11998 + 6.52462i −0.407990 + 1.25566i
\(28\) −0.212256 + 2.01948i −0.0401126 + 0.381646i
\(29\) 2.55579 1.85689i 0.474599 0.344816i −0.324632 0.945840i \(-0.605240\pi\)
0.799231 + 0.601024i \(0.205240\pi\)
\(30\) −3.02317 −0.551953
\(31\) 1.15354 + 5.44696i 0.207181 + 0.978303i
\(32\) 3.87532 0.685067
\(33\) −5.69116 + 4.13487i −0.990704 + 0.719789i
\(34\) 0.0670322 0.637769i 0.0114959 0.109376i
\(35\) −0.994234 + 3.05994i −0.168056 + 0.517224i
\(36\) 5.03946 8.72860i 0.839910 1.45477i
\(37\) −1.57338 2.72517i −0.258661 0.448015i 0.707222 0.706991i \(-0.249948\pi\)
−0.965884 + 0.258977i \(0.916615\pi\)
\(38\) −0.728163 + 0.154776i −0.118124 + 0.0251079i
\(39\) −2.56926 7.90738i −0.411412 1.26619i
\(40\) 3.96200 + 0.842148i 0.626447 + 0.133155i
\(41\) 0.726079 + 6.90818i 0.113395 + 1.07888i 0.892209 + 0.451623i \(0.149155\pi\)
−0.778814 + 0.627254i \(0.784179\pi\)
\(42\) 0.736246 + 0.817684i 0.113605 + 0.126171i
\(43\) −7.68509 3.42162i −1.17197 0.521793i −0.273944 0.961746i \(-0.588328\pi\)
−0.898021 + 0.439953i \(0.854995\pi\)
\(44\) 4.16801 1.85572i 0.628351 0.279760i
\(45\) 10.6858 11.8677i 1.59294 1.76914i
\(46\) 0.125728 + 0.0913471i 0.0185377 + 0.0134684i
\(47\) 6.44144 + 4.67998i 0.939580 + 0.682645i 0.948320 0.317317i \(-0.102782\pi\)
−0.00873953 + 0.999962i \(0.502782\pi\)
\(48\) −6.33887 + 7.04003i −0.914937 + 1.01614i
\(49\) −5.32506 + 2.37087i −0.760723 + 0.338696i
\(50\) 1.23286 + 0.548905i 0.174353 + 0.0776269i
\(51\) 3.53273 + 3.92349i 0.494681 + 0.549399i
\(52\) 0.563659 + 5.36285i 0.0781654 + 0.743694i
\(53\) 4.86824 + 1.03478i 0.668704 + 0.142137i 0.529740 0.848160i \(-0.322289\pi\)
0.138964 + 0.990297i \(0.455623\pi\)
\(54\) −0.745029 2.29296i −0.101386 0.312033i
\(55\) 7.07105 1.50300i 0.953460 0.202664i
\(56\) −0.737104 1.27670i −0.0984997 0.170606i
\(57\) 3.06439 5.30768i 0.405889 0.703020i
\(58\) −0.343078 + 1.05588i −0.0450483 + 0.138644i
\(59\) 1.25580 11.9481i 0.163491 1.55551i −0.538068 0.842902i \(-0.680846\pi\)
0.701559 0.712612i \(-0.252488\pi\)
\(60\) −13.0595 + 9.48827i −1.68597 + 1.22493i
\(61\) −14.4351 −1.84823 −0.924115 0.382115i \(-0.875196\pi\)
−0.924115 + 0.382115i \(0.875196\pi\)
\(62\) −1.45313 1.31037i −0.184548 0.166417i
\(63\) −5.81225 −0.732274
\(64\) 4.19600 3.04857i 0.524499 0.381071i
\(65\) −0.893094 + 8.49722i −0.110775 + 1.05395i
\(66\) 0.763955 2.35121i 0.0940363 0.289414i
\(67\) 3.21879 5.57511i 0.393238 0.681108i −0.599636 0.800273i \(-0.704688\pi\)
0.992875 + 0.119164i \(0.0380215\pi\)
\(68\) −1.71208 2.96541i −0.207620 0.359609i
\(69\) −1.25150 + 0.266015i −0.150663 + 0.0320244i
\(70\) −0.349406 1.07536i −0.0417620 0.128530i
\(71\) −1.64121 0.348850i −0.194776 0.0414009i 0.109491 0.993988i \(-0.465078\pi\)
−0.304266 + 0.952587i \(0.598411\pi\)
\(72\) 0.764860 + 7.27716i 0.0901396 + 0.857621i
\(73\) 9.60883 + 10.6717i 1.12463 + 1.24903i 0.965114 + 0.261830i \(0.0843261\pi\)
0.159514 + 0.987196i \(0.449007\pi\)
\(74\) 1.01026 + 0.449798i 0.117441 + 0.0522880i
\(75\) −10.1500 + 4.51905i −1.17202 + 0.521815i
\(76\) −2.65975 + 2.95395i −0.305094 + 0.338841i
\(77\) −2.12856 1.54649i −0.242572 0.176239i
\(78\) 2.36388 + 1.71746i 0.267657 + 0.194464i
\(79\) −2.30692 + 2.56210i −0.259549 + 0.288259i −0.858809 0.512296i \(-0.828795\pi\)
0.599260 + 0.800555i \(0.295462\pi\)
\(80\) 8.89339 3.95959i 0.994311 0.442696i
\(81\) 3.41274 + 1.51945i 0.379194 + 0.168828i
\(82\) −1.63344 1.81412i −0.180383 0.200336i
\(83\) −1.34357 12.7832i −0.147476 1.40314i −0.778631 0.627482i \(-0.784086\pi\)
0.631155 0.775657i \(-0.282581\pi\)
\(84\) 5.74674 + 1.22151i 0.627021 + 0.133277i
\(85\) −1.67655 5.15991i −0.181848 0.559670i
\(86\) 2.89178 0.614667i 0.311829 0.0662812i
\(87\) −4.57015 7.91573i −0.489972 0.848656i
\(88\) −1.65616 + 2.86855i −0.176547 + 0.305789i
\(89\) 0.698188 2.14880i 0.0740078 0.227773i −0.907209 0.420680i \(-0.861792\pi\)
0.981217 + 0.192907i \(0.0617916\pi\)
\(90\) −0.586639 + 5.58150i −0.0618372 + 0.588342i
\(91\) 2.51576 1.82781i 0.263724 0.191606i
\(92\) 0.829816 0.0865143
\(93\) 16.0222 1.67190i 1.66142 0.173368i
\(94\) −2.79812 −0.288604
\(95\) −5.09528 + 3.70194i −0.522765 + 0.379811i
\(96\) 1.17202 11.1510i 0.119619 1.13810i
\(97\) 1.05463 3.24582i 0.107082 0.329563i −0.883132 0.469125i \(-0.844569\pi\)
0.990213 + 0.139562i \(0.0445693\pi\)
\(98\) 1.02425 1.77405i 0.103465 0.179207i
\(99\) 6.52961 + 11.3096i 0.656251 + 1.13666i
\(100\) 7.04845 1.49820i 0.704845 0.149820i
\(101\) 5.47495 + 16.8502i 0.544778 + 1.67665i 0.721518 + 0.692395i \(0.243445\pi\)
−0.176741 + 0.984257i \(0.556555\pi\)
\(102\) −1.81487 0.385763i −0.179699 0.0381962i
\(103\) −0.843947 8.02962i −0.0831566 0.791182i −0.954037 0.299688i \(-0.903118\pi\)
0.870881 0.491494i \(-0.163549\pi\)
\(104\) −2.61955 2.90930i −0.256868 0.285281i
\(105\) 8.50411 + 3.78627i 0.829916 + 0.369502i
\(106\) −1.59786 + 0.711414i −0.155198 + 0.0690987i
\(107\) −8.13074 + 9.03010i −0.786028 + 0.872972i −0.994466 0.105063i \(-0.966495\pi\)
0.208438 + 0.978036i \(0.433162\pi\)
\(108\) −10.4149 7.56685i −1.00217 0.728121i
\(109\) 0.511381 + 0.371540i 0.0489815 + 0.0355871i 0.612007 0.790853i \(-0.290363\pi\)
−0.563025 + 0.826440i \(0.690363\pi\)
\(110\) −1.69994 + 1.88797i −0.162082 + 0.180011i
\(111\) −8.31735 + 3.70312i −0.789448 + 0.351485i
\(112\) −3.23680 1.44112i −0.305849 0.136173i
\(113\) −7.56140 8.39779i −0.711317 0.789998i 0.273818 0.961782i \(-0.411714\pi\)
−0.985135 + 0.171784i \(0.945047\pi\)
\(114\) 0.225139 + 2.14205i 0.0210862 + 0.200622i
\(115\) 1.28608 + 0.273364i 0.119927 + 0.0254913i
\(116\) 1.83188 + 5.63796i 0.170086 + 0.523472i
\(117\) −15.0975 + 3.20907i −1.39576 + 0.296679i
\(118\) 2.11104 + 3.65643i 0.194337 + 0.336602i
\(119\) −0.987313 + 1.71008i −0.0905068 + 0.156762i
\(120\) 3.62146 11.1457i 0.330593 1.01746i
\(121\) 0.531887 5.06056i 0.0483533 0.460051i
\(122\) 4.10412 2.98182i 0.371570 0.269961i
\(123\) 20.0975 1.81213
\(124\) −10.3898 1.09986i −0.933034 0.0987702i
\(125\) −3.44866 −0.308458
\(126\) 1.65251 1.20062i 0.147217 0.106960i
\(127\) −0.0123141 + 0.117161i −0.00109270 + 0.0103963i −0.995055 0.0993289i \(-0.968330\pi\)
0.993962 + 0.109725i \(0.0349971\pi\)
\(128\) −2.95833 + 9.10481i −0.261482 + 0.804759i
\(129\) −12.1697 + 21.0786i −1.07149 + 1.85587i
\(130\) −1.50132 2.60037i −0.131675 0.228068i
\(131\) −5.65756 + 1.20255i −0.494303 + 0.105067i −0.448317 0.893875i \(-0.647976\pi\)
−0.0459863 + 0.998942i \(0.514643\pi\)
\(132\) −4.07918 12.5544i −0.355047 1.09272i
\(133\) 2.24215 + 0.476583i 0.194419 + 0.0413250i
\(134\) 0.236483 + 2.24998i 0.0204290 + 0.194369i
\(135\) −13.6486 15.1583i −1.17469 1.30462i
\(136\) 2.27101 + 1.01112i 0.194737 + 0.0867026i
\(137\) 10.7848 4.80170i 0.921407 0.410237i 0.109475 0.993990i \(-0.465083\pi\)
0.811931 + 0.583753i \(0.198416\pi\)
\(138\) 0.300870 0.334150i 0.0256118 0.0284448i
\(139\) 12.4767 + 9.06482i 1.05826 + 0.768868i 0.973765 0.227556i \(-0.0730734\pi\)
0.0844915 + 0.996424i \(0.473073\pi\)
\(140\) −4.88440 3.54873i −0.412807 0.299922i
\(141\) 15.4145 17.1195i 1.29813 1.44172i
\(142\) 0.538681 0.239836i 0.0452051 0.0201266i
\(143\) −6.38286 2.84183i −0.533762 0.237646i
\(144\) 11.7675 + 13.0692i 0.980628 + 1.08910i
\(145\) 0.981819 + 9.34138i 0.0815356 + 0.775759i
\(146\) −4.93635 1.04925i −0.408535 0.0868368i
\(147\) 5.21157 + 16.0396i 0.429843 + 1.32292i
\(148\) 5.77583 1.22769i 0.474770 0.100916i
\(149\) 5.97511 + 10.3492i 0.489500 + 0.847840i 0.999927 0.0120817i \(-0.00384583\pi\)
−0.510427 + 0.859921i \(0.670512\pi\)
\(150\) 1.95230 3.38148i 0.159404 0.276097i
\(151\) −1.33561 + 4.11059i −0.108691 + 0.334515i −0.990579 0.136943i \(-0.956272\pi\)
0.881888 + 0.471458i \(0.156272\pi\)
\(152\) 0.301646 2.86997i 0.0244667 0.232785i
\(153\) 7.92923 5.76092i 0.641040 0.465743i
\(154\) 0.924636 0.0745093
\(155\) −15.7402 5.12730i −1.26428 0.411834i
\(156\) 15.6018 1.24914
\(157\) 7.04204 5.11634i 0.562016 0.408328i −0.270180 0.962810i \(-0.587083\pi\)
0.832196 + 0.554481i \(0.187083\pi\)
\(158\) 0.126648 1.20498i 0.0100756 0.0958628i
\(159\) 4.44982 13.6951i 0.352893 1.08609i
\(160\) −5.76111 + 9.97854i −0.455456 + 0.788873i
\(161\) −0.239267 0.414422i −0.0188568 0.0326610i
\(162\) −1.28416 + 0.272957i −0.100893 + 0.0214455i
\(163\) 0.966575 + 2.97481i 0.0757080 + 0.233005i 0.981748 0.190187i \(-0.0609095\pi\)
−0.906040 + 0.423192i \(0.860909\pi\)
\(164\) −12.7497 2.71004i −0.995588 0.211619i
\(165\) −2.18628 20.8011i −0.170202 1.61936i
\(166\) 3.02258 + 3.35692i 0.234598 + 0.260547i
\(167\) −12.2003 5.43194i −0.944090 0.420336i −0.123815 0.992305i \(-0.539513\pi\)
−0.820275 + 0.571969i \(0.806180\pi\)
\(168\) −3.89656 + 1.73486i −0.300626 + 0.133847i
\(169\) −3.17310 + 3.52408i −0.244085 + 0.271083i
\(170\) 1.54253 + 1.12072i 0.118307 + 0.0859551i
\(171\) −9.20462 6.68755i −0.703895 0.511410i
\(172\) 10.5628 11.7311i 0.805402 0.894490i
\(173\) 17.3982 7.74619i 1.32276 0.588932i 0.380803 0.924656i \(-0.375648\pi\)
0.941960 + 0.335724i \(0.108981\pi\)
\(174\) 2.93449 + 1.30652i 0.222463 + 0.0990469i
\(175\) −2.78055 3.08811i −0.210190 0.233439i
\(176\) 0.832136 + 7.91724i 0.0627246 + 0.596785i
\(177\) −34.0002 7.22697i −2.55561 0.543213i
\(178\) 0.245366 + 0.755159i 0.0183910 + 0.0566016i
\(179\) 0.0775964 0.0164936i 0.00579983 0.00123279i −0.205011 0.978760i \(-0.565723\pi\)
0.210811 + 0.977527i \(0.432390\pi\)
\(180\) 14.9835 + 25.9521i 1.11680 + 1.93436i
\(181\) −1.08143 + 1.87308i −0.0803817 + 0.139225i −0.903414 0.428769i \(-0.858947\pi\)
0.823032 + 0.567995i \(0.192281\pi\)
\(182\) −0.337704 + 1.03935i −0.0250323 + 0.0770415i
\(183\) −4.36564 + 41.5363i −0.322717 + 3.07045i
\(184\) −0.487386 + 0.354107i −0.0359306 + 0.0261051i
\(185\) 9.35601 0.687868
\(186\) −4.20998 + 3.78500i −0.308691 + 0.277529i
\(187\) 4.43668 0.324442
\(188\) −12.0873 + 8.78195i −0.881559 + 0.640490i
\(189\) −0.776000 + 7.38314i −0.0564457 + 0.537045i
\(190\) 0.683966 2.10503i 0.0496201 0.152715i
\(191\) 2.67085 4.62604i 0.193256 0.334729i −0.753072 0.657939i \(-0.771429\pi\)
0.946327 + 0.323210i \(0.104762\pi\)
\(192\) −7.50308 12.9957i −0.541488 0.937885i
\(193\) 2.08705 0.443616i 0.150229 0.0319322i −0.132183 0.991225i \(-0.542199\pi\)
0.282412 + 0.959293i \(0.408865\pi\)
\(194\) 0.370632 + 1.14069i 0.0266098 + 0.0818966i
\(195\) 24.1802 + 5.13965i 1.73158 + 0.368058i
\(196\) −1.14334 10.8782i −0.0816673 0.777013i
\(197\) −3.93163 4.36652i −0.280117 0.311102i 0.586624 0.809859i \(-0.300456\pi\)
−0.866742 + 0.498758i \(0.833790\pi\)
\(198\) −4.19266 1.86669i −0.297959 0.132660i
\(199\) 6.32901 2.81786i 0.448652 0.199753i −0.169958 0.985451i \(-0.554363\pi\)
0.618609 + 0.785699i \(0.287696\pi\)
\(200\) −3.50053 + 3.88773i −0.247525 + 0.274904i
\(201\) −15.0686 10.9480i −1.06286 0.772211i
\(202\) −5.03729 3.65981i −0.354423 0.257503i
\(203\) 2.28748 2.54050i 0.160549 0.178308i
\(204\) −9.05059 + 4.02958i −0.633668 + 0.282127i
\(205\) −18.8672 8.40023i −1.31774 0.586698i
\(206\) 1.89860 + 2.10861i 0.132282 + 0.146914i
\(207\) 0.248276 + 2.36219i 0.0172564 + 0.164184i
\(208\) −9.20337 1.95624i −0.638139 0.135641i
\(209\) −1.59153 4.89823i −0.110089 0.338818i
\(210\) −3.19996 + 0.680173i −0.220818 + 0.0469364i
\(211\) −8.35437 14.4702i −0.575139 0.996170i −0.996027 0.0890568i \(-0.971615\pi\)
0.420888 0.907113i \(-0.361719\pi\)
\(212\) −4.66966 + 8.08808i −0.320713 + 0.555492i
\(213\) −1.50015 + 4.61698i −0.102788 + 0.316350i
\(214\) 0.446370 4.24693i 0.0305133 0.290314i
\(215\) 20.2351 14.7016i 1.38002 1.00264i
\(216\) 9.34610 0.635921
\(217\) 2.44649 + 5.50596i 0.166078 + 0.373769i
\(218\) −0.222141 −0.0150453
\(219\) 33.6132 24.4214i 2.27137 1.65024i
\(220\) −1.41795 + 13.4909i −0.0955983 + 0.909557i
\(221\) −1.62040 + 4.98709i −0.109000 + 0.335468i
\(222\) 1.59980 2.77094i 0.107372 0.185973i
\(223\) 3.13078 + 5.42267i 0.209653 + 0.363129i 0.951605 0.307323i \(-0.0994333\pi\)
−0.741952 + 0.670453i \(0.766100\pi\)
\(224\) 4.10195 0.871895i 0.274073 0.0582560i
\(225\) 6.37369 + 19.6162i 0.424912 + 1.30775i
\(226\) 3.88452 + 0.825681i 0.258395 + 0.0549235i
\(227\) 0.820289 + 7.80452i 0.0544445 + 0.518004i 0.987426 + 0.158081i \(0.0505306\pi\)
−0.932982 + 0.359924i \(0.882803\pi\)
\(228\) 7.69543 + 8.54664i 0.509642 + 0.566015i
\(229\) 11.6687 + 5.19524i 0.771089 + 0.343311i 0.754285 0.656548i \(-0.227984\pi\)
0.0168049 + 0.999859i \(0.494651\pi\)
\(230\) −0.422119 + 0.187939i −0.0278337 + 0.0123924i
\(231\) −5.09368 + 5.65711i −0.335140 + 0.372210i
\(232\) −3.48183 2.52969i −0.228593 0.166083i
\(233\) −10.2887 7.47514i −0.674032 0.489713i 0.197340 0.980335i \(-0.436770\pi\)
−0.871373 + 0.490622i \(0.836770\pi\)
\(234\) 3.62955 4.03103i 0.237271 0.263517i
\(235\) −21.6264 + 9.62868i −1.41075 + 0.628106i
\(236\) 20.5951 + 9.16951i 1.34062 + 0.596884i
\(237\) 6.67460 + 7.41290i 0.433562 + 0.481520i
\(238\) −0.0725373 0.690146i −0.00470189 0.0447355i
\(239\) 24.8690 + 5.28607i 1.60864 + 0.341928i 0.922638 0.385668i \(-0.126029\pi\)
0.686006 + 0.727596i \(0.259362\pi\)
\(240\) −8.70385 26.7877i −0.561831 1.72914i
\(241\) −2.30939 + 0.490876i −0.148761 + 0.0316201i −0.281690 0.959505i \(-0.590895\pi\)
0.132929 + 0.991126i \(0.457562\pi\)
\(242\) 0.894121 + 1.54866i 0.0574763 + 0.0995519i
\(243\) −4.88634 + 8.46339i −0.313459 + 0.542927i
\(244\) 8.37048 25.7617i 0.535865 1.64922i
\(245\) 1.81158 17.2360i 0.115738 1.10117i
\(246\) −5.71401 + 4.15147i −0.364312 + 0.264688i
\(247\) 6.08718 0.387318
\(248\) 6.57173 3.78765i 0.417305 0.240516i
\(249\) −37.1893 −2.35677
\(250\) 0.980506 0.712379i 0.0620126 0.0450548i
\(251\) −0.246336 + 2.34373i −0.0155486 + 0.147935i −0.999542 0.0302716i \(-0.990363\pi\)
0.983993 + 0.178206i \(0.0570294\pi\)
\(252\) 3.37034 10.3728i 0.212312 0.653428i
\(253\) −0.537595 + 0.931142i −0.0337983 + 0.0585404i
\(254\) −0.0207005 0.0358542i −0.00129886 0.00224970i
\(255\) −15.3544 + 3.26367i −0.961528 + 0.204379i
\(256\) 2.16580 + 6.66565i 0.135363 + 0.416603i
\(257\) 25.4455 + 5.40862i 1.58725 + 0.337380i 0.915160 0.403090i \(-0.132064\pi\)
0.672089 + 0.740470i \(0.265397\pi\)
\(258\) −0.894103 8.50682i −0.0556644 0.529612i
\(259\) −2.27851 2.53054i −0.141580 0.157240i
\(260\) −14.6467 6.52114i −0.908351 0.404424i
\(261\) −15.5012 + 6.90157i −0.959499 + 0.427196i
\(262\) 1.36012 1.51057i 0.0840285 0.0933232i
\(263\) −18.5552 13.4812i −1.14417 0.831285i −0.156471 0.987683i \(-0.550012\pi\)
−0.987694 + 0.156398i \(0.950012\pi\)
\(264\) 7.75322 + 5.63304i 0.477178 + 0.346690i
\(265\) −9.90163 + 10.9969i −0.608253 + 0.675533i
\(266\) −0.735922 + 0.327654i −0.0451223 + 0.0200897i
\(267\) −5.97190 2.65886i −0.365474 0.162720i
\(268\) 8.08316 + 8.97726i 0.493758 + 0.548374i
\(269\) 1.78193 + 16.9539i 0.108646 + 1.03370i 0.903994 + 0.427546i \(0.140622\pi\)
−0.795347 + 0.606154i \(0.792712\pi\)
\(270\) 7.01171 + 1.49038i 0.426719 + 0.0907019i
\(271\) 2.23929 + 6.89184i 0.136027 + 0.418649i 0.995748 0.0921146i \(-0.0293626\pi\)
−0.859721 + 0.510764i \(0.829363\pi\)
\(272\) 5.84413 1.24221i 0.354352 0.0753199i
\(273\) −4.49857 7.79175i −0.272266 0.471578i
\(274\) −2.07440 + 3.59297i −0.125319 + 0.217059i
\(275\) −2.88520 + 8.87972i −0.173984 + 0.535467i
\(276\) 0.250962 2.38775i 0.0151062 0.143725i
\(277\) −12.2188 + 8.87748i −0.734157 + 0.533396i −0.890876 0.454247i \(-0.849908\pi\)
0.156719 + 0.987643i \(0.449908\pi\)
\(278\) −5.41979 −0.325058
\(279\) 0.0223278 29.9052i 0.00133673 1.79038i
\(280\) 4.38316 0.261944
\(281\) 2.01209 1.46187i 0.120031 0.0872078i −0.526150 0.850392i \(-0.676365\pi\)
0.646181 + 0.763184i \(0.276365\pi\)
\(282\) −0.846240 + 8.05144i −0.0503929 + 0.479456i
\(283\) −1.46052 + 4.49503i −0.0868192 + 0.267202i −0.985035 0.172352i \(-0.944863\pi\)
0.898216 + 0.439554i \(0.144863\pi\)
\(284\) 1.57426 2.72670i 0.0934153 0.161800i
\(285\) 9.11114 + 15.7810i 0.539697 + 0.934783i
\(286\) 2.40177 0.510512i 0.142020 0.0301872i
\(287\) 2.32279 + 7.14881i 0.137110 + 0.421981i
\(288\) −20.3600 4.32766i −1.19973 0.255010i
\(289\) 1.42893 + 13.5953i 0.0840546 + 0.799726i
\(290\) −2.20877 2.45308i −0.129703 0.144050i
\(291\) −9.02071 4.01628i −0.528804 0.235439i
\(292\) −24.6171 + 10.9602i −1.44061 + 0.641400i
\(293\) −7.05858 + 7.83935i −0.412367 + 0.457980i −0.913169 0.407582i \(-0.866372\pi\)
0.500802 + 0.865562i \(0.333039\pi\)
\(294\) −4.79497 3.48375i −0.279648 0.203177i
\(295\) 28.8982 + 20.9958i 1.68252 + 1.22242i
\(296\) −2.86850 + 3.18579i −0.166728 + 0.185170i
\(297\) 15.2381 6.78443i 0.884203 0.393673i
\(298\) −3.83662 1.70817i −0.222249 0.0989517i
\(299\) −0.850314 0.944369i −0.0491749 0.0546143i
\(300\) −2.17930 20.7346i −0.125822 1.19711i
\(301\) −8.90432 1.89267i −0.513237 0.109092i
\(302\) −0.469377 1.44459i −0.0270096 0.0831271i
\(303\) 50.1411 10.6578i 2.88053 0.612276i
\(304\) −3.46785 6.00650i −0.198895 0.344496i
\(305\) 21.4595 37.1689i 1.22877 2.12829i
\(306\) −1.06438 + 3.27583i −0.0608467 + 0.187267i
\(307\) −0.276844 + 2.63399i −0.0158003 + 0.150330i −0.999578 0.0290645i \(-0.990747\pi\)
0.983777 + 0.179394i \(0.0574138\pi\)
\(308\) 3.99424 2.90198i 0.227593 0.165356i
\(309\) −23.3600 −1.32890
\(310\) 5.53430 1.79364i 0.314327 0.101872i
\(311\) 5.51283 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(312\) −9.16358 + 6.65773i −0.518786 + 0.376920i
\(313\) 2.78834 26.5293i 0.157607 1.49953i −0.574595 0.818438i \(-0.694840\pi\)
0.732201 0.681088i \(-0.238493\pi\)
\(314\) −0.945290 + 2.90930i −0.0533458 + 0.164181i
\(315\) 8.64057 14.9659i 0.486841 0.843234i
\(316\) −3.23474 5.60274i −0.181969 0.315179i
\(317\) −10.5055 + 2.23302i −0.590050 + 0.125419i −0.493254 0.869885i \(-0.664193\pi\)
−0.0967957 + 0.995304i \(0.530859\pi\)
\(318\) 1.56381 + 4.81291i 0.0876941 + 0.269895i
\(319\) −7.51318 1.59698i −0.420657 0.0894135i
\(320\) 1.61191 + 15.3363i 0.0901084 + 0.857324i
\(321\) 23.5246 + 26.1267i 1.31301 + 1.45825i
\(322\) 0.153633 + 0.0684017i 0.00856162 + 0.00381188i
\(323\) −3.53117 + 1.57218i −0.196480 + 0.0874784i
\(324\) −4.69064 + 5.20948i −0.260591 + 0.289416i
\(325\) −8.92758 6.48627i −0.495213 0.359793i
\(326\) −0.889309 0.646121i −0.0492543 0.0357853i
\(327\) 1.22374 1.35911i 0.0676732 0.0751587i
\(328\) 8.64492 3.84897i 0.477336 0.212524i
\(329\) 7.87106 + 3.50442i 0.433945 + 0.193205i
\(330\) 4.91841 + 5.46245i 0.270750 + 0.300698i
\(331\) −2.05373 19.5400i −0.112883 1.07401i −0.893518 0.449027i \(-0.851771\pi\)
0.780635 0.624987i \(-0.214896\pi\)
\(332\) 23.5927 + 5.01478i 1.29482 + 0.275222i
\(333\) 5.22289 + 16.0744i 0.286213 + 0.880872i
\(334\) 4.59080 0.975804i 0.251197 0.0533936i
\(335\) 9.57021 + 16.5761i 0.522876 + 0.905649i
\(336\) −5.12565 + 8.87788i −0.279627 + 0.484328i
\(337\) 5.92655 18.2401i 0.322840 0.993599i −0.649566 0.760305i \(-0.725050\pi\)
0.972406 0.233294i \(-0.0749505\pi\)
\(338\) 0.174200 1.65741i 0.00947525 0.0901510i
\(339\) −26.4510 + 19.2178i −1.43662 + 1.04376i
\(340\) 10.1808 0.552133
\(341\) 7.96520 10.9460i 0.431340 0.592757i
\(342\) 3.99844 0.216211
\(343\) −11.2313 + 8.15999i −0.606431 + 0.440598i
\(344\) −1.19794 + 11.3976i −0.0645885 + 0.614519i
\(345\) 1.17554 3.61794i 0.0632889 0.194783i
\(346\) −3.34647 + 5.79626i −0.179907 + 0.311609i
\(347\) −5.32998 9.23180i −0.286128 0.495589i 0.686754 0.726890i \(-0.259035\pi\)
−0.972882 + 0.231301i \(0.925702\pi\)
\(348\) 16.7769 3.56605i 0.899338 0.191160i
\(349\) −5.77910 17.7862i −0.309348 0.952075i −0.978019 0.208517i \(-0.933136\pi\)
0.668671 0.743559i \(-0.266864\pi\)
\(350\) 1.42845 + 0.303627i 0.0763540 + 0.0162296i
\(351\) 2.06072 + 19.6064i 0.109993 + 1.04651i
\(352\) −6.30478 7.00216i −0.336046 0.373217i
\(353\) −11.5675 5.15020i −0.615678 0.274117i 0.0751097 0.997175i \(-0.476069\pi\)
−0.690787 + 0.723058i \(0.742736\pi\)
\(354\) 11.1596 4.96859i 0.593127 0.264077i
\(355\) 3.33810 3.70733i 0.177168 0.196765i
\(356\) 3.43001 + 2.49205i 0.181790 + 0.132078i
\(357\) 4.62205 + 3.35812i 0.244625 + 0.177730i
\(358\) −0.0186548 + 0.0207182i −0.000985936 + 0.00109499i
\(359\) −20.7175 + 9.22402i −1.09343 + 0.486825i −0.872574 0.488482i \(-0.837551\pi\)
−0.220853 + 0.975307i \(0.570884\pi\)
\(360\) −19.8750 8.84890i −1.04750 0.466378i
\(361\) −9.71104 10.7852i −0.511107 0.567642i
\(362\) −0.0794517 0.755932i −0.00417589 0.0397309i
\(363\) −14.4006 3.06095i −0.755837 0.160658i
\(364\) 1.80319 + 5.54965i 0.0945129 + 0.290881i
\(365\) −41.7631 + 8.87701i −2.18598 + 0.464644i
\(366\) −7.33880 12.7112i −0.383605 0.664424i
\(367\) −4.35984 + 7.55147i −0.227582 + 0.394183i −0.957091 0.289788i \(-0.906415\pi\)
0.729509 + 0.683971i \(0.239749\pi\)
\(368\) −0.447430 + 1.37705i −0.0233239 + 0.0717836i
\(369\) 3.89987 37.1048i 0.203019 1.93160i
\(370\) −2.66005 + 1.93264i −0.138290 + 0.100473i
\(371\) 5.38574 0.279614
\(372\) −6.30699 + 29.5635i −0.327002 + 1.53280i
\(373\) 25.4134 1.31586 0.657928 0.753081i \(-0.271433\pi\)
0.657928 + 0.753081i \(0.271433\pi\)
\(374\) −1.26141 + 0.916471i −0.0652262 + 0.0473896i
\(375\) −1.04298 + 9.92333i −0.0538594 + 0.512438i
\(376\) 3.35188 10.3160i 0.172860 0.532009i
\(377\) 4.53913 7.86200i 0.233777 0.404914i
\(378\) −1.30448 2.25943i −0.0670954 0.116213i
\(379\) −21.6150 + 4.59441i −1.11029 + 0.235999i −0.726326 0.687350i \(-0.758774\pi\)
−0.383961 + 0.923349i \(0.625440\pi\)
\(380\) −3.65208 11.2399i −0.187348 0.576597i
\(381\) 0.333399 + 0.0708662i 0.0170806 + 0.00363059i
\(382\) 0.196226 + 1.86696i 0.0100398 + 0.0955220i
\(383\) −17.8274 19.7993i −0.910938 1.01170i −0.999877 0.0156617i \(-0.995015\pi\)
0.0889398 0.996037i \(-0.471652\pi\)
\(384\) 25.3039 + 11.2660i 1.29128 + 0.574916i
\(385\) 7.14640 3.18178i 0.364214 0.162159i
\(386\) −0.501743 + 0.557242i −0.0255380 + 0.0283629i
\(387\) 36.5547 + 26.5585i 1.85818 + 1.35005i
\(388\) 5.18112 + 3.76430i 0.263032 + 0.191104i
\(389\) −8.66862 + 9.62748i −0.439517 + 0.488133i −0.921681 0.387948i \(-0.873184\pi\)
0.482165 + 0.876081i \(0.339851\pi\)
\(390\) −7.93646 + 3.53354i −0.401878 + 0.178928i
\(391\) 0.737176 + 0.328212i 0.0372806 + 0.0165984i
\(392\) 5.31357 + 5.90132i 0.268376 + 0.298062i
\(393\) 1.74925 + 16.6430i 0.0882379 + 0.839528i
\(394\) 2.01980 + 0.429321i 0.101756 + 0.0216289i
\(395\) −3.16762 9.74894i −0.159380 0.490522i
\(396\) −23.9701 + 5.09500i −1.20454 + 0.256033i
\(397\) 1.46363 + 2.53508i 0.0734574 + 0.127232i 0.900414 0.435033i \(-0.143263\pi\)
−0.826957 + 0.562265i \(0.809930\pi\)
\(398\) −1.21736 + 2.10852i −0.0610205 + 0.105691i
\(399\) 2.04944 6.30752i 0.102600 0.315771i
\(400\) −1.31427 + 12.5045i −0.0657136 + 0.625223i
\(401\) 9.93025 7.21475i 0.495893 0.360287i −0.311553 0.950229i \(-0.600849\pi\)
0.807446 + 0.589942i \(0.200849\pi\)
\(402\) 6.54572 0.326471
\(403\) 9.39479 + 12.9511i 0.467988 + 0.645142i
\(404\) −33.2464 −1.65407
\(405\) −8.98586 + 6.52861i −0.446511 + 0.324409i
\(406\) −0.125581 + 1.19482i −0.00623246 + 0.0592979i
\(407\) −2.36426 + 7.27645i −0.117192 + 0.360680i
\(408\) 3.59625 6.22889i 0.178041 0.308376i
\(409\) 8.59861 + 14.8932i 0.425174 + 0.736423i 0.996437 0.0843442i \(-0.0268795\pi\)
−0.571263 + 0.820767i \(0.693546\pi\)
\(410\) 7.09944 1.50903i 0.350617 0.0745258i
\(411\) −10.5549 32.4848i −0.520637 1.60236i
\(412\) 14.8195 + 3.14997i 0.730102 + 0.155188i
\(413\) −1.35893 12.9294i −0.0668687 0.636213i
\(414\) −0.558539 0.620320i −0.0274507 0.0304871i
\(415\) 34.9127 + 15.5442i 1.71380 + 0.763032i
\(416\) 10.1735 4.52955i 0.498799 0.222080i
\(417\) 29.8568 33.1594i 1.46210 1.62382i
\(418\) 1.46431 + 1.06388i 0.0716217 + 0.0520362i
\(419\) −18.7251 13.6046i −0.914782 0.664628i 0.0274378 0.999624i \(-0.491265\pi\)
−0.942220 + 0.334996i \(0.891265\pi\)
\(420\) −11.6884 + 12.9813i −0.570338 + 0.633424i
\(421\) 26.6593 11.8695i 1.29929 0.578483i 0.363686 0.931522i \(-0.381518\pi\)
0.935609 + 0.353038i \(0.114851\pi\)
\(422\) 5.36434 + 2.38836i 0.261132 + 0.116263i
\(423\) −28.6156 31.7808i −1.39134 1.54524i
\(424\) −0.708734 6.74315i −0.0344192 0.327476i
\(425\) 6.85415 + 1.45689i 0.332475 + 0.0706697i
\(426\) −0.527201 1.62256i −0.0255430 0.0786132i
\(427\) −15.2793 + 3.24771i −0.739416 + 0.157168i
\(428\) −11.4008 19.7468i −0.551080 0.954498i
\(429\) −10.1076 + 17.5069i −0.487999 + 0.845239i
\(430\) −2.71626 + 8.35979i −0.130990 + 0.403145i
\(431\) −3.17267 + 30.1859i −0.152822 + 1.45401i 0.602220 + 0.798330i \(0.294283\pi\)
−0.755042 + 0.655676i \(0.772384\pi\)
\(432\) 18.1725 13.2031i 0.874326 0.635235i
\(433\) −13.8400 −0.665107 −0.332553 0.943084i \(-0.607910\pi\)
−0.332553 + 0.943084i \(0.607910\pi\)
\(434\) −1.83292 1.06006i −0.0879830 0.0508846i
\(435\) 27.1762 1.30300
\(436\) −0.959605 + 0.697194i −0.0459567 + 0.0333895i
\(437\) 0.0979154 0.931602i 0.00468393 0.0445646i
\(438\) −4.51207 + 13.8867i −0.215595 + 0.663534i
\(439\) −6.46006 + 11.1892i −0.308322 + 0.534029i −0.977995 0.208626i \(-0.933101\pi\)
0.669674 + 0.742656i \(0.266434\pi\)
\(440\) −4.92414 8.52887i −0.234749 0.406598i
\(441\) 30.6242 6.50938i 1.45830 0.309970i
\(442\) −0.569463 1.75263i −0.0270866 0.0833639i
\(443\) −23.2391 4.93962i −1.10412 0.234688i −0.380429 0.924810i \(-0.624224\pi\)
−0.723693 + 0.690122i \(0.757557\pi\)
\(444\) −1.78582 16.9909i −0.0847511 0.806353i
\(445\) 4.49500 + 4.99220i 0.213083 + 0.236653i
\(446\) −2.01027 0.895031i −0.0951892 0.0423809i
\(447\) 31.5863 14.0631i 1.49398 0.665163i
\(448\) 3.75549 4.17089i 0.177430 0.197056i
\(449\) 15.7054 + 11.4106i 0.741181 + 0.538500i 0.893081 0.449896i \(-0.148539\pi\)
−0.151900 + 0.988396i \(0.548539\pi\)
\(450\) −5.86419 4.26058i −0.276440 0.200846i
\(451\) 11.3009 12.5509i 0.532137 0.590998i
\(452\) 19.3718 8.62487i 0.911171 0.405680i
\(453\) 11.4241 + 5.08632i 0.536749 + 0.238976i
\(454\) −1.84538 2.04950i −0.0866078 0.0961877i
\(455\) 0.966440 + 9.19507i 0.0453074 + 0.431071i
\(456\) −8.16695 1.73594i −0.382452 0.0812928i
\(457\) 7.52208 + 23.1506i 0.351868 + 1.08294i 0.957803 + 0.287424i \(0.0927990\pi\)
−0.605935 + 0.795514i \(0.707201\pi\)
\(458\) −4.39075 + 0.933283i −0.205166 + 0.0436094i
\(459\) −6.25931 10.8414i −0.292159 0.506035i
\(460\) −1.23362 + 2.13669i −0.0575177 + 0.0996235i
\(461\) −11.8487 + 36.4665i −0.551848 + 1.69841i 0.152279 + 0.988338i \(0.451339\pi\)
−0.704126 + 0.710075i \(0.748661\pi\)
\(462\) 0.279639 2.66059i 0.0130100 0.123782i
\(463\) 5.33489 3.87603i 0.247934 0.180134i −0.456877 0.889530i \(-0.651032\pi\)
0.704810 + 0.709396i \(0.251032\pi\)
\(464\) −10.3437 −0.480195
\(465\) −19.5138 + 43.7409i −0.904932 + 2.02843i
\(466\) 4.46933 0.207038
\(467\) −31.0674 + 22.5718i −1.43763 + 1.04450i −0.449096 + 0.893484i \(0.648254\pi\)
−0.988532 + 0.151014i \(0.951746\pi\)
\(468\) 3.02749 28.8046i 0.139946 1.33149i
\(469\) 2.15270 6.62532i 0.0994024 0.305929i
\(470\) 4.15973 7.20487i 0.191874 0.332336i
\(471\) −12.5922 21.8104i −0.580220 1.00497i
\(472\) −16.0092 + 3.40287i −0.736885 + 0.156630i
\(473\) 6.32051 + 19.4525i 0.290617 + 0.894429i
\(474\) −3.42895 0.728845i −0.157497 0.0334770i
\(475\) −0.850274 8.08981i −0.0390132 0.371186i
\(476\) −2.47938 2.75363i −0.113642 0.126212i
\(477\) −24.4210 10.8729i −1.11816 0.497838i
\(478\) −8.16256 + 3.63421i −0.373347 + 0.166225i
\(479\) 5.03531 5.59228i 0.230069 0.255518i −0.617046 0.786927i \(-0.711671\pi\)
0.847115 + 0.531409i \(0.178337\pi\)
\(480\) 26.9703 + 19.5951i 1.23102 + 0.894389i
\(481\) −7.31567 5.31515i −0.333566 0.242350i
\(482\) 0.555195 0.616606i 0.0252884 0.0280856i
\(483\) −1.26484 + 0.563141i −0.0575520 + 0.0256238i
\(484\) 8.72293 + 3.88370i 0.396497 + 0.176532i
\(485\) 6.78981 + 7.54085i 0.308310 + 0.342412i
\(486\) −0.358996 3.41562i −0.0162844 0.154936i
\(487\) −24.4852 5.20450i −1.10953 0.235838i −0.383528 0.923529i \(-0.625291\pi\)
−0.726004 + 0.687691i \(0.758625\pi\)
\(488\) 6.07693 + 18.7029i 0.275090 + 0.846639i
\(489\) 8.85217 1.88159i 0.400309 0.0850883i
\(490\) 3.04533 + 5.27467i 0.137574 + 0.238285i
\(491\) 19.8550 34.3899i 0.896044 1.55199i 0.0635377 0.997979i \(-0.479762\pi\)
0.832507 0.554015i \(-0.186905\pi\)
\(492\) −11.6539 + 35.8670i −0.525399 + 1.61701i
\(493\) −0.602573 + 5.73310i −0.0271385 + 0.258206i
\(494\) −1.73068 + 1.25741i −0.0778668 + 0.0565735i
\(495\) −38.8281 −1.74519
\(496\) 7.42729 16.6485i 0.333495 0.747539i
\(497\) −1.81567 −0.0814440
\(498\) 10.5735 7.68207i 0.473808 0.344242i
\(499\) 2.47252 23.5245i 0.110685 1.05310i −0.788351 0.615226i \(-0.789065\pi\)
0.899036 0.437875i \(-0.144269\pi\)
\(500\) 1.99977 6.15467i 0.0894325 0.275245i
\(501\) −19.3199 + 33.4630i −0.863148 + 1.49502i
\(502\) −0.414099 0.717241i −0.0184822 0.0320120i
\(503\) 19.7453 4.19699i 0.880400 0.187135i 0.254532 0.967064i \(-0.418078\pi\)
0.625867 + 0.779930i \(0.284745\pi\)
\(504\) 2.44685 + 7.53063i 0.108991 + 0.335441i
\(505\) −51.5265 10.9523i −2.29290 0.487370i
\(506\) −0.0394968 0.375787i −0.00175585 0.0167058i
\(507\) 9.18070 + 10.1962i 0.407729 + 0.452829i
\(508\) −0.201951 0.0899143i −0.00896012 0.00398930i
\(509\) 10.8155 4.81536i 0.479387 0.213437i −0.152793 0.988258i \(-0.548827\pi\)
0.632180 + 0.774821i \(0.282160\pi\)
\(510\) 3.69131 4.09961i 0.163454 0.181534i
\(511\) 12.5717 + 9.13389i 0.556140 + 0.404060i
\(512\) −17.4827 12.7019i −0.772633 0.561351i
\(513\) −9.72394 + 10.7995i −0.429322 + 0.476811i
\(514\) −8.35179 + 3.71845i −0.368381 + 0.164014i
\(515\) 21.9300 + 9.76388i 0.966352 + 0.430248i
\(516\) −30.5611 33.9416i −1.34538 1.49419i
\(517\) −2.02354 19.2526i −0.0889950 0.846731i
\(518\) 1.17054 + 0.248806i 0.0514306 + 0.0109319i
\(519\) −17.0275 52.4051i −0.747422 2.30033i
\(520\) 11.3854 2.42004i 0.499283 0.106126i
\(521\) 16.3742 + 28.3610i 0.717368 + 1.24252i 0.962039 + 0.272911i \(0.0879865\pi\)
−0.244672 + 0.969606i \(0.578680\pi\)
\(522\) 2.98158 5.16425i 0.130500 0.226033i
\(523\) −9.11682 + 28.0587i −0.398651 + 1.22692i 0.527431 + 0.849598i \(0.323155\pi\)
−0.926082 + 0.377323i \(0.876845\pi\)
\(524\) 1.13451 10.7941i 0.0495611 0.471543i
\(525\) −9.72679 + 7.06693i −0.424512 + 0.308426i
\(526\) 8.06030 0.351446
\(527\) −8.79490 5.08650i −0.383112 0.221571i
\(528\) 23.0331 1.00239
\(529\) 18.4492 13.4041i 0.802138 0.582788i
\(530\) 0.543591 5.17193i 0.0236121 0.224654i
\(531\) −19.9404 + 61.3703i −0.865340 + 2.66324i
\(532\) −2.15069 + 3.72510i −0.0932441 + 0.161504i
\(533\) 9.98053 + 17.2868i 0.432305 + 0.748774i
\(534\) 2.24713 0.477643i 0.0972430 0.0206696i
\(535\) −11.1643 34.3600i −0.482673 1.48551i
\(536\) −8.57845 1.82340i −0.370532 0.0787591i
\(537\) −0.0239919 0.228267i −0.00103533 0.00985047i
\(538\) −4.00875 4.45217i −0.172830 0.191947i
\(539\) 12.9472 + 5.76446i 0.557675 + 0.248293i
\(540\) 34.9668 15.5682i 1.50473 0.669949i
\(541\) 8.87657 9.85843i 0.381634 0.423847i −0.521470 0.853270i \(-0.674616\pi\)
0.903104 + 0.429423i \(0.141283\pi\)
\(542\) −2.06029 1.49689i −0.0884970 0.0642968i
\(543\) 5.06264 + 3.67822i 0.217258 + 0.157848i
\(544\) −4.73179 + 5.25519i −0.202874 + 0.225314i
\(545\) −1.71690 + 0.764415i −0.0735441 + 0.0327439i
\(546\) 2.88853 + 1.28605i 0.123618 + 0.0550381i
\(547\) 25.2689 + 28.0640i 1.08042 + 1.19993i 0.978738 + 0.205114i \(0.0657564\pi\)
0.101684 + 0.994817i \(0.467577\pi\)
\(548\) 2.31560 + 22.0315i 0.0989175 + 0.941137i
\(549\) 75.8388 + 16.1200i 3.23672 + 0.687986i
\(550\) −1.01395 3.12062i −0.0432351 0.133064i
\(551\) 6.54568 1.39133i 0.278855 0.0592725i
\(552\) 0.871520 + 1.50952i 0.0370944 + 0.0642493i
\(553\) −1.86539 + 3.23095i −0.0793245 + 0.137394i
\(554\) 1.64019 5.04800i 0.0696852 0.214469i
\(555\) 2.82955 26.9214i 0.120108 1.14275i
\(556\) −23.4124 + 17.0101i −0.992907 + 0.721389i
\(557\) −11.3637 −0.481496 −0.240748 0.970588i \(-0.577393\pi\)
−0.240748 + 0.970588i \(0.577393\pi\)
\(558\) 6.17108 + 8.50711i 0.261243 + 0.360135i
\(559\) −24.1743 −1.02246
\(560\) 8.52261 6.19204i 0.360146 0.261661i
\(561\) 1.34179 12.7663i 0.0566505 0.538993i
\(562\) −0.270094 + 0.831262i −0.0113932 + 0.0350647i
\(563\) 10.0933 17.4821i 0.425381 0.736781i −0.571075 0.820898i \(-0.693474\pi\)
0.996456 + 0.0841167i \(0.0268068\pi\)
\(564\) 21.6140 + 37.4365i 0.910113 + 1.57636i
\(565\) 32.8643 6.98552i 1.38261 0.293883i
\(566\) −0.513276 1.57970i −0.0215746 0.0663998i
\(567\) 3.95417 + 0.840485i 0.166060 + 0.0352971i
\(568\) 0.238933 + 2.27329i 0.0100254 + 0.0953852i
\(569\) −20.7361 23.0298i −0.869304 0.965460i 0.130358 0.991467i \(-0.458387\pi\)
−0.999662 + 0.0260074i \(0.991721\pi\)
\(570\) −5.85026 2.60470i −0.245040 0.109099i
\(571\) −9.50060 + 4.22994i −0.397588 + 0.177017i −0.595784 0.803145i \(-0.703158\pi\)
0.198196 + 0.980162i \(0.436492\pi\)
\(572\) 8.77291 9.74330i 0.366814 0.407388i
\(573\) −12.5034 9.08427i −0.522338 0.379501i
\(574\) −2.13711 1.55270i −0.0892012 0.0648085i
\(575\) −1.13628 + 1.26197i −0.0473863 + 0.0526279i
\(576\) −25.4492 + 11.3307i −1.06038 + 0.472113i
\(577\) 4.94581 + 2.20201i 0.205897 + 0.0916711i 0.507094 0.861891i \(-0.330720\pi\)
−0.301197 + 0.953562i \(0.597386\pi\)
\(578\) −3.21461 3.57019i −0.133710 0.148500i
\(579\) −0.645291 6.13953i −0.0268174 0.255150i
\(580\) −17.2404 3.66457i −0.715871 0.152163i
\(581\) −4.29819 13.2285i −0.178319 0.548809i
\(582\) 3.39435 0.721492i 0.140700 0.0299068i
\(583\) −6.05046 10.4797i −0.250585 0.434025i
\(584\) 9.78162 16.9423i 0.404766 0.701076i
\(585\) 14.1811 43.6451i 0.586318 1.80450i
\(586\) 0.387510 3.68691i 0.0160079 0.152305i
\(587\) 10.1635 7.38424i 0.419494 0.304780i −0.357940 0.933744i \(-0.616521\pi\)
0.777434 + 0.628964i \(0.216521\pi\)
\(588\) −31.6471 −1.30510
\(589\) −2.46073 + 11.5345i −0.101393 + 0.475270i
\(590\) −12.5532 −0.516809
\(591\) −13.7535 + 9.99247i −0.565741 + 0.411035i
\(592\) −1.07697 + 10.2467i −0.0442634 + 0.421138i
\(593\) 8.36510 25.7451i 0.343513 1.05723i −0.618861 0.785500i \(-0.712406\pi\)
0.962375 0.271726i \(-0.0875943\pi\)
\(594\) −2.93098 + 5.07660i −0.120259 + 0.208295i
\(595\) −2.93551 5.08445i −0.120344 0.208442i
\(596\) −21.9345 + 4.66233i −0.898473 + 0.190976i
\(597\) −6.19413 19.0636i −0.253509 0.780220i
\(598\) 0.436832 + 0.0928516i 0.0178634 + 0.00379698i
\(599\) 1.50051 + 14.2764i 0.0613094 + 0.583320i 0.981448 + 0.191727i \(0.0614089\pi\)
−0.920139 + 0.391592i \(0.871924\pi\)
\(600\) 10.1281 + 11.2484i 0.413476 + 0.459212i
\(601\) 0.584684 + 0.260318i 0.0238498 + 0.0106186i 0.418627 0.908158i \(-0.362512\pi\)
−0.394777 + 0.918777i \(0.629178\pi\)
\(602\) 2.92260 1.30122i 0.119116 0.0530339i
\(603\) −23.1366 + 25.6958i −0.942197 + 1.04642i
\(604\) −6.56150 4.76721i −0.266984 0.193975i
\(605\) 12.2397 + 8.89266i 0.497614 + 0.361538i
\(606\) −12.0543 + 13.3877i −0.489673 + 0.543837i
\(607\) −5.95432 + 2.65104i −0.241679 + 0.107602i −0.524002 0.851717i \(-0.675562\pi\)
0.282323 + 0.959319i \(0.408895\pi\)
\(608\) 7.49929 + 3.33890i 0.304136 + 0.135410i
\(609\) −6.61834 7.35041i −0.268189 0.297854i
\(610\) 1.57662 + 15.0005i 0.0638353 + 0.607352i
\(611\) 22.3802 + 4.75706i 0.905405 + 0.192450i
\(612\) 5.68333 + 17.4915i 0.229735 + 0.707052i
\(613\) −10.2171 + 2.17170i −0.412663 + 0.0877143i −0.409565 0.912281i \(-0.634320\pi\)
−0.00309833 + 0.999995i \(0.500986\pi\)
\(614\) −0.465385 0.806070i −0.0187814 0.0325303i
\(615\) −29.8772 + 51.7489i −1.20477 + 2.08672i
\(616\) −1.10762 + 3.40892i −0.0446274 + 0.137349i
\(617\) −2.26862 + 21.5845i −0.0913311 + 0.868958i 0.848930 + 0.528505i \(0.177247\pi\)
−0.940262 + 0.340453i \(0.889420\pi\)
\(618\) 6.64159 4.82540i 0.267164 0.194106i
\(619\) 28.5478 1.14743 0.573716 0.819054i \(-0.305501\pi\)
0.573716 + 0.819054i \(0.305501\pi\)
\(620\) 18.2777 25.1176i 0.734050 1.00875i
\(621\) 3.03377 0.121741
\(622\) −1.56738 + 1.13877i −0.0628462 + 0.0456604i
\(623\) 0.255566 2.43155i 0.0102390 0.0974178i
\(624\) −8.41235 + 25.8906i −0.336764 + 1.03645i
\(625\) 14.7271 25.5080i 0.589083 1.02032i
\(626\) 4.68731 + 8.11866i 0.187343 + 0.324487i
\(627\) −14.5757 + 3.09816i −0.582098 + 0.123729i
\(628\) 5.04743 + 15.5344i 0.201414 + 0.619890i
\(629\) 5.61660 + 1.19385i 0.223949 + 0.0476018i
\(630\) 0.634818 + 6.03989i 0.0252917 + 0.240635i
\(631\) 18.2275 + 20.2436i 0.725624 + 0.805887i 0.987232 0.159287i \(-0.0509196\pi\)
−0.261609 + 0.965174i \(0.584253\pi\)
\(632\) 4.29075 + 1.91037i 0.170677 + 0.0759903i
\(633\) −44.1638 + 19.6630i −1.75535 + 0.781533i
\(634\) 2.52561 2.80498i 0.100305 0.111400i
\(635\) −0.283370 0.205880i −0.0112452 0.00817012i
\(636\) 21.8607 + 15.8828i 0.866835 + 0.629792i
\(637\) −11.2083 + 12.4481i −0.444089 + 0.493210i
\(638\) 2.46599 1.09793i 0.0976295 0.0434675i
\(639\) 8.23296 + 3.66555i 0.325691 + 0.145007i
\(640\) −19.0460 21.1527i −0.752859 0.836135i
\(641\) −4.30742 40.9824i −0.170133 1.61871i −0.663013 0.748608i \(-0.730722\pi\)
0.492880 0.870097i \(-0.335944\pi\)
\(642\) −12.0853 2.56881i −0.476969 0.101383i
\(643\) −9.52156 29.3044i −0.375494 1.15565i −0.943145 0.332382i \(-0.892148\pi\)
0.567651 0.823269i \(-0.307852\pi\)
\(644\) 0.878342 0.186697i 0.0346115 0.00735691i
\(645\) −36.1834 62.6715i −1.42472 2.46769i
\(646\) 0.679205 1.17642i 0.0267230 0.0462855i
\(647\) 2.75525 8.47978i 0.108320 0.333375i −0.882175 0.470921i \(-0.843922\pi\)
0.990495 + 0.137547i \(0.0439217\pi\)
\(648\) 0.531973 5.06138i 0.0208979 0.198830i
\(649\) −23.6317 + 17.1694i −0.927623 + 0.673958i
\(650\) 3.87809 0.152111
\(651\) 16.5830 5.37445i 0.649938 0.210641i
\(652\) −5.86949 −0.229867
\(653\) −31.7469 + 23.0655i −1.24235 + 0.902623i −0.997753 0.0670010i \(-0.978657\pi\)
−0.244601 + 0.969624i \(0.578657\pi\)
\(654\) −0.0671825 + 0.639199i −0.00262704 + 0.0249946i
\(655\) 5.31417 16.3553i 0.207642 0.639056i
\(656\) 11.3718 19.6965i 0.443993 0.769018i
\(657\) −38.5652 66.7969i −1.50457 2.60600i
\(658\) −2.96175 + 0.629540i −0.115461 + 0.0245420i
\(659\) 10.1832 + 31.3407i 0.396681 + 1.22086i 0.927644 + 0.373465i \(0.121830\pi\)
−0.530963 + 0.847395i \(0.678170\pi\)
\(660\) 38.3905 + 8.16015i 1.49435 + 0.317633i
\(661\) 0.0177359 + 0.168746i 0.000689846 + 0.00656345i 0.994861 0.101246i \(-0.0322830\pi\)
−0.994172 + 0.107810i \(0.965616\pi\)
\(662\) 4.62022 + 5.13127i 0.179570 + 0.199433i
\(663\) 13.8600 + 6.17087i 0.538278 + 0.239657i
\(664\) −15.9969 + 7.12229i −0.620801 + 0.276398i
\(665\) −4.56036 + 5.06479i −0.176843 + 0.196404i
\(666\) −4.80539 3.49132i −0.186205 0.135286i
\(667\) −1.13021 0.821147i −0.0437620 0.0317950i
\(668\) 16.7687 18.6236i 0.648801 0.720567i
\(669\) 16.5503 7.36866i 0.639871 0.284889i
\(670\) −6.14502 2.73594i −0.237403 0.105699i
\(671\) 23.4846 + 26.0823i 0.906612 + 1.00689i
\(672\) −1.26827 12.0668i −0.0489246 0.465487i
\(673\) 14.2676 + 3.03267i 0.549976 + 0.116901i 0.474514 0.880248i \(-0.342624\pi\)
0.0754613 + 0.997149i \(0.475957\pi\)
\(674\) 2.08278 + 6.41015i 0.0802258 + 0.246910i
\(675\) 25.7689 5.47735i 0.991845 0.210823i
\(676\) −4.44929 7.70639i −0.171126 0.296400i
\(677\) −7.88341 + 13.6545i −0.302984 + 0.524784i −0.976810 0.214106i \(-0.931316\pi\)
0.673826 + 0.738890i \(0.264650\pi\)
\(678\) 3.55065 10.9278i 0.136362 0.419679i
\(679\) 0.386039 3.67291i 0.0148148 0.140953i
\(680\) −5.97963 + 4.34445i −0.229308 + 0.166602i
\(681\) 22.7051 0.870063
\(682\) −0.00355200 + 4.75744i −0.000136013 + 0.182172i
\(683\) 20.5935 0.787988 0.393994 0.919113i \(-0.371093\pi\)
0.393994 + 0.919113i \(0.371093\pi\)
\(684\) 17.2724 12.5492i 0.660428 0.479829i
\(685\) −3.66897 + 34.9079i −0.140184 + 1.33376i
\(686\) 1.50763 4.64001i 0.0575616 0.177156i
\(687\) 18.4780 32.0048i 0.704979 1.22106i
\(688\) 13.7720 + 23.8538i 0.525053 + 0.909418i
\(689\) 13.9896 2.97359i 0.532962 0.113285i
\(690\) 0.413123 + 1.27146i 0.0157273 + 0.0484037i
\(691\) 5.82165 + 1.23743i 0.221466 + 0.0470741i 0.317308 0.948322i \(-0.397221\pi\)
−0.0958421 + 0.995397i \(0.530554\pi\)
\(692\) 3.73557 + 35.5416i 0.142005 + 1.35109i
\(693\) 9.45597 + 10.5019i 0.359203 + 0.398935i
\(694\) 3.42238 + 1.52374i 0.129912 + 0.0578404i
\(695\) −41.8889 + 18.6502i −1.58894 + 0.707441i
\(696\) −8.33206 + 9.25369i −0.315826 + 0.350760i
\(697\) −10.2545 7.45032i −0.388417 0.282201i
\(698\) 5.31713 + 3.86312i 0.201256 + 0.146221i
\(699\) −24.6209 + 27.3443i −0.931248 + 1.03426i
\(700\) 7.12357 3.17162i 0.269245 0.119876i
\(701\) −24.3281 10.8316i −0.918859 0.409103i −0.107871 0.994165i \(-0.534403\pi\)
−0.810988 + 0.585062i \(0.801070\pi\)
\(702\) −4.63592 5.14871i −0.174972 0.194326i
\(703\) −0.696753 6.62916i −0.0262785 0.250024i
\(704\) −12.3348 2.62185i −0.464886 0.0988146i
\(705\) 21.1655 + 65.1407i 0.797138 + 2.45334i
\(706\) 4.35268 0.925191i 0.163815 0.0348200i
\(707\) 9.58617 + 16.6037i 0.360525 + 0.624448i
\(708\) 32.6133 56.4879i 1.22568 2.12295i
\(709\) −0.816662 + 2.51343i −0.0306704 + 0.0943938i −0.965220 0.261439i \(-0.915803\pi\)
0.934550 + 0.355833i \(0.115803\pi\)
\(710\) −0.183259 + 1.74359i −0.00687757 + 0.0654357i
\(711\) 14.9812 10.8845i 0.561839 0.408200i
\(712\) −3.07802 −0.115354
\(713\) 2.13321 1.22948i 0.0798892 0.0460445i
\(714\) −2.00779 −0.0751398
\(715\) 16.8063 12.2105i 0.628519 0.456646i
\(716\) −0.0155603 + 0.148047i −0.000581518 + 0.00553277i
\(717\) 22.7315 69.9605i 0.848925 2.61272i
\(718\) 3.98491 6.90207i 0.148716 0.257583i
\(719\) −2.59912 4.50181i −0.0969308 0.167889i 0.813482 0.581590i \(-0.197569\pi\)
−0.910413 + 0.413701i \(0.864236\pi\)
\(720\) −51.1455 + 10.8713i −1.90608 + 0.405150i
\(721\) −2.69986 8.30930i −0.100548 0.309455i
\(722\) 4.98886 + 1.06041i 0.185666 + 0.0394645i
\(723\) 0.714035 + 6.79359i 0.0265552 + 0.252656i
\(724\) −2.71572 3.01611i −0.100929 0.112093i
\(725\) −11.0826 4.93428i −0.411596 0.183254i
\(726\) 4.72660 2.10442i 0.175421 0.0781023i
\(727\) 16.1973 17.9889i 0.600723 0.667171i −0.363705 0.931514i \(-0.618488\pi\)
0.964429 + 0.264343i \(0.0851551\pi\)
\(728\) −3.42729 2.49007i −0.127024 0.0922882i
\(729\) 31.9419 + 23.2071i 1.18303 + 0.859524i
\(730\) 10.0402 11.1507i 0.371603 0.412707i
\(731\) 14.0235 6.24366i 0.518677 0.230930i
\(732\) −71.5963 31.8767i −2.64628 1.17820i
\(733\) 27.0080 + 29.9954i 0.997562 + 1.10790i 0.994161 + 0.107910i \(0.0344159\pi\)
0.00340093 + 0.999994i \(0.498917\pi\)
\(734\) −0.320315 3.04759i −0.0118230 0.112489i
\(735\) −49.0478 10.4254i −1.80916 0.384548i
\(736\) −0.529571 1.62985i −0.0195202 0.0600771i
\(737\) −15.3101 + 3.25427i −0.563955 + 0.119872i
\(738\) 6.55583 + 11.3550i 0.241324 + 0.417985i
\(739\) −3.04893 + 5.28089i −0.112157 + 0.194261i −0.916640 0.399715i \(-0.869109\pi\)
0.804483 + 0.593976i \(0.202442\pi\)
\(740\) −5.42526 + 16.6972i −0.199437 + 0.613803i
\(741\) 1.84095 17.5155i 0.0676292 0.643449i
\(742\) −1.53125 + 1.11251i −0.0562138 + 0.0408417i
\(743\) 16.2263 0.595284 0.297642 0.954678i \(-0.403800\pi\)
0.297642 + 0.954678i \(0.403800\pi\)
\(744\) −8.91125 20.0553i −0.326702 0.735262i
\(745\) −35.5308 −1.30175
\(746\) −7.22540 + 5.24956i −0.264541 + 0.192200i
\(747\) −7.21649 + 68.6603i −0.264038 + 2.51215i
\(748\) −2.57269 + 7.91793i −0.0940670 + 0.289508i
\(749\) −6.57456 + 11.3875i −0.240229 + 0.416089i
\(750\) −1.75329 3.03680i −0.0640213 0.110888i
\(751\) −35.6481 + 7.57723i −1.30082 + 0.276497i −0.805697 0.592328i \(-0.798209\pi\)
−0.495119 + 0.868825i \(0.664876\pi\)
\(752\) −8.05593 24.7936i −0.293770 0.904130i
\(753\) 6.66944 + 1.41763i 0.243048 + 0.0516614i
\(754\) 0.333487 + 3.17292i 0.0121449 + 0.115551i
\(755\) −8.59879 9.54992i −0.312942 0.347557i
\(756\) −12.7264 5.66615i −0.462854 0.206076i
\(757\) 39.7960 17.7183i 1.44641 0.643984i 0.474699 0.880148i \(-0.342557\pi\)
0.971713 + 0.236164i \(0.0758904\pi\)
\(758\) 5.19641 5.77120i 0.188742 0.209619i
\(759\) 2.51672 + 1.82851i 0.0913512 + 0.0663705i
\(760\) 6.94144 + 5.04325i 0.251792 + 0.182938i
\(761\) 2.20765 2.45184i 0.0800272 0.0888792i −0.701801 0.712373i \(-0.747621\pi\)
0.781828 + 0.623494i \(0.214287\pi\)
\(762\) −0.109429 + 0.0487209i −0.00396419 + 0.00176497i